1 Representation of relations

In this problem we consider a relation \(R(a, b) \), where \(a \) and \(b \) are integers (of type INT). We let \(B > 1 \) denote the number of integers that fits in a disk block. Suppose that \(R \) consists of \(N \) tuples, \(\{(a_1, b_1), \ldots, (a_N, b_N)\} \), sorted such that \(a_1 < a_2 < a_3 < \cdots < a_N \).

There are two natural ways of representing the relation on disk, ordered according to \(a \):

Horizontal: \(a_1, b_1, a_2, b_2, \ldots, a_N, b_N \) (this is the standard order).

Vertical: \(a_1, a_2, \ldots, a_N, b_1, b_2, \ldots, b_N \).

Some DBMSs allow the user to specify that vertical order should be used (this is an example of *vertical partitioning*). We assume that there are no updates to the data, and it is thus stored as a sequential file. The size \(N \) of the relation is known.

a) How many I/Os are needed to read the \(K \) smallest values of \(a \), i.e., \(a_1, \ldots, a_K \), in each of the two representations? State your answers as functions of \(K \) and \(B \) (exact numbers, no asymptotic notation).

b) How many I/Os are needed to read the \(K \) smallest values of \(b \) in each of the two representations? State your answers as functions of \(N, K, \) and \(B \) (exact numbers, no asymptotic notation).

c) Assume that there in no index on \(R \). How many I/Os are needed to find the tuple with a particular value of \(a \) in each of the two representations? State the worst case number of I/Os for the best algorithms you can think of (exact numbers, no asymptotic notation).

We now consider a third alternative representation, the *multi-sorted* representation. Assume that the number of tuples in \(R \) is a perfect square, i.e., that \(\sqrt{N} \) is an integer. The idea is to change the horizontal representation by splitting it into \(\sqrt{N} \) intervals of \(\sqrt{N} \) tuples, and sorting each interval according to the value of \(b \). An example instance with \(N = 9 \) is the following (we mark tuples by parentheses and intervals by square brackets for readability):
d) Show that in the multi-sorted representation, it is possible to search for a particular value of a, as well as a particular value of b, in $O(\sqrt{N} \log N)$ I/Os (without any index). You should describe search algorithms achieving this I/O bound (or better). Can you improve the representation, in terms of search time for particular values?

2 \hspace{1em} \textbf{B$^+$-trees}

Consider the following setting: We have a disk with block size 2404 bytes, and want to construct a B$^+$-tree index on an integer attribute of a relation R. An integer occupies 8 bytes of space, and a pointer uses 4 bytes of space. The size of a tuple in R is 100 bytes. The leaves of the B$^+$-tree contain pointers to the tuples of the relation, i.e., the index is dense. Each node in the B$^+$-tree is contained in 1 disk block.

a) What is the largest possible degree of an internal node in the B$^+$-tree?

b) In the above setting, what is the size of the largest relation that can be indexed by a B$^+$-tree with two levels of internal nodes?

In GUW it is described how keys can be deleted from a B$^+$-tree. A deletion may require several I/Os in addition to those needed for locating the key. An alternative strategy would be to use tombstones to mark keys as deleted. This could always be done using one I/O.

c) Discuss possible disadvantages of the tombstone approach. Consider:

- The space occupied by deleted keys.
- The time complexity of searching for a key in the B$^+$-tree.
- The time complexity of range queries.