Lecture 4: External sorting, Evaluation of relational operators

Rasmus Pagh

Today's lecture

- Morning session: External sorting
 - Motivation, recap of merge-sort
 - Buffer management
 - Analysis and external memory version
 - Lower bound
- Afternoon session: Relational operators
 - Several algorithms for select, join, grouping,...
 - Analysis of the algorithms
 - Comparison of algorithms
 - Exercises
- 14.55 PM: Minister Helge Sander in Aud. 1

Why study sorting?

• To prepare for your job interview at Google?

http://www.youtube.com/watch?v=k4RRi_ntQc8

Why study sorting?

- 1. Basis for many efficient algorithms, especially in blocked memory.
- 2. Reminds us that massive data is a different world:
 - 1. Bucket sorting may be worse than superlinear algorithms.
- 3. More practice in analyzing the performance of external memory algorithms.
- <u>Recap</u>: Merge sort (board).

Analysis of disk-based algorithms

Two worlds:

- External memory algorithmics:
 - The algorithm decides when to read and write blocks (pages).
- DBMSs (and operating systems):
 - A buffer manager decides what pages are kept in memory.
 - Sometimes the buffer manager may be forced to write a page to disk.
 - Algorithms may prioritize data (memory is split into *buffer pools*).

Buffer management in a nutshell

- Keep track of pages that are currently being accessed (pinning).
- Keep track of pages that have changed since they were read (dirty).
- Perhaps try to predict future reads (prefetching).
- When space is needed in a buffer pool, use a *replacement policy* to determine which page to remove from memory.

– LRU, clock, FIFO, MRU, random,... (board)

Analysis of merge sort with LRU

- <u>Notation</u>: (different from RG)
 - N data items, B in each block.
 - M data items fit in internal memory.
- In each of log₂N phases, all data items are read and written once.
- \Rightarrow At most 2(N/B)log₂N I/Os.
- But mergesort has *locality of reference*: *Runs* of M items are sorted completely without accesing other items.
- \Rightarrow At most 2(N/B)log₂(2N/M) I/Os.

Improving merge sort 1/3

Forming longer runs in one scan:

- 1. Fill memory with M data items.
- 2. Let maxOutput = ∞ .
- 3. REPEAT
 - a) Output a sorted block containing the smallest B items in memory ≥ maxOutput.
 - b) Let maxOutput:=the largest item written.
 - c) Read a new block into memory.
- 4. UNTIL at most B items ≥ maxOutput.
- 5. Goto 1 (use items already read).

On "average", runs are twice as long.

Improving merge sort 2/3

• Make better use of internal memory:

Merge M/B runs instead of 2 (board)

- Number of phases drops:
 - One phase for forming runs
 - $-\log_{M/B}(N/M)$ phases for merging
- In almost all settings: 1 merge phase!
- Number of I/Os per phase is 2N/B. (Sometimes, final write is not needed.)

Improving merge sort 3/3

- The disk access pattern is predictable, to some extent. Use in two ways:
- Blocked I/O: Always read a number of consecutive disk blocks.
- **2. Double buffering**: Ask for new blocks *before* they are needed.
- The price for both techniques is a higher internal memory requirement.

External merge sort summary

- M = internal memory usage.
- In first phase, can sort runs of M (or sometimes 2M) elements.
- In second phase, can merge (up to) M/B runs into a sorted run of (up to) M²/B elements.
- Sorting is completed in two phases if N<M²/B, or equivalently if M>(NB)^{1/2}.

Improving even more?

- The method you have seen is known to be essentially optimal.
- Don't believe claims of products that do much better (except in special cases).
- Board presentation:
 - Lower bound for comparison-based sorting (recap).
 - Lower bound for comparison-based external memory sorting.

Relational algebra operations

- Relational DBMSs compute query results by performing a sequence of relational algebra operations:
 - Selections (σ)
 - Projections (π)
 - Joins (🖂)
 - Groupings and aggregations (γ)
 - Set operations (\cup , \cap ,-)
 - Duplicate elimination (δ)
- Today, we focus on how to perform each single operation.

Selection

- We focus on the conjunction ("and") of a number of equality and range conditions.
- Two main cases:
 - No relevant index. (What is that?)
 In this case, a full table scan is required.
 - One or more relevant indexes.
 - a) There is a highly selective condition with a matching index.
 - b) No single condition matching an index is highly selective.

Using a highly selective index

- Basic idea:
 - Retrieve all matching tuples (few)
 - Filter according to remaining conditions
- If index is clustered, retrieving matching tuples is very efficient.
- If index is unclustered, it may be advantageous to:
 - 1. Retrieve pointers (RIDs) to matching tuples.
 - 2. Retrieve tuples order of sorted RID.

Using several less selective indexes

- For several conditions C₁, C₂,... matched by indexes:
 - Retrieve the RIDs R_i of tuples matching C_i .
 - Compute the intersection $R=R_1 \cap R_2 \cap ...$
 - Retrieve the tuples in R (in sorted order)
- Remaining problem:
 - How can we estimate the selectivity of a condition? Of a combination of conditions?
 - More on this next time.

Operations that require grouping

- Many operations are easy to perform once the involved tuples (in one or more relations) are groups according to the values of some attributes:
 - Projections (group by output attributes)
 - Join with equality condition (group by join attributes)
 - Groupings and aggregations (obvious)
 - Set operations (group by all attributes)
 - Duplicate elimination (group by all attributes)

Two principles for grouping

- Sorting the tuples
 - All the mentioned operations can be performed during the merge phase, i.e., no need to materialize the sorted list.
 - (For join this is not clear when there are many duplicates - exercise later today.)
- Hashing the tuples
 - Hash to as many buckets as memory allows (need one output buffer for each bucket).
 - If each bucket fits in memory, grouping can be done by reading each bucket.

Pros and cons

- Sorting-based grouping is *deterministic*, i.e., no chance of bad behaviour.
- Sorting-based grouping outputs the result in sorted order
 - For union, intersection, and projection we may freely choose the order.
- Next: Hashing-based grouping uses less memory for joins.

Problem session

- Consider an equality-join of relations R_1 and R_2 .
 - R_1 uses $B(R_1)$ blocks of disk space.
 - R_2 uses $B(R_2) > B(R_1)$ blocks of disk space.
- Suppose that hashing distributes keys in a completely uniform way.
- Argue that 2 passes suffices to do a hash-based join if B(R₁)<M²/B. (Memory independent of B(R₂)!)

Sometimes simple suffices

- An alternative way of doing joins (with *general conditions*) is a *block nested loop join*.
- Simple idea:
 - Divide R_1 into blocks of size M.
 - For each block:
 - a) Read the block into memory
 - b) Scan R_2 for matching tuples
- Complexity is $B(R_2)B(R_1)/(M/B)$.
 - Good if R₁ (almost) fits in internal memory.

Hybrid hash join

- <u>Goal</u>: Always get the best of hash join and block nested loop join.
- <u>Idea</u>:
 - First partition the smaller relation, but...
 - Do not write all partitions to disk, keep as much data as possible in internal memory
 - When partitioning the larger relation, check for matching tuples in memory.

Index nested loop join

- If there is an index that matches the join condition, the following algorithm can be considered:
- For each tuple in R₁, use the index to locate matching tuples in R₂.
- In general, the cost is at least 1 I/O (hash index) for each tuple in R_1 .
 - Use only if $|R_1|$ is small compared to $B(R_2)$.
 - (Why are we interested in small relations?)
- If many tuples may match each tuple, a clustered index is preferable.

Summary

- Several algorithms possible for each operator:
 - Use index or not (selection, join)?
 - Use several indexes (selection)?
 - Sort- or hash-based?
- Choosing the best is complicated in general - more on this next time.

Exercises

- Robust sort-merge join
- Sort-merge-based join on partly sorted input

