Geometric index structures

March 20, 2006

Based on GUW Chapter 14.0-14.3, [Arge01] Sections 1, 2.1 (persistent B-trees), 3-4 (static versions only), 4.1, 9.
Today's lecture

- Multidimensional data
- Commonly used (heuristic) geometric index structures
- Persistent B-trees
- Stabbing query problem
- Planar point location
- The logarithmic method
Multidimensional data

Geometric data is one, two, or three dimensional, but also all relational data can be seen as multidimensional data.

- A relation with k attributes can be seen as a k-dimensional space.
- A tuple can be seen as a point in the k-dimensional space. The coordinates for the point are the values for the attributes.
Queries on geometric data

- **Partial match queries**: look up all points matching one or more attributes.
- **Range queries**: look up all points within a range for one or more attributes.
- **Nearest-neighbor**: find the point nearest to a query point.
- **Where-am-I**: given data in the form of geometric objects, find the objects that intersect the query point.
2-d range query in SQL

Given the relation:

```
Student(Name, age, enrolled_year)
```

Find all students aged 30 to 40 who started to study before 2004.

```
SELECT Name
FROM Student
WHERE age<=30 AND age>=40 and
    enrolled_year<2004;
```
Geometric index structures

Hash-like indexes
- Grid files
- Partitioned hash functions

Tree-based indexes
- Multiple-key indexes
- kd-trees
- Quad trees
- R-trees

These indexes are *heuristic*, i.e., they are not (proved to be) worst case efficient.
Grid files

• Simple idea:
 – Split each dimension into intervals.
 – Put each point into a bucket corresponding to the intervals it lies in (Ex: GUW p. 677).

• Overflow handling as in hash tables.

• Supports partial match queries, range queries, and nearest neighbor queries (how?)

• Bad case: All data along “diagonal” - need many grid lines (in internal memory) to avoid large buckets.
Multiple-key index

• Index for several attributes A, B, C,...:
 – Group index attributes as a tuple (A,B,C,...)
 – Order among tuples is lexicographic.
 – Make B-tree index according to this order.
 – (Note: Different exposition in GUW).

• Efficiently supports partial match queries on a prefix of the attributes (corresponds to a range query).

• Bad case: Partial match query on non-prefix, e.g., search for single value of last attribute.
kd-trees

• Short for “k-dimensional search tree”.
• Change from ordinary search trees:
 – Each node is associated with a dimension.
 – An internal node partitions the points of its subtree along its dimension.
 – Dimensions rotate down the tree:
 1,2,..,k,1,2,..k,1,2,... (Ex: GUW p. 691)
• Supports partial match queries, range queries and nearest neighbor queries.
• Bad case: Many points with same value in some dimension makes it impossible to split points well along this dimension.
R-trees

• In a B-tree each interior node:
 – Corresponds to a 1-dimensional range.
 – "Knows" the ranges of its children.

• In an R-tree each interior node:
 – Corresponds to a k-dimensional rectangle.
 – "Knows" the rectangles of its children.

• Supports partial match queries, range queries and nearest neighbor queries,…

• Flexible: All kinds of geometric objects (not just points) fit into rectangles.

• Unspecified (and hard): Maintaining "good" rectangles.
Persistent data structure

• A persistent data structure supports queries on previous versions of the data structure.
• A query specifies a time, e.g., “Was element x in the data structure at time t”?
• Updates are only supported at current time, not in an earlier version.
• Possible solution: Copy the data structure when it is updated. (Inefficient!)
• Similar to the concept of *temporal databases*.
Persistent B-trees

- One data structure representing all versions of the B-tree.
- Elements have an existence interval: it exists from the time of insertion until time of deletion (or until now if it is still in the current version).
- Nodes in the B-tree also have an existence interval.
- Nodes and elements are alive in their existence intervals.
- Invariant: A node contains \(\Theta(B) \) alive children in its existence interval.
- Note: Nodes alive at time \(t \) make up a B-tree for elements alive at time \(t \).
Searching and updates in persistent B-trees

• **Searching for x at time t** can be done as usually in time $O(\log_B N)$ in the tree consisting of nodes alive at time t.

• **Insertion of x** is similar to normal insertion in a B-tree. If x should be inserted in leaf l, and l is full, then we have to maintain the new invariant. (Blackboard)

• **Deletion**: The element is not deleted, but the time interval is updated. This may cause a violation of the invariant. (Read yourself)
Time and space for persistent B-trees

- **Construction:** Insert elements one by one: N insertions take $O(N \log_B N)$ I/Os.
- In fact, construction can be done in $O(N/B \log_{M/B}(N/B))$ I/Os.

- **Space:** $O(N/B)$ blocks.

- **Note:** N is the total number of elements, both alive and deleted elements.
Problem session

Why are we talking about persistent B-trees in a lecture on geometric data?

• How can we use a persistent B-tree to represent 2-d (geometric) data?

• Given a set of points in 2-d, how can we perform a 3-sided, 2-d range query using the persistent B-tree?
Stabbing query problem

- Data structure for a set of intervals (1-d).
- Query: Report all intervals containing point q.
- Static version.
- Use the logarithmic method to get a dynamic data structure supporting insertions of intervals.
Stabbing query problem (cont.)

- Use a persistent B-tree with intervals as elements and interval endpoints as times.
- *Sweep* the intervals from left to right.
- Insert an interval when the sweep line reaches its left endpoint.
- Delete an interval when the sweep line reaches its right endpoint.
- **Construction time:** \(O\left(\frac{N}{B} \log_{\frac{M}{B}}\left(\frac{N}{B}\right)\right)\)
- **Query:** Report all elements alive at time \(q\). \(O(\log_B N + T/B)\). (\(T=\)output size)
Planar point location

- Given a planar subdivision with N vertices.
- We want a data structure supporting:
 - **Query**: “Which region contains point q=(x,y)?”
- Assume: Enough to find one segment of the region (the one straight above q).
Planar point location (cont.)

- Idea: Use a persistent B-tree.
- Segments are elements.
- A segment exists in the time interval from left x-coordinate to right x-coordinate.
- Search at time x (q=(x,y)). How do we find the right segment?
Problem session

- Segments can not be ordered (in a given direction) in general. Why not?
- We need an order of the segments to search in the B-tree. Which segments do we need to compare?
- How can it be done?
Planar point location (cont.)

- Search for "segment" $q=(x,y)$, in the persistent B-tree at time x.
- A point can be compared to a segment.

- Search time: $O(\log_B N)$ I/Os.
- Construction time: $O(N \log_B N)$ I/Os.
- Space: linear ($O(N/B)$ blocks).
The logarithmic method

• A general method to make many static data structures dynamic.

• Internal memory version:
 – Partition the N elements into log N sets of size 2^0, 2^1, 2^2,....
 – Build a static data structure for each set, denoted D_0, D_1, D_2,....
 – Every query has to query each of the sets.
 – Insertion: Find first empty D_i. Build the structure D_i with all elements in the D_j’s for $j<i$ and the new element.
 – Note: $2^0 + 2^1 + ... + 2^{i-1} = 2^i - 1$
 – Amortized cost: x is in at most $\log_2 N$ d.s.
The logarithmic method - external memory

- \(\log_B N \) subsets
- \(D_i \) has size at most \(B^i \)

- **Query**: Query all structures.
- **Insertion**: Insert in smallest \(D_i \) where \(|D_1| + |D_2| + \ldots + |D_i| < B^i\). The new data structure for \(D_i \) contains all elements in \(D_j, j \leq i \), and the new element.
- **Deletion**: Mark elements deleted.
The logarithmic method - external memory (cont.)

Analysis:

• Assume a static structure with construction cost $T(N)$ and query cost $Q(N)$.

• **Query time**: $O\left(\sum_{i}^{\log_{B} N} Q(|D_i|)\right)$. If $Q(N) = O(\log_{B} N)$ then the query time is $O(\log_{B}^{2} N)$.

• **Amortized cost of insertion**:
 - Note 1: D_i may be smaller than B^i, and it is rebuilt more than once. Hence an element may be in D_i during several rebuilds.
 - Note 2: At least B^{i-1} new elements in D_i each rebuild.
 - Note 3: An element never moves "down".
 - If $T(N) = O(N/B \log_{B} N)$, then insertion costs $O(\log_{B}^{2} N)$ I/Os, amortized.