Lecture 8

Text Indexing

Rasmus Pagh

in part based on slides by
S. Srinivasa Rao and Paolo Ferragina
Today’s lecture

- B^+-trees and strings.
- Inverted indexes.
- Fingerprinting - Rabin-Karp.
- Full-text indexing
 - Suffix arrays and suffix trees.
 - String B-trees.
Why is string data interesting?

Ubiquitous:

- Digital libraries (studied a lot already in the ‘80s).
- Product catalogues, e-commerce websites (this is what got the DB world interested in text).
- Electronic white and yellow pages (Apptus guest lecture)
- Specialized information (e.g. Genomic or Patent dbs)
- Web page repositories (search engines)
- ...

String collections grow at a staggering rate:

- ...10s of Tb textual data on the web
- ...10s of Gb of base pairs in the genomic DBs
The need for indexing

• Need special facilities, not just equality comparison.
• Brute-force scanning is usually not a viable approach.
• Indexing allows fast “simple” searches
• Can use multiple simple searches for complex queries

An information retrieval (IR) system also encompasses many aspects we will not go into:
 • IR models
 • Ranking algorithms
 • Query languages and operations
 • ...
Strings in a B-tree

- Allows searching for strings with a given prefix.
- Does not help finding, say, a string containing a given word.
- Even when a B-tree is appropriate, string keys can be problematic:
 - Reduce fan-out, increase depth of tree
 - Prefix compression (i.e., omit part of key shared with the previous key) may help, but not always.
- Motivates looking at special indexes.
Two families of indexes

Types of data
- Linguistic or tokenizable text
- Raw sequence of characters or bytes

Types of query
- Word-based query
- Character-based query

Two indexing approaches:
- Word-based indexes, here a concept of “word” must be devised!
 - Inverted files, Signature files or Bitmaps.
- Full-text indexes, no constraint on text and queries!
 - Suffix Array, Suffix tree, Hybrid indexes, or String B-tree.
Word-based: Inverted files
(or lists, or indexes)

Doc #1
Now is the time for all good men to come to the aid of their country

Doc #2
It was a dark and stormy night in the country manor. The time was past midnight

✓ Query answering is a two-phase process: midnight AND time
Observations on inverted files

- Can be implemented directly in the relational model.
- Use standard index on vocabulary and occurrences.
- Very efficient for single-word search.
- When searching for multiple words, an intersection (i.e. join) is needed.
 - Time depends on the number of occurrences of each word.
- Size will often be smaller than the indexed strings. (Why?)
Refinements to inverted files

- Keep track of locations of words - e.g. allows higher priority to strings where words occur close together.
- Non-exact matches of words
 - Prefix matches, e.g. Ras*
 - General regular expressions
- Ranking mechanisms for results
 - Often, need only "top k".

- Next: Full-text indexes - allow searches for any substring (e.g. of a word).
Fingerprinting strings

[Karp-Rabin, 1987]

- Consider a string s to be a sequence of numbers a_0, a_1, \ldots, a_n.
- Corresponds to a polynomial $p_s(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$
- Value for a given x can be computed with $2n$ arithmetic operations. (How?)
- **Lemma**: Two degree n polynomials have the same value for at most n values of x.
- **Idea**: Choose x at random from a large set, then $p_s(x)$ is unique for each string with high probability.
Problem session

• As stated, the technique works, but is inefficient!
• Try to figure out why.
• If you can, propose a better way.
Fingerprinting strings

[Karp-Rabin, 1987]

• Central observation: If all computation is done modulo a fixed prime $p > x$, then everything works.

• Further observations:
 – Can compute fingerprints of all prefixes of a string in linear time.
 – Can compute fingerprints of all substrings of length k in linear time (not k times linear). (BigTable uses this in the compression algorithm.)
 – With fingerprints, we get fast equality search: Use them as B-tree keys.
Full-text indexes

Their need is pervasive:
- Raw data: DNA sequences, Audio-Video files, ...
- Linguistic texts: data mining, statistics, ...
- Vocabulary for Inverted Lists
- Xpath queries on XML documents
- Intrusion detection, Anti-viruses, ...

Classes of indexes:
- Suffix array, Suffix tree (variants)
- Multi-level indexes: Short Pat array
- B-tree based data structures: Prefix B-tree, String B-tree
Terminology

- An alphabet, denoted Σ is a set of (ordered) characters.
- $S[i,j] = S[i] \ldots S[j]$ is a substring of S.
- $S[1,j]$ is a prefix of S; $S[i,n]$ is a suffix of S.
- Σ^* denotes all strings over alphabet Σ.
- **Lexicographic order:**
 - Example: For $\Sigma = \{a, b, c, \ldots, z\}$, where $a < b < c < \ldots < z$, the lexicographic order is the same as in a dictionary.

$\text{SUF}(T) = \text{Sorted set of suffixes of } T$
Indexed string matching problem

• T is a set of K strings in Σ^*
 - N is the total length of all strings in T.

• String matching query on T:
 - Given a pattern P find all occurrences of P in T.

• Full-text index: Store T in a data structure that supports string matching queries.

• Dynamic full-text index: Supports also insertions and deletions of strings in the full-text index.
A simple but crucial observation

Pattern $P[1,p]$ occurs at position i of $T[1,n]$ iff $P[1,p]$ is a prefix of the suffix $T[i,n]$.

Occurrences of P in $T = \text{All suffixes of } T \text{ having } P \text{ as a prefix}$

$T = \text{This is a visual example}$
$\quad \text{This is a visual example}$
$\quad \text{This is a visual example}$

\[3,6,12\]

Can transform the string matching problem to a "prefix matching problem" over all the suffixes.
Suffix Array [Manber-Myers, 1990]

Suffix array: an array of pointers to all the suffixes in the text in their lexicographic order.

$\Theta(N^2)$ space

$T = \text{mississippi}\#$

<table>
<thead>
<tr>
<th>SA</th>
<th>SUF(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>#</td>
</tr>
<tr>
<td>11</td>
<td>i#</td>
</tr>
<tr>
<td>8</td>
<td>ippi#</td>
</tr>
<tr>
<td>5</td>
<td>issippi#</td>
</tr>
<tr>
<td>2</td>
<td>ississippi#</td>
</tr>
<tr>
<td>1</td>
<td>mississippi#</td>
</tr>
<tr>
<td>10</td>
<td>pi#</td>
</tr>
<tr>
<td>9</td>
<td>ppi#</td>
</tr>
<tr>
<td>7</td>
<td>sippi#</td>
</tr>
<tr>
<td>4</td>
<td>sissippi#</td>
</tr>
<tr>
<td>6</td>
<td>ssippi#</td>
</tr>
<tr>
<td>3</td>
<td>ssissippi#</td>
</tr>
</tbody>
</table>

Suffix Array
- SA: array of ints, 4N bytes
- Text T: N bytes
- \Rightarrow 5N bytes of space occupancy
Two key properties [Manber-Myers, 1990]

Prop 1. All suffixes in SUF(T) having prefix P are contiguous.
Prop 2. Starting position is the lexicographic position of P.

\[T = \text{mississippi}\# \]

<table>
<thead>
<tr>
<th>SA</th>
<th>SUF(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>#</td>
</tr>
<tr>
<td>11</td>
<td>i#</td>
</tr>
<tr>
<td>8</td>
<td>ippi#</td>
</tr>
<tr>
<td>5</td>
<td>issippi#</td>
</tr>
<tr>
<td>2</td>
<td>ississippi#</td>
</tr>
<tr>
<td>1</td>
<td>mississippi#</td>
</tr>
<tr>
<td>10</td>
<td>pi#</td>
</tr>
<tr>
<td>9</td>
<td>ppi#</td>
</tr>
<tr>
<td>7</td>
<td>sippi#</td>
</tr>
<tr>
<td>4</td>
<td>sissippi#</td>
</tr>
<tr>
<td>6</td>
<td>ssippi#</td>
</tr>
<tr>
<td>3</td>
<td>ssissippi#</td>
</tr>
</tbody>
</table>
Searching in a Suffix Array [Manber-Myers, 1990]

Indirected binary search on SA: $O(p \log_2 N)$ time

$T = \text{mississippi}\#$

P is larger

$\text{2 accesses for binary step}$

si
Indirected binary search on SA: $O(p \log_2 N)$ time
Listing the occurrences [Manber-Myers, 1990]

Brute-force comparison: \(O(p \times \text{occ}) \) time

\[
T = \text{mississippi}\#
\]

Suffix Array search
- \(O (p \ (\log_2 N + \text{occ})) \) time
- \(O (\log_2 N + \text{occ}) \) in practice

External memory
- Simple disk paging for SA
- \(O \left(\frac{(p/B)}{(\log_2 N + \text{occ})} \right) \) I/Os

\[
\text{occ} = 2
\]

- \(\text{occ} = 2 \)
- \(\text{occ} = \frac{\log B \ N}{\text{occ}/B} \)
Problem session

• Draw the suffix array for the string PAPAYAS.
• How will a search for the string PAY proceed?
Output-sensitive retrieval

$Lcp[1,n-1]$ stores the longest-common-prefix between suffixes adjacent in SA.

Example:

Let $T = \text{mississippi}\#$. The Suffix Array and LCP array are as follows:

<table>
<thead>
<tr>
<th>Lcp</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

The SUF array for T is:

- SUF(1) = #
- SUF(2) = i#
- SUF(3) = ippi#
- SUF(4) = issippi#
- SUF(5) = ississippi#
- SUF(6) = mississippi#
- SUF(7) = pi#
- SUF(8) = ppi#
- SUF(9) = sippi#
- SUF(10) = ssippi#
- SUF(11) = ssissippi#
- SUF(12) = ssissippi#

Suffix Array search:

- $O \left(\frac{p}{B} \log_2 N + \frac{occ}{B} \right)$ I/Os
- $9N$ bytes of space

Steps:

2. Compare against $P = si$.
3. Incremental search if $occ = 2$.
Incremental search (case 1)

Incremental search using the LCP array: no rescanning of pattern chars

The cost: $O(1)$ memory accesses
Incremental search (case 2)

Incremental search using the LCP array: no rescanning of pattern chars

\[\text{Min Lcp}[i, q-1] \]

The cost: \(O(1) \) memory accesses
Incremental search (case 3)

Incremental search using the LCP array: no rescanning of pattern chars

- **Suffix Array search**
 - $O(\log_2 N)$ binary steps
 - $O(p)$ total char-cmp for routing
 - $O((p/B) + \log_2 N + (\text{occ}/B))$ I/Os

The cost: $O(L)$ char cmp
Suffix arrays and updates

• Suppose there is a (small) change in the text. The suffix array must be updated.
• Problem: Most of the suffixes are likely to have changed.
• Possible solution:
 – Bound then length of comparison by k.
 – Suffixes that are equal in the first k characters may occur in any order.
 – Use a B-tree to store suffix order.
• Problem session:
 – Argue that after an update we need to move at most k suffixes in the tree.
 – Give an example where this leads to more expensive queries for string length > k.
Summary: suffix array

[Manber-Myers, 1990]

- **Space**: $O(N)$
- **String matching**: $O(p + \log N + \text{occ})$
- **Can be constructed** $O(N \log N)$ time.
- **Recently**: Simple $O(N)$ time algorithms
 - Also works well on external memory.
- **Static.**
 - Can be adapted to be dynamic, but then performance guarantees are worse.
Hybrid Index: Short Pat array

Exploit internal memory: sample the suffix array and copy something in memory

\[\text{SA} \rightarrow M \rightarrow \text{Disk} \]

- Copy a prefix of marked suffixes
- Binary-search inside

Parameter \(s \) depends on \(M \) and influences both performance and space !! (only a heuristic)

\[\text{SA + Supra-index} \]

\[\cdot O\left(\frac{p}{B} + \log_2\left(\frac{N}{s}\right) + \frac{\text{occ}}{B}\right) \text{ I/Os} \]
Tries

- **Trie** (name from the word “retrieval”): a data structure for storing a set of strings
 - Let’s assume that all strings end with “$” (not in Σ)

Set of strings: \{bear, bid, bulk, bull, sun, sunday\}
Tries

- Properties of a *trie*:
 - A multi-way tree.
 - Each *node* has from 1 to $\Sigma+1$ children.
 - Each *edge* of the tree is labeled with a character.
 - Each *leaf* node corresponds to the stored string, which is a concatenation of characters on a path from the root to this node.
Analysis of the Trie

Given k strings of total length N:

- **Size:**
 - $O(N)$ in the worst-case

- **Search, insertion, and deletion (string of length m):**
 - $O(m)$ (assuming Σ is constant)

- **Observation:**
 - Having chains of one-child nodes is wasteful
Compact Tries

- **Compact Trie:**
 - Replace a *chain* of one-child nodes with an edge labeled with a string
 - Each non-leaf node (except root) has at least two children
Compact Tries

• Implementation:
 – Strings are external to the structure in one array, edges are labeled with indices in the array \((\text{from}, \text{to})\)
 – Improves the space to \(O(k)\)
Patricia Tries

- *Patricia trie*: a compact trie where each edge’s label \((from, to)\) is replaced by \((T[from], to - from + 1)\)

\[
\begin{array}{c}
T: \text{bear bid bulk bull sun sunday} \\
\end{array}
\]
Suffix Trees [McCreight, 1976]

- **Suffix tree** – a compact trie (or similar structure) of all suffixes of the text
 - Patricia trie of suffixes is sometimes called a *Pat tree*
Search in suffix trees

\[P = ba \rightarrow \text{Search is a path traversal} \]

- \(O(p) \) time and \(O(\text{occ}) \) time

\(O(N) \) space

\((5,8) \)

What about ST in external memory?
- Unbalanced tree topology
- Updates
- Large space \(\sim 15N \)

\(T = abababbbc\# \)

\(\text{Packing} \) ?!

\(\text{CPAT tree} \sim 5N \) on average
Problem session

• When searching in a suffix tree, why is it not a problem that some nodes may have large degree?

• Draw the suffix tree for the string PAPAYAS.

• How will a search for the string PAY proceed?
Summary: compact trie

K strings of total length N:

- Space: $O(K)$.
- String matching queries: $O(p + \text{occ})$ time.
- Can be constructed $O(N)$ time.
- Update(S): $O(|S|)$ time.
Summary: suffix tree

For a string of length n:
- Space: $O(n)$.
- String matching queries: $O(p + \text{occ})$.
- Can be constructed $O(n)$ time.
- Static
 - Again, bounding the length of comparison can be done to allow reasonably fast updates.
- Question: What are the pros and cons of suffix trees, versus suffix arrays?
The String B-tree

[Ferragina-Grossi, 95]
The prologue

We are left with many open issues:
- Suffix Array: updates
- Hybrid: Heuristic tuning of the performance
- Suffix tree: difficult packing and $\Omega(p)$ I/Os

B-tree is ubiquitous in large-scale applications:
- Atomic keys: integers, reals, ...
- Prefix B-tree: bounded length keys (≤ 255 chars)

Suffix trees + B-trees? → String B-tree [Ferragina-Grossi, 95]

- Index unbounded length keys
- Good worst-case I/O-bounds in search and update
Some considerations

Strings have arbitrary length:
- Disk page cannot ensure the storage of $\Theta(B)$ strings
- M may be unable to store even one single string

String storage:
- Pointers allow to fit $\Theta(B)$ strings per disk page
- String comparison needs disk access and may be expensive

String pointers organization seen so far:
- Suffix array: simple but static and not optimal
- Patricia trie: sophisticated and very efficient (optimal ?)

Recall the problem: T is a string collection
- Search($P[1,p]$): retrieve all occurrences of P in T's strings
- Update($S[1,s]$): insert or delete a text S from T
1st step: B-tree on string pointers

Search(P)
- \(O \left(\frac{p}{B} \log_2 N \right)\) I/Os
- \(O \left(\frac{\text{occ}}{B} \right)\) I/Os

It is dynamic !!
\(O \left(\frac{s}{B} \log_2 N \right)\) I/Os

\(P = AT\)

\(\mathcal{O}(p/B) \log_2 B\) I/Os

\(O(\log_b N)\) levels

Disk

AATCAGCGAATGCTGCTT

CTGTTGATGA
2nd step: The Patricia trie

```
2nd step: The Patricia trie

A
(1:1,3)

G
(4:1,4)

A

A
(1:6,6)
(2:6,6)

3

(2:1,2)
(3:4,4)

4

(5:5,6)
(6:5,6)

5

(1:6,6)
(2:6,6)

6

(4:7,7)
(5:7,7)
(6:7,7)
(7:7,8)

7

1 2 3 4 5 6 7

A A A G G G G
G G G C C C C
A A A G G G G
A A C C C C C
G G A A G G
A G G G G G
A G G G A
A G A

Disk

IT University of Copenhagen
Database Tuning, Spring 2008
2nd step: The Patricia trie

Space PT
- \(O(k)\), not \(O(N)\)

Search(P):
- First phase: no string access
- Second phase: \(O(p/B)\) I/Os

Just one string is checked!!

Two-phase search:
- \(P = \text{GCACGCAC}\)

Disk

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td></td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td>G</td>
<td>G</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

P's position

LCP with P

Mismatch
Alternative 2nd step: The Patricia trie

Store fingerprint for each node in Patricia trie. Can be used to find a longest prefix match.

No string checked on disk!

P = GCACGCAC

Signature mismatch

P's position

Disk
3rd step: B-tree + Patricia tree

Search(D)
- \(O((p/B) \log_B N)\) I/Os
- \(O(occ/B)\) I/Os

Insert(S)
- \(O(s (s/B) \log_B N)\) I/Os

\[\begin{array}{c}
\text{AATCAGCGAATGCTGCTT} \\
\text{CTGTTGATGA}
\end{array}\]

\[\begin{array}{cccccccccccc}
1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 20 & 22 & 24 & 26 & 28 & 30
\end{array}\]

\[\begin{array}{cccccccccccc}
29 & 1 & 9 & 5 & 2 & 26 & 13 & 20 & 18 & 3 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
29 & 2 & 6 & 12 & 15 & 22 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 6 & 12 & 15 & 22 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]

\[\begin{array}{cccccccccccc}
20 & 25 & 6 & 18 & 3 & 27 & 24 & 11 & 14 & 21 & 17 & 23
\end{array}\]
4th step: Incremental Search

An issue only if the pattern is more than 1 disk block. We will not go into the details.

Search(P)
- $O(\log B N)$ I/Os just to go to the leaf level
4th step: Incremental Search

Search(P)
- $O(p/B + \log_B N)$ I/Os
- $O(occ/B)$ I/Os

Max_lcp(i)

i-th step:
$O((lcp_{i+1} - lcp_i)/B + 1)$ I/Os

No rescanning

skip Max_lcp(i)

Max_lcp(i+1)

Level i

Inductive Step

Level i+1

i-th step:
$O((lcp_{i+1} - lcp_i)/B + 1)$ I/Os
Summary: String B-tree

[Ferragina-Grossi, 95]

String B-tree performance:
- Search(P) takes $O(p/B + \log_B N + \text{occ}/B)$ I/Os
- Update(S) takes $O(s \log_N N)$ I/Os
  (more efficient buffered variant is possible)
- Space is $\Theta(N/B)$ disk pages

Crux: Search time independent of the length of the strings stored.

Using the String B-tree in internal memory:
- Search(P) takes $O(p + \log_2 N + \text{occ})$ time
- Update(S) takes $O(s \log_2 N)$ time
- Space is $\Theta(N)$ bytes

- It is a sort of dynamic suffix array
Text indexing in Oracle

Main index types, CONTEXT and CTXCAT.
create index on mytable(attr)
    indextype is ctxsys.context;

create index on mytable(attr)
    indextype is ctxsys.ctxcat

To use, must use special string query language (not just a LIKE operator). (Why?)
Text indexing in Oracle

• Unlike ordinary indexes, CONTEXT indexes are NOT updated as content is changed. A "refresh interval" can be specified.
• This means they are only useful when the tables are largely read-only and/or "the end-users don’t mind not having 100% search recall".
• CTXCAT is transactional (i.e. kept updated) - but indexes each row separately.
• Unfortunately, I was not able to find information about the implementation.
Text indexing in Oracle

From the documentation:

- **CTXCAT Indexes** - A CTXCAT index is best for smaller text fragments that must be indexed along with other standard relational data (VARCHAR2).
  
  ```sql
 WHERE CATSEARCH(text_column, 'ipod') > 0;
  ```

- **CONTEXT Indexes** - The CONTEXT index type is used to index large amounts of text such as Word, PDF, XML, HTML or plain text documents.
  
  ```sql
 WHERE CONTAINS(test_column, 'ipod', 1) > 0
  ```