
1Database Tuning, Spring 2008

Lecture 4:
 External sorting,

Evaluation of relational operators

Rasmus Pagh

2Database Tuning, Spring 2008

Today’s lecture

• Morning session: External sorting
– Motivation, recap of merge-sort
– Buffer management
– Analysis and external memory version
– Lower bound

• Afternoon session: Relational operators
– Several algorithms for select, join, grouping,...
– Analysis of the algorithms
– Comparison of algorithms
– Exercises

• 14.55 PM: Minister Helge Sander in Aud. 1

3Database Tuning, Spring 2008

Why study sorting?

• To prepare for your job interview at
Google?

http://www.youtube.com/watch?v=k4RRi_ntQc8

4Database Tuning, Spring 2008

Why study sorting?

1. Basis for many efficient algorithms,
especially in blocked memory.

2. Reminds us that massive data is a
different world:
1. Bucket sorting may be worse than

superlinear algorithms.

3. More practice in analyzing the
performance of external memory
algorithms.

• Recap: Merge sort (board).

5Database Tuning, Spring 2008

Analysis of disk-based algorithms

Two worlds:
• External memory algorithmics:

– The algorithm decides when to read and
write blocks (pages).

• DBMSs (and operating systems):
– A buffer manager decides what pages are

kept in memory.
– Sometimes the buffer manager may be

forced to write a page to disk.
– Algorithms may prioritize data (memory is

split into buffer pools).

6Database Tuning, Spring 2008

Buffer management in a nutshell

• Keep track of pages that are currently
being accessed (pinning).

• Keep track of pages that have changed
since they were read (dirty).

• Perhaps try to predict future reads
(prefetching).

• When space is needed in a buffer pool,
use a replacement policy to determine
which page to remove from memory.
– LRU, clock, FIFO, MRU, random,... (board)

7Database Tuning, Spring 2008

Analysis of merge sort with LRU

• Notation: (different from RG)
– N data items, B in each block.
– M data items fit in internal memory.

• In each of log2N phases, all data items
are read and written once.

⇒ At most 2(N/B)log2N I/Os.
• But mergesort has locality of reference:

Runs of M items are sorted completely
without accesing other items.

⇒ At most 2(N/B)log2(2N/M) I/Os.

8Database Tuning, Spring 2008

Improving merge sort 1/3

Forming longer runs in one scan:
1. Fill memory with M data items.

2. Let maxOutput = - ∞.

3. REPEAT
a) Output a sorted block containing the

smallest B items in memory ≥ maxOutput.
b) Let maxOutput:=the largest item written.
c) Read a new block into memory.

4. UNTIL at most B items ≥ maxOutput.
5. Goto 1 (use items already read).

On ”average”, runs are twice as long.

9Database Tuning, Spring 2008

Improving merge sort 2/3

• Make better use of internal memory:

Merge M/B runs instead of 2 (board)

• Number of phases drops:
– One phase for forming runs
– logM/B(N/M) phases for merging

• In almost all settings: 1 merge phase!
• Number of I/Os per phase is 2N/B.

(Sometimes, final write is not needed.)

10Database Tuning, Spring 2008

Improving merge sort 3/3

• The disk access pattern is predictable,
to some extent. Use in two ways:

1. Blocked I/O: Always read a number
of consecutive disk blocks.

2. Double buffering: Ask for new
blocks before they are needed.

• The price for both techniques is a
higher internal memory requirement.

11Database Tuning, Spring 2008

External merge sort summary

• M = internal memory usage.
• In first phase, can sort runs of M (or

sometimes 2M) elements.
• In second phase, can merge (up to)

M/B runs into a sorted run of (up to)
M2/B elements.

• Sorting is completed in two phases if
N<M2/B, or equivalently if M>(NB)1/2.

12Database Tuning, Spring 2008

Improving even more?

• The method you have seen is known to
be essentially optimal.

• Don’t believe claims of products that do
much better (except in special cases).

• Board presentation:
– Lower bound for comparison-based sorting

(recap).
– Lower bound for comparison-based

external memory sorting.

13Database Tuning, Spring 2008

Relational algebra operations

• Relational DBMSs compute query
results by performing a sequence of
relational algebra operations:
– Selections (σ)
– Projections (π)

– Joins ()
– Groupings and aggregations (γ)
– Set operations (∪,∩,-)
– Duplicate elimination (δ)

• Today, we focus on how to perform
each single operation.

14Database Tuning, Spring 2008

Selection

• We focus on the conjunction (”and”)
of a number of equality and range
conditions.

• Two main cases:
– No relevant index. (What is that?)

In this case, a full table scan is required.
– One or more relevant indexes.

a) There is a highly selective condition with a
matching index.

b) No single condition matching an index is highly
selective.

15Database Tuning, Spring 2008

Using a highly selective index

• Basic idea:
– Retrieve all matching tuples (few)
– Filter according to remaining conditions

• If index is clustered, retrieving
matching tuples is very efficient.

• If index is unclustered, it may be
advantageous to:
1. Retrieve pointers (RIDs) to matching

tuples.
2. Retrieve tuples order of sorted RID.

16Database Tuning, Spring 2008

Using several less selective indexes

• For several conditions C1, C2,...
matched by indexes:
– Retrieve the RIDs Ri of tuples matching Ci.
– Compute the intersection R=R1∩R2∩...

– Retrieve the tuples in R (in sorted order)

• Remaining problem:
– How can we estimate the selectivity of a

condition? Of a combination of conditions?
– More on this next time.

17Database Tuning, Spring 2008

Operations that require grouping

• Many operations are easy to perform
once the involved tuples (in one or
more relations) are groups according to
the values of some attributes:
– Projections (group by output attributes)
– Join with equality condition (group by join

attributes)
– Groupings and aggregations (obvious)
– Set operations (group by all attributes)
– Duplicate elimination (group by all

attributes)

18Database Tuning, Spring 2008

Two principles for grouping

• Sorting the tuples
– All the mentioned operations can be

performed during the merge phase, i.e., no
need to materialize the sorted list.

– (For join this is not clear when there are
many duplicates - exercise later today.)

• Hashing the tuples
– Hash to as many buckets as memory allows

(need one output buffer for each bucket).
– If each bucket fits in memory, grouping can

be done by reading each bucket.

19Database Tuning, Spring 2008

Pros and cons

• Sorting-based grouping is deterministic,
i.e., no chance of bad behaviour.

• Sorting-based grouping outputs the
result in sorted order
– For union, intersection, and projection we

may freely choose the order.

• Next: Hashing-based grouping uses
less memory for joins.

20Database Tuning, Spring 2008

Problem session

• Consider an equality-join of relations R1
and R2.
– R1 uses B(R1) blocks of disk space.
– R2 uses B(R2)> B(R1) blocks of disk space.

• Suppose that hashing distributes keys
in a completely uniform way.

• Argue that 2 passes suffices to do a
hash-based join if B(R1)<M2/B.
(Memory independent of B(R2)!)

21Database Tuning, Spring 2008

Sometimes simple suffices

• An alternative way of doing joins (with
general conditions) is a block nested
loop join.

• Simple idea:
– Divide R1 into blocks of size M.
– For each block:

a) Read the block into memory
b) Scan R2 for matching tuples

• Complexity is B(R2)B(R1)/(M/B).
• Good if R1 (almost) fits in internal memory.

22Database Tuning, Spring 2008

Hybrid hash join

• Goal: Always get the best of hash join
and block nested loop join.

• Idea:
– First partition the smaller relation, but...
– Do not write all partitions to disk, keep as

much data as possible in internal memory
– When partitioning the larger relation, check

for matching tuples in memory.

23Database Tuning, Spring 2008

Index nested loop join

• If there is an index that matches the
join condition, the following algorithm
can be considered:

• For each tuple in R1, use the index to
locate matching tuples in R2.

• In general, the cost is at least 1 I/O
(hash index) for each tuple in R1.
– Use only if |R1| is small compared to B(R2).
– (Why are we interested in small relations?)

• If many tuples may match each tuple,
a clustered index is preferable.

24Database Tuning, Spring 2008

Summary

• Several algorithms possible for each
operator:
– Use index or not (selection, join)?
– Use several indexes (selection)?
– Sort- or hash-based?

• Choosing the best is complicated in
general - more on this next time.

25Database Tuning, Spring 2008

Exercises

• Robust sort-merge join

• Sort-merge-based join on partly sorted
input

