Course overview

Rasmus Pagh
Information explosion

Figure 2

Information Versus Available Storage

Source: IDC, 2007
Information explosion, cont.

Figure 3

Organizational Information “Unit” Growth WW

Source: IDC, 2007
Sequential vs random access

• My laptop can, in 1 second:
 – Perform up to 20 billion CPU instructions
 – Read 0.8 billion 4-byte words, sequentially
 – Read 0.034 billion words, random access
The lectures at a glance

• Data storage, tree indexes.
• Hash indexes, index tuning
• Impl. of relational operations, external sorting
• Query optimization, query tuning
• Concurrency control

• Decision support, OLAP
• Temporal databases
• Text indexing
• Spatial databases
• ITU research in databases
• Invited lectures:
 – Mogens Nørgaard, Miracle A/S
 – Jesper Larsson, Apptus Technologies
Tree indexes

- **B-trees**, a generalization of binary search trees, is the most important index type in DBMSs.
- You will get an understanding of what functionality B-trees offer, and how they are updated when the data changes.
- **Buffered B-trees**, a new B-tree variant that has exceptionally good update performance, is presented.
Hash indexes, index tuning

• External memory hash tables generalize hash tables as you know them.
• Faster than B-trees in some situations.
• Need to understand to choose!

• We will discuss general issues about how to choose the right indexes, and good physical organization of data in general (sparse vs dense, partitioning).
Relational algebra operations

• The building blocks in DBMS query evaluation are algorithms that implement relational algebra operations.

• May be based on:
 – sorting (quicksort is bad!),
 – hashing, or
 – using existing indexes

• The DBMS knows the characteristics of each approach, and attempts to use the best one in a given setting.
Query optimization, query tuning

• Query optimization is the process where the DBMS tries to find the “best possible” way of evaluating a given query.

• Standard approach builds on finding a “good” relational algebra expression and then choosing how and in what order the operations are to be executed.

• Query tuning is a “manual” effort to make query execution faster.
Concurrency control

- For databases with many users, the concurrency control mechanisms of a DBMS can cause performance problems.
- DBMSs are distinguished by their design of concurrency control system – Pessimistic (locking based) vs optimistic – Granularity
- To handle concurrency control problems, an understanding of the system in use is often required.
Easter break

• End of "classical DBMS" topics.
• Rest of course:
 – Extensions of capability in various settings...
 – Main tool: Efficient indexing
Decision support (OLAP)

- OLAP systems are specialized databases for decision support applications.
- Idea: Read-only (or write-rarely), optimized for fast answers to queries.
- Special indexing techniques for read-only data are used (bitmap indexing).
- Precomputation of aggregates important for performance.
Temporal databases

• It is increasingly feasible to never delete data (i.e., keep old versions)
• ⇒ Demand for capability to query old data.
• Need indexing capability also for old data!
• You will see surprisingly efficient ways of doing this.
Spatial databases

• Many large databases contain geographical data.

• In general, many data sets can be viewed as points in a multi-dimensional space. Example: (salary, age) pairs.

• Need for efficient indexes that allow the DBMS to find part of the space. Example: “Find all tuples with age below 30 and salary above 500,000”.
Text indexing

• Many database applications contain lots of text
• ... but the relational model is not well suited to represent the structure of text.
• Result: Text datatype that may contain long strings that have to be handled in queries.
• We look at two topics:
 – B-trees optimized for strings
 – Full-text indexing
ITU research in databases

• An overview of some results by ITU researchers on (or related to) performance aspects of databases.
• Mainly theoretical work - chance to be the first in the world to implement and test!
• Especially meant to serve as inspiration for formulating possible thesis projects.
Invited lectures

- Will be given on Tuesday afternoons.
- April 1: Mogens Nørgaard, Miracle A/S
- TBA: Jesper Larsson, Apptus Technologies.
The project

• Database development project.
• Use of the database will be simulated by a java program supplied to you.
• Your task:
 – Make a good database design.
 – Implement various query and update ops.
 – Tune for performance.
 – Have fun!
• More information on Tuesday...