1 Representation of relations

In this problem we consider a relation $\mathcal{R}(a, b)$, where a and b are integers (of type INT). We let $B > 1$ denote the number of integers that fits in a disk block. Suppose that R consists of N tuples, \{(a_1, b_1), \ldots, (a_N, b_N)\}, sorted such that $a_1 < a_2 < a_3 < \cdots < a_N$. There are two natural ways of representing the relation on disk, ordered according to a:

Horizontal: $a_1, b_1, a_2, b_2, \ldots, a_N, b_N$ (this is the standard order).

Vertical: $a_1, a_2, \ldots, a_N, b_1, b_2, \ldots, b_N$.

Some DBMSs allow the user to specify that vertical order should be used (this is an example of *vertical partitioning*). We assume that there are no updates to the data, and it is thus stored as a sequential file. The size N of the relation is known.

a) How many I/Os are needed to read the K smallest values of a, i.e., a_1, \ldots, a_K, in each of the two representations? State your answers as functions of K and B (exact numbers, no asymptotic notation).

b) How many I/Os are needed to read the K smallest values of b in each of the two representations? State your answers as functions of N, K, and B (exact numbers, no asymptotic notation).

c) Assume that there in no index on \mathcal{R}. How many I/Os are needed to find the tuple with a particular value of a in each of the two representations? State the worst case number of I/Os for the best algorithms you can think of (exact numbers, no asymptotic notation).

We now consider a third alternative representation, the *multi-sorted* representation. Assume that the number of tuples in \mathcal{R} is a perfect square, i.e., that \sqrt{N} is an integer. The idea is to change the horizontal representation by splitting it into \sqrt{N} intervals of \sqrt{N} tuples, and sorting each interval according to the value of b. An example instance with $N = 9$ is the following (we mark tuples by parentheses and intervals by square brackets for readability):
d) Show that in the multi-sorted representation, it is possible to search for a particular value of \(a \), as well as a particular value of \(b \), in \(O(\sqrt{N} \log N) \) I/Os (without any index). You should describe search algorithms achieving this I/O bound (or better). Can you improve the representation, in terms of search time for particular values?

2 B\(^+\)-trees

Consider the following setting: We have a disk with block size 2404 bytes, and want to construct a B\(^+\)-tree index on an integer attribute of a relation \(R \). An integer occupies 8 bytes of space, and a pointer uses 4 bytes of space. The size of a tuple in \(R \) is 100 bytes. The leaves of the B\(^+\)-tree contain pointers to the tuples of the relation, i.e., the index is dense. Each node in the B\(^+\)-tree is contained in 1 disk block.

a) What is the largest possible degree of an internal node in the B\(^+\)-tree?

b) In the above setting, what is the size of the largest relation that can be indexed by a B\(^+\)-tree with two levels of internal nodes?

In GUW it is described how keys can be deleted from a B\(^+\)-tree. A deletion may require several I/Os in addition to those needed for locating the key. An alternative strategy would be to use tombstones to mark keys as deleted. This could always be done using one I/O.

c) Discuss possible disadvantages of the tombstone approach. Consider:

- The space occupied by deleted keys.
- The time complexity of searching for a key in the B\(^+\)-tree.
- The time complexity of range queries.