Size estimation; Partitioning

Rasmus Pagh
Core problem: Size estimation

- The sizes of intermediate results are important for the choices made when planning query execution.
- Time for operations grow (at least) linearly with size of (largest) argument. (Note that we do not have indexes for intermediate results.)
- The total size can even be used as a crude estimate on the running time.
Classical approach: Heuristics

- In the book a number of heuristics for estimating sizes of intermediate results are presented.
- This classical approach works well in some cases, but is unreliable in general.
- The modern approach is based on maintaining suitable statistics summarizing the data. (Focus of lecture.)
Some possible types of statistics

- Random sample of, say, 1% of the tuples. (NB. Should fit main memory.)
- The 1000 most frequent values of some attribute, with tuple counts.
- Histogram with number of values in different ranges.
- Last 10-12 years: “Sketches”.
On-line vs off-line statistics

• **Off-line**: Statistics only computed periodically, often operator-controlled (e.g. Oracle). Typically involves sorting data according to each attribute.

• **On-line**: Statistics maintained automatically at all times by the DBMS. Focus of this lecture.
Maintaining a random sample

• To get a sample of expected size 1% of full relation:
 – Add a new tuple to the sample with probability 1%.
 – If a sampled tuple is deleted or updated, remember to remove from or update in sample.
Estimating selects

• To estimate the size of a select statement $\sigma_C(R)$:
 - Compute $|\sigma_C(R')|$, where R' is the random sample of R.
 - If the sample is 1% of R, the estimate is $100 |\sigma_C(R')|$, etc.
 - The estimate is reliable if $|\sigma_C(R')|$ is not too small (the bigger, the better).
Sampling using a hash function

• Basic idea:
 - Want sampling decision based on the value of a particular attribute A.
 - Use a hash function $h : U \rightarrow \{0, \ldots, 99\}$ and sample the tuples with hash value 0 on the value of A.
 - Use same hash function for all relations – the sampling is dependent.
Estimating join sizes?

• Suppose you want to estimate the size of a join statement $R_1 \bowtie R_2$.
• You have random samples of 1% of each relation. Two cases:
 – Independent sampling.
 – Sampling using a hash function on join attr.

• **Question**: How do you do the estimation?
Estimating join sizes I

- Compute $|R'_1 \bowtie R'_2|$, where R'_1 and R'_2 are independent samples of R_1 and R_2.

- If samples are 1% of the relations, estimate is

$$100^2 |R'_1 \bowtie R'_2|$$
Estimating join sizes II

- Compute \(|{R'_1 \bowtie R'_2}|\), where \(R'_1\) and \(R'_2\) are hashing based samples of \(R_1\) and \(R_2\) on the join attribute.
- If samples are 1\% of the relations, estimate is \(100|{R'_1 \bowtie R'_2}|\)
 - less chance of a zero estimate,
 - but the variance may be large.
- Notice that for this purpose we do not need to store \(R'_1\) and \(R'_2\) – it suffices to store the frequency of each item of attribute A.
Keeping a sample of bounded size

Reservoir sampling (Vitter ‘85):

- Initial sample consists of \(s \) tuples.
- A tuple inserted in \(R \) is stored in sample with probability \(s/(|R|+1) \).
- When storing a new tuple, it replaces a randomly chosen tuple in the existing sample (unless sample has size \(< s \) due to a deletion).
Histogram

- Number of values/tuples in each of a number of intervals. Widely used.

- Question: How do you use a histogram to estimate selectivity?
Sketch-based estimation

• **Idea:**
 Maintain some information about the relations (a “sketch”) that:

 - Is much smaller than the size of the relations themselves. (Smaller than a useful sample.)

 - Can easily be updated when tuples are inserted and deleted.

 - Allows accurate prediction of sizes of subresults (key: joins, selections).
Aside: Approximate answers

• In some applications, we may be happy with an approximation of an aggregate, say, and need only access the sketch.
• In some applications (e.g. data streams) we must accept some inaccuracy do be able to get answers.
• Not focus here.
Random histograms

• A basic technique used in sketching is a histogram where the column for each key is chosen at random, using a hash function.
Let’s make a random histogram of the class ages (5 columns).

What can we say about:

- Select ... year=1975?
- Self-join on year?
Count-min sketches (CM’05)

- Sketch of an attribute A of relation R.
- The sketch consists of k independent, random histograms $X_i[1..n]$, using hash functions $h_1,...,h_k$.
- An (over)estimate of $|\sigma_{A=y}(R)|$ is $\min_i(X_i[h_i(y)])$.
- The estimate is not too far off if most of the tuples have values from a small set (size n, say) - i.e. there is high skew. (See paper RD07.)
Unbiased sketches

• Suppose we want an estimate whose expected value is $|\sigma_{A=y}(R)|$.

• Fast-Count idea (Thorup-Zhang ’04):
 – Subtract the expected "noise" from $X_i[h_i(y)]$.
 – To reduce error, take mean for $i=1,...,k$.

• Alternative (Fast-AGMS ’96, ’05):
 – Consider the difference of two values from the random histogram.
 – By symmetry, they have the same expected noise, and the result is unbiased!

• In both cases, we get a guarantee (see RD07): Estimate is "close" with "good" probability, depending on how much space is used.
Join size from sketches

- For Fast-Count, Fast-AGMS the "inner product" of the (unbiased) estimator vectors is an estimator for the join size:

\((-3,2,0,4) \cdot (-2,-1,3,2) = -3 \cdot (-2) + 2 \cdot (-1) + 0 \cdot 3 + 4 \cdot 2 = 12\)

- This estimator has large variance. We can reduce variance by taking the average of many estimators.

- Sometimes, a median of averages gives better (provable) guarantees.
And now a warmup on... partitioning!
Motivating examples

• Your company maintains a database of 20 years of business transactions, but performance is only important for the last year’s data.

• A relation has a “country” attribute, and most queries are about one particular country (not the same every time).

• Could of course sort by date and country, respectively. But there is a more “lightweight” solution.
Motivating examples, cont.

• An important query uses a full table scan, but need only two attributes out of 20.
 – Too expensive to maintain a covering index.
 – And no need for sorted order.

• A few attributes of a table are rarely accessed.
 – Make full table scans slower.
 – Buffer will contain less useful data.
Partitioning

• If many queries need just a “predictable” subset of the rows and/or a subset of the columns, it may be a good idea (especially if there are full table scans) to:
 – partition horizontally (by row) and/or
 – partition vertically (by column).

• Each partition is stored similarly to a normal table, including indexes.

• Some DBMSs have features that make the partitioning transparent.
Partitioning in Oracle (not XE)

- Only horizontal partitioning.
 - Can do vertical partitioning via foreign keys.

Range and hash partitioning:

```sql
CREATE TABLE sales
  ( invoice_no NUMBER,
    sale_year INT NOT NULL,
    sale_month INT NOT NULL,
    sale_day INT NOT NULL )
PARTITION BY RANGE (sale_year, sale_month, sale_day)
  ( PARTITION sales_q1 VALUES LESS THAN (1999, 04, 01),
    PARTITION sales_q2 VALUES LESS THAN (1999, 07, 01),
    PARTITION sales_q3 VALUES LESS THAN (1999, 10, 01),
    PARTITION sales_q4 VALUES LESS THAN (2000, 01, 01) );

CREATE TABLE scubagear
  (id NUMBER,
   name VARCHAR2 (60))
PARTITION BY HASH (id)
PARTITIONS 4;
```
Partitioning in Oracle

List partitioning:

```sql
CREATE TABLE q1_sales_by_region
    (deptno number,
     deptname varchar2(20),
     quarterly_sales number(10, 2),
     state varchar2(2))
PARTITION BY LIST (state)
    (PARTITION q1_northwest VALUES ('OR', 'WA'),
     PARTITION q1_southwest VALUES ('AZ', 'UT', 'NM'),
     PARTITION q1_northeast VALUES ('NY', 'VM', 'NJ'),
     PARTITION q1_southeast VALUES ('FL', 'GA'),
     PARTITION q1_northcentral VALUES ('SD', 'WI'),
     PARTITION q1_southcentral VALUES ('OK', 'TX'));
```
Discussion of partitioning

• Vertical partitioning means that retrieving or inserting a tuple requires more I/Os.

• Horizontal partitioning allows faster updates than buffered indexes if the database buffer is large enough to keep the “active” block of each partition.

• Maintaining a suitable list or range partitioning is tedious...
This afternoon

- Guest lecture by Kaare Jelling Kristoffersen, LECTOR ApS talks about:

 Partitioning and Green IT