Data storage
Tree indexes

Rasmus Pagh

February 7 lecture
Access paths

• For many database queries and updates, only a small fraction of the data needs to be accessed.
• Extreme examples are looking or updating the single tuple with a given key value.
• General question: “How do we access the relevant data, and not (much) more?”
• Term.: Need efficient access paths.
Choices influencing access paths

• How are the tuples in the relations arranged? (*this lecture*)
• What kinds of indexes exist? (*this lecture and later in course*)
• Have we pre-computed (parts of) the information needed? (*later in course*)
Data storage in sequential files

- Storing meta-data: See textbook.
- A *relation* may be stored as a string, concatenating the tuples:
- The tuples may be sorted according to some attribute(s), or unordered.
- *Reading* data is very efficient.
- Problem:
 - How to accommodate changes to data: Insertions, deletions, modifications.
From your toolbox: Linked lists

• Linked (or doubly linked) lists give great flexibility:
 – Insert a new tuple
 – Delete a tuple
 – Change the size of the data in a tuple

• Problem:
 – One “random” memory access per item when reading the list.
Memory access cost

• Recall from last week:
 – The speed of the CPU is 2-3 orders of magnitude larger than the speed of a RAM access (non-sequential).
 – The speed of RAM access is 5-6 orders of magnitude faster than disk access (non-sequential).

• RAM vs disk analogy: Go to Australia to borrow a cup of sugar if your neighbor is not home!
Analysis and comparison

- **I/O model**, i.e., we count the number of block reads/writes.

- For now, assume that tuples have fixed length. Let B denote the number of tuples per block, and N total #tuples.

<table>
<thead>
<tr>
<th>Storage method</th>
<th>Tablescan I/O</th>
<th>Update I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential file</td>
<td>N/B</td>
<td>2N/B</td>
</tr>
<tr>
<td>Linked list</td>
<td>N</td>
<td>O(1)*</td>
</tr>
</tbody>
</table>

(sorted) * If update location known
Aside: Main memory DBMSs

• It is increasingly common to store all (or all the most frequently accessed parts) in main memory.
• Still, non-volatile memory (hard drive, flash,...) is needed to provide durability in case of system crashes.
• Time-space trade-off persists: Slower memories are cheaper, i.e., can be used to store much more data.
• Also recall that even main memory, like disks, is *blocked*.
Problem session

• Think of a way of storing sorted relations on disk such that:
 – Reading all data in the relation is efficient (close to the best possible efficiency).
 – Inserting and deleting data is efficient (assume the location of update is known).

• Do the analysis in the *I/O model*.

• As before, assume that tuples have fixed length, and let B denote the number of tuples per block.
Amortized analysis

• Instead of analyzing the worst-case cost of a single operation, *amortized analysis* looks at the average cost of a sequence of operations.

• Example: An unordered sequential file
 – must use 1 I/O for some insertions, but
 – can do B insertions in 1 I/O using an internal memory buffer

• Conclusion: The amortized cost of an insertion is 1/B I/Os. Tiny!

• Same thing for your proposal?
Exercise from hand-out

- Representation of relations
- Questions a), b), and c).
Searching sorted relations

• Suppose a sequential file of N tuples is sorted by an attribute, A.
• It can be searched for an A-value using binary search, in $\log_2(N/B)$ I/Os.
• A (sorted) linked list may require a full traversal to locate an A-value.

<table>
<thead>
<tr>
<th>Storage method</th>
<th>Tablescan</th>
<th>Update</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential file</td>
<td>N/B</td>
<td>2N/B</td>
<td>$\log_2(N/B)$</td>
</tr>
<tr>
<td>Linked list (blocked)</td>
<td>O(N/B)</td>
<td>O(1)</td>
<td>O(N/B)</td>
</tr>
</tbody>
</table>

(sorted)
Adding a directory

• A sorted linked list may be searched more quickly if we have a *directory*:

 - A sorted list with a *representative key* from each block (e.g., smallest key).
 - A pointer to the block of each key.

• But how do we search the directory?

 - Not so important if it fits in RAM.
 - Otherwise, it seems that this problem is *the same* as the original problem...
 - Is there any progress in this case? (Discussion on board.)
Coping with updates

• Easy solutions:
 – Insertions: If room in the relevant block, ok. Otherwise insert in an overflow chain. (The ISAM solution.)
 – Deletions: Just mark deleted, don’t try to reuse space.

• More robust solution based on the lesson from linked lists:
 Introduce some “slack” to allow efficient updates.
B⁺-tree invariants on nodes

• Suppose a node (stored in a block) has space for B-1 keys and B pointers.
• Don't want blocks to be too empty: Should be at least half full.
• Let’s see how this works out! (Board.)
• Only possible with an exception: The root may have as little as 1 key and 2 non-null pointers.
B$^+$-tree properties

- Search and update cost $O(\text{depth})$ I/Os.
- A B$^+$-tree of depth d holds at least $2 \left(\frac{B}{2}\right)^{d-1}$ keys.
- Rewriting, this means that $d < \log_{B/2}(N/2) = O(\log_B N)$.
- Often the top level(s) will reside in internal memory. Then the operation time becomes $O(\log_B (N/M))$.
Problem session

• Argue that B^+-trees are optimal in terms of search time among pointer-based indexes:
 - Suppose we want to search among N keys, that internal memory can hold M pointers, and that a disk block can hold B pointers and B keys.
 - Further, suppose that the only way of accessing disk blocks is by following pointers.
 - Show that a search takes at least
 \[\log_B \left(\frac{N}{M} \right) = \frac{\log(N/M)}{\log B} \]
 I/Os in the worst case.

• **Hint**: Consider the size of the set of blocks that can be accessed in at most $t = 1, 2, \ldots$ I/Os.
Aside: Sorting using $B^+\text{-trees}$

- In internal memory, sorting can be done in $O(N \log N)$ time by inserting the N keys into a balanced search tree.
- The number of I/Os for sorting by inserting into a B-tree is $O(N \log_B N)$.
- This is more than a factor B slower (!) than multiway mergesort (Feb 28 lecture).
- **Moral**: What works well on internal memory may fail miserably on disk.
From your toolbox: Search trees

- You may have seen: AVL-trees, red-black trees, or (2,4)-trees.
- All have maximum degree 2 or 4, and depth $O(\log N)$.
- How do they compare to B^+-trees on external memory?

- Rough analysis: $\log(N) = \log_B(N) \log(B)$
- Factor around 5-10 depending mainly on the outdegree of the B^+-tree.
Buffering in B-trees

• Relatively new technique to speed up updates in external search trees.
 – Implicit in [Arge 1996]
 – Explicit in [Brodal and Fagerberg 2003]
 – Newer study by [Graefe 2007]

• We will consider an implementation that is based on constant degree search trees.

• Main idea: Use buffers to do many things in one I/O. (Board.)
Buffering summary

- Trees with outdegree B and $O(1)$ give:

<table>
<thead>
<tr>
<th>Index</th>
<th>Search I/O</th>
<th>Update I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>B+-tree</td>
<td>$O(\log_B N)$</td>
<td>$O(\log_B N)$</td>
</tr>
<tr>
<td>Buffered B-tree</td>
<td>$O(\log N)$</td>
<td>$O(\log(N)/B)$</td>
</tr>
</tbody>
</table>

- In general, the outdegree is a parameter that can be chosen to trade off search time and update time. (See [BF03] for such a trade-off.)
More on B-trees

- Claim in textbook: “Rebalancing on higher levels of a B-tree occurs very rarely.”
- This is true (in particular at the top levels), but a little hard to see.
- Easier seen for weight-balanced B-trees. Details in [Pagh03].
- Just one of many B-tree variants...
Yet more on B-trees

• In practice, variable length (possibly long) keys must be handled.
• Later in course: The *String B-tree*, an elegant solution that is efficient even for long strings.
• Space-saving trick: Key compression. See RG for details.
• Building a B-tree: Repeated insertion is much slower than “bulk-loading” the sorted list of keys. (Feb. 28)
Two types of indexes

• In a primary index, records are stored in an order determined by the search key.
• A relation can have at most one primary index. (Often on the primary key.)
• A secondary index cannot take advantage of any specific order. Must contain all keys and corresponding references to tuples (“dense”).
• Sometimes, a secondary index provides a faster access path than a primary index! (More about that next week.)
Summary

• We saw the basics of storing and indexing data on external memory.

• Many trade-offs (soft or hard):
 – Space usage vs update efficiency.
 – Update vs access efficiency.
 – Optimizing for one kind of access may slow down another type of access.

• We have started thinking and analyzing in terms of I/Os.
Exercise from hand-out

• B^+-trees
• Questions a), b), and c).