Spatial databases

Rasmus Pagh

Reading: RG 28, blog post, [BKOS00, sec. 5.3]
Today

• Spatial databases
• Multi-dimensional indexing:
 – Grid files
 – kD-trees
 – R-trees
• Spatial indexing in Oracle
• More multi-dimensional indexing:
 – Range trees
 – Space-filling curves
Spatial databases

Examples:

• Geographic Information Systems (GIS)
• Computer-Aided Design (CAD)
• Multi-media databases (*feature vectors*)
• Traffic monitoring

More generally, spatial/multidimensional indexing techniques may be relevant to all queries that contain a range or point condition on more than one attribute.
Spatial data

Two main types:

- Point data (GIS, feature vectors, OLAP)
- Region data: Objects have some spatial extent, e.g. polygons.

- We will focus on point data, but some of the techniques we will talk about also work for region data.
- We will talk mostly about 2D, but all ideas extend (with some cost) to higher dimensions.
Spatial queries

Examples:

• Orthogonal range queries:
 – Select all points with coordinates in given ranges.

• Nearest neighbor queries:
 – Find the nearest point to a given query point.

• Spatial join:
 – Join with spatial condition, e.g. “are closer than 1 km”. Not discussed today.
Consider an orthogonal range query:

```sql
SELECT x, y FROM map
WHERE (x BETWEEN 1000 AND 2000)
    AND (y BETWEEN 2000 AND 3000)
```

Assume there are n rows in `map`, and that we have covering B-tree indexes on (x,y) and (y,x).

What strategy may the DBMS use to perform the query, and what will be the number of I/Os?

- Use the selectivity of the range conditions in your answer.
Conclusion – B-trees

- B-trees may give an acceptable solution if one of the range conditions has very high selectivity.
- However, often the case that both range conditions have low selectivity, while their conjunction has high selectivity.
- Ideally, we would like an index whose time depends on the number of points satisfying both range conditions.
Grid files, in a picture
Grid file properties

• Simple implementation – reduction to clustered index on cell ID.
 – Especially easy when the grid is uniform.
• **Weak point:** The number of points in a cell may vary a lot when points are not uniformly distributed.
 – Sometimes need 1 I/O to retrieve few points.
 – Sometimes need many I/Os to retrieve the points in a single cell.
• More robust implementation:
 – Clustered B-tree on \((x\text{-grid-coord}, y\text{-coord})\)
 – Make sure there are at most \(\approx (NB)^{0.5}\) points for each \(x\text{-grid-coordinate}.\)
Non-uniform grid file search
Grid file analysis (robust impl)

- Worst-case: First and last search may cost \((N/B)^{0.5}\) I/Os, without returning any results.
- Each additional search costs \(O(\log_B N)\) I/Os (assume this is \(O(1)\)), plus the cost of reporting results.
- Worst-case: Search in at most \((N/B)^{0.5}\) x-grid-coords.

- Total cost of \((N/B)^{0.5}\) I/Os, plus the cost of reading the results.
kd-trees

- Generalization of ordinary search tree.
 - External memory version sometimes called kdB-tree.

- An internal node splits the data along some dimension.
 - In 2D, the splitting alternates between horizontal and vertical.

- Similar to Quad-trees, implemented in Oracle (deprecated feature).
 - Quad-trees split on two dimensions at each internal node.
kd-tree in a picture
kd-tree properties

• Simple generalization of search trees.
• Can adapt to different densities in various regions of the space.
• Efficient external memory variant.

• Weak point: Very rectangular range queries may take long, and return only few points.
 – A 2D query on N points may visit up to $N^{1/2}$ leaves, even when there are no results.
R-trees

• *Another* generalization of B-trees.
• An internal node splits the points (or regions) into a number of rectangles.
 – A rectangle is a “multidimensional interval”.
 – Rectangles may overlap.
• Balancing conditions, and how balance is maintained, is similar to B-trees.
 – Especially, depth is low.
 – However, searches may need to explore *several* children of an internal node, so search time can be larger.
R-tree example
(slide by Ramakrishnan and Gehrke)
R-tree example
(slides by Ramakrishnan and Gehrke)
R-tree properties

• Theoretically, not known to be stronger than kd-trees.
 – Except in special cases.

• The most widely implemented spatial tree index.
 – Flexible
 – Performs well in low dimensions
Spatial indexing in Oracle

• Based on R-trees. Limited to 2D, 3D, 4D.
• Built-in data types for various geometric objects, e.g. `SDO_POINT_TYPE` (3D point).
• Can create point using `SDO_POINT_TYPE(x,y,z)`.
• To create index, first insert “suitable information” in `user_sdo_geom_metadata`.
• Then create index using e.g.
  ```sql
  CREATE INDEX spatial_idxx ON R(position) 
  INDEXTYPE IS MDSYS.Spatial_INDEX;
  ```
Spatial query in Oracle

Find tuples where the point position is in the rectangle defined by (5,6),(12,12):

- SELECT *
 FROM R WHERE
 SDO_INSIDE(R.position,
 SDO_GEOMETRY(2003,
 NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(5,6,12,12))
 = 'TRUE';
Range trees

• We next consider *range trees*, which provide fast multi-dimensional range queries at the cost of higher space usage.
 - Performance acceptable only in low dimensions.

• In the lecture, we will see a simpler variant that allow range trees to be implemented using a collection of standard B-trees!
Ranges vs prefixes

- Covering ranges by prefixes:
 - Suppose a and b are w-bit integers.
 - Any range \([a;b]\) can be split into at most \(2^w\) intervals where each interval consists of all integers with a particular prefix.

- Often the intervals used in "OLAP" queries naturally correspond to prefixes. E.g.
 - "location=Denmark"
 - "location=Denmark:Copenhagen"
 - "location=Denmark:Copenhagen:Amager"

- **Thus:** Enough to solve the case where a prefix is specified in each dimension.
Storing points redundantly

• **Basic idea:**
 - Store each point several times, using all different combinations of prefixes as key.

• **Example:**
 - Store according to the 12 keys:

<table>
<thead>
<tr>
<th>DK:CPH:Amgr; Shirts:White</th>
<th>DK:CPH:Amgr; Shirts</th>
<th>DK:CPH:Amgr; *</th>
</tr>
</thead>
<tbody>
<tr>
<td>DK:CPH; Shirts:White</td>
<td>DK:CPH; Shirts</td>
<td>DK:CPH; *</td>
</tr>
<tr>
<td>DK;Shirts:White</td>
<td>DK;Shirts</td>
<td>DK;*</td>
</tr>
<tr>
<td>*;Shirts:White</td>
<td>*;Shirts</td>
<td>;</td>
</tr>
</tbody>
</table>
Querying

- **Prefix querying is very easy:**
 Simply use the prefixes as key in some index structure (e.g. a B-tree).
 - Time efficient!
 - But general range queries may require a relatively large number of prefix queries.

- **Space analysis:**
 - If there are w possible prefixes in each of d dimensions, each point is stored w^d times.
 - Space is factor w^d from optimal. May be fine when d is small.
Problem session

• We revisit the setting from before, where we consider points of the form (Country:City:Site, ItemType:Color).
 – 4 possible location prefixes, 3 item prefixes
 – Basic idea says 12 keys should be used

• Come up with a better way of storing the points:
 – With same query efficiency.
 – Only 3 keys per point
 – **Hint**: Composite keys and range queries.
Range trees wrap-up

• Space overhead may be reduced to w^{d-1} using this idea.
• It is even known how to reduce the space overhead to w^{d-2}, but then the scheme is not external memory efficient.

• **Summary:**
 - Range trees are mainly applicable where a considerable space overhead is acceptable.
 - Best for prefix queries, but also *reliable* performance for range queries. Especially good in 2D (and 3D).
Space-filling curves

Idea: Create 1-to-1 correspondence between points in 2D and 1D that ”preserves locality”.
Z-ordering

- Simplest space-filling curve
- Consider point given by binary coordinates:
 \((00101110, 01101011)\)
- Mapped to the number formed by interleaving:
 \(0001110011101101\).
- Mapping a 2D range query: Determine the smallest interval containing range.
 - Z-order: Top-left and bottom right corners determine the extremes.
Weak points of space-filling curves

- **Some** points that are close in 2D will be far apart when mapping to 1D.
- Chance of running into this problem can be minimized by adding a random shift to all coordinates.
 - Alternatively, consider a number of space-filling curves slightly shifted along both coordinates.
Approximate nearest neighbor

• Exact near neighbor queries are difficult, especially
 – when data changes, and
 – there may be many points at almost minimal distance to the query point.

• Often: Enough to find a neighbor that is not much further away than the nearest neighbor.
 – Allows much more efficient solutions.
 – The ratio between distances can be guaranteed.
Approximate NN picture
Approximate NN using Z-order

• Points that agree in the most significant bits are close. Vice versa?

• If the coordinates of two points differ by d_1 and d_2 along the two dimensions, we expect the least significant $2\log(\max(d_1, d_2))$ bits of the corresponding 1D values to differ.
 – By using several curves, we can make this hold for at least one curve (for any point pair).
 – The largest difference in any dimension is what counts (L_∞ norm).

• Candidates for being near neighbors of a query point p are simply the predecessor and successor of p in the curve order.
Rotations

- To make L_∞ norm close to the normal euclidian distance, we may consider several curves that are rotations of the Z-curve.
Spatial indexing summary

• Many different indexes, with different strengths and weaknesses.
• Distinguishing features include:
 – Linear or super-linear space?
 – Good for any point distribution?
 – Support for queries: Range q., near neighbor q., stabbing q., intersection q.,...?
 – Exact or approximate results?
 – Fast updates, or meant for static use?
• Most common in practice: R-trees, kd/quad-trees, (space-filling curves).
Exercise

• Hand-out: “R-trees for triangles”
 – We will go through question a).
 – Question b) is more challenging, and may be fun for you to think about later.