Dynamic range reporting in one dimension on a RAM
(to appear at STOC 2005)

Rasmus Pagh
Dept. of Theoretical Computer Science, ITU
Joint work with Chr. W. Mortensen and Mihai Patrascu
Outline

• Range reporting
• RAM model
• Van Emde Boas-like solution
• New data structure:
 – Solution using suboptimal space
 – Reducing space
• Open problems
Dynamic range reporting in 1-D

- Maintain a set S of points (numbers) along a line under insertion and deletion of points.
- Answer FindAny queries: Given x, y return an element from $S \cap [x; y]$, or report that none exists.
- Once a point has been found, further points in $[x; y]$ can be retrieved in constant time per point.
RAM model

• Models the capabilities of a real computer:
 – Numbers are really bit strings, and we can manipulate these bit strings, use them to address memory cells, etc.
 – Every step of a computation, and every memory access counts as 1 time unit.

• Contrast e.g. with the comparison model, where membership searches take \(\Omega(\log n) \) time. \(O(1) \) time solutions are known on a RAM.
Approach 1: Predecessor search

- Find predecessor of y in S.
- Elements of S in binary search tree:
 - $O(\log n)$ time for $\text{FindAny}(x, y)$
 - $O(\log n)$ time for updates.
- Optimal in comparison-model.

Can the features of the RAM model be used to improve on this?
van Emde Boas - basic idea
(1975)

• Consider integers as *bit strings* of length \(w \).

• The integer \(s \in S \) that has the *longest common prefix* with \(x \) is either the *predecessor* or *successor* of \(x \).

• Search for length of \(\text{lcp}(x,s) \) by binary search in \([0;w]\) - \(\log(w) \) steps.

• Each prefix of a key in \(S \) is stored in a hash table. If there is a unique key \(x \) having prefix \(p \), we associate \(x \) with \(p \).
van Emde Boas - example

• Search for $x=10001101$:
 – Lookup(1000): Nonunique prefix.
 – Lookup(100011): Not a prefix.
 – Lookup(10001): Unique prefix of 10001010.

• Insert $x=10001101$:
 – Look up every prefix and change:
 Not a prefix \rightarrow Unique prefix of x.
 Unique prefix \rightarrow Nonunique prefix.
van Emde Boas - analysis

- Predecessor search: $O(\log w)$ time.
- Insertion: $O(\log w)$ time.
- Space: $O(nw)$ words.

- Space saving trick (Willard 1983):
 - Use vEB structure only for every $\Theta(w)$th element of S (in sorted order)
 - Associate with every element of vEB a search tree of $\Theta(w)$ elements from S.
 - Improves space to $O(n)$ words.
Limits to predecessor search

- It is known that $\Omega(\log w / \log \log w)$ time is needed to answer predecessor queries, using polynomial space.
- But $FindAny(x,y)$ is different from predecessor search:
 - We know both endpoints.
 - We are happy with any point in $S \cap [x; y]$.
- Useful fact: All points in $S \cap [x; y]$ will have lcp(x, y) as a prefix.
Approach 2: LCP search

Miltersen et al. (1995)

- Store every prefix p of some element in S in a hash table along with:
 - The largest element a in S with prefix p_0.
 - The smallest element b in S with prefix p_1.

- $\text{FindAny}(x, y)$:
 - Look up $\text{lcp}(x, y)$ and retrieve (if \exists) a and b.
 - If $S \cap [x; y]$ is nonempty, a or b is in $[x; y]$.

- **Constant time search**!

- **Space later improved to $O(n)$ words.**

(Alstrup, Brodal, and Rauhe, 2001)
New result: Fast and dynamic

- **FindAny**(x,y):
 - Choose your own time bound t in the range $O(1)$ to $O(\log \log w)$.
 - Update time becomes $O(w^{-2^t} + \log w)$.
 - Space $O(n)$.

- I will concentrate on the end of the trade-off with:
 - **FindAny** in time $O(\log \log w)$, and
 - Updates in time $O(\log w)$
 - … and not go into details on space usage.
Tries

- A **trie** for a set of strings S is a tree with
 - labeled edges, where
 - the labels of the root-to-leaf paths form (by concatenation) the strings in S.
- We will consider:
 - The binary trie, where labels are in $\{0,1\}$, and more generally:
 - The trie of order t, with labels from $\{0,1\}^{2^t}$, for $t=0,1,\ldots,\log w$.
 - In the trie of order t we view elements of S as strings of length $w/2^t$.
Searching tries

• van Emde Boas search:
 – Look up node in trie of order $\log(w)-1$,
 – look up node in trie of order $\log(w)-2$,
 – ...
 – look up node in trie of order 0.

• Our search idea:
 – Do binary search on the tries to find the one “suitable” for the search.
 – Number of steps becomes $\log \log w$.
 – Updates take constant time per trie.
• Assume z is an extreme element of a maximal subtrie inside $[x; y]$.
• For simplicity assume it is the only such subtrie.
• $\text{lcp}(x, y)$ is a prefix of z.
Example higher order trie

• In some higher order trie, \{x, y, z\} have a common lcp.
• We wish to find the highest order trie \(t \) where this is not the case.

\[
lcp(x, y) = lcp(x, z) = lcp(y, z)
\]
Answering the query

- In example, the data structure for the trie t associates info on z with the pink node.
- Query looks up both the red and the pink node.
Finding the right trie

• Tries of order > t:
 – The node where x and y branch is also a branching node of that trie.

• Tries of order ≤ t:
 – The node where x and y branch is not a branching node of that trie.

• All tries store their branching nodes in a hash table (at most n per trie).
Dynamic updates - sketch

• For insertion of an element we:
 – Find its position in the 0th order trie, using vEB search, in $O(\log w)$ time.
 – Adjust at most one extreme point in each trie in $O(1)$ time.
 – Create at most one new branching node in each trie in $O(1)$ time.

• Deletions are symmetric to insertions.
Reducing the space

• **Ingredient 1:**
 “Compressed pointers” of $O(\log w)$ bits enough to represent most nodes in the tries (Alstrup et al. ’01).

• **Ingredient 2:**
 Dynamic perfect hashing using less space than the set of keys hashed.
Conclusion and open questions

• Presented new dynamic range reporting data structure with very fast queries.
• Application: String prefix search
 – “Find a string with prefix x”
• Are the bounds optimal?
• From a practical point of view, the query time is a small constant (log log w<4 in practical situations).
• Better than vEB and search trees in practice?