Probabilistic Polynomials and Hamming Nearest Neighbors

Josh Alman Ryan Williams

Stanford University

Workshop on Multi-dimensional Proximity Problems, January 13, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hamming Nearest Neighbor Problem

Definition (Hamming Nearest Neighbor Problem)

Given a set D of n database points in $\{0,1\}^d$, we wish to preprocess D so that for queries $q \in \{0,1\}^d$, we answer a point $u \in D$ that differs from q in a minimum number of coordinates.

Definition (Hamming Nearest Neighbor Problem)

Given a set D of n database points in $\{0,1\}^d$, we wish to preprocess D so that for queries $q \in \{0,1\}^d$, we answer a point $u \in D$ that differs from q in a minimum number of coordinates.

Curse of Dimensionality (Barkol, Rabani '00)

All solutions require either

- $2^{\Omega(d)}$ size data structure (store all answers), or
- $\Omega(n/\operatorname{polylog}(n))$ query time (try all points).

Hamming Nearest Neighbor Problem: Past Work

Past work has gotten around this problem in a variety of ways:

- ► Approximate solutions: find a point with distance within (1 + ϵ) of the optimal
 - Lots of beautiful results and impact: hashing, dimensionality reduction, ...

"Curse of approximation": still requires n^{Ω(1/ε²)} space.
 [Andoni, Indyk, Patrascu '06]

Hamming Nearest Neighbor Problem: Past Work

Past work has gotten around this problem in a variety of ways:

- ► Approximate solutions: find a point with distance within (1 + ϵ) of the optimal
 - Lots of beautiful results and impact: hashing, dimensionality reduction, ...

- "Curse of approximation": still requires n^{Ω(1/ε²)} space. [Andoni, Indyk, Patrascu '06]
- 'Planted' case: All vectors are random except one pair with distance much smaller than expected; find the planted pair among the *n* vectors
 - O(n^{1.62}) time algorithm, independent of dimension.
 [G. Valiant '12]

Batch Hamming Nearest Neighbor Problem

Definition (Batch Hamming Nearest Neighbor Problem) Given a set D of n database points in $\{0,1\}^d$, and a set Q of nquery points in $\{0,1\}^d$, find the HNN in D for each point in Q.

Batch Hamming Nearest Neighbor Problem

Definition (Batch Hamming Nearest Neighbor Problem) Given a set D of n database points in $\{0,1\}^d$, and a set Q of nquery points in $\{0,1\}^d$, find the HNN in D for each point in Q.

Lower bounds no longer apply, but still best previously known solutions take either:

- $n \cdot 2^{\Omega(d)}$ time (build a table of all answers), or
- $n^2 \cdot d^{\Omega(1)}$ time (try all pairs).

Theorem (AW '15)

Let $D \subseteq \{0,1\}^d$ be a database of n vectors of dimension $d = c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1/O(c \log^2 c)}$ time, whp.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (AW '15)

Let $D \subseteq \{0,1\}^d$ be a database of n vectors of dimension $d = c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1/O(c \log^2 c)}$ time, whp.

If d = O(log n), then the algorithm runs in truly subquadratic time: n^{2-e}, for some e > 0.

Theorem (AW '15)

Let $D \subseteq \{0,1\}^d$ be a database of n vectors of dimension $d = c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1/O(c \log^2 c)}$ time, whp.

If d = O(log n), then the algorithm runs in truly subquadratic time: n^{2−e}, for some e > 0.

Improves on the trivial algorithm when d = o(log²(n)/log log²(n)).

Theorem (AW '15)

Let $D \subseteq \{0,1\}^d$ be a database of n vectors of dimension $d = c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1/O(c \log^2 c)}$ time, whp.

- If d = O(log n), then the algorithm runs in truly subquadratic time: n^{2-ϵ}, for some ϵ > 0.
- Improves on the trivial algorithm when d = o(log²(n)/log log²(n)).
- Algorithm technique: Compute Hamming distances using Efficiently Computable Low-Degree Probabilistic Polynomials (Very different techniques from past work)

Theorem (AW '15)

Let $D \subseteq \{0,1\}^d$ be a database of n vectors of dimension $d = c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1/O(c \log^2 c)}$ time, whp.

If d = O(log n), then the algorithm runs in truly subquadratic time: n^{2-ϵ}, for some ϵ > 0.

Theorem (AW '15)

Suppose there is $\epsilon > 0$ such that for all constant *c*, Batch HNN can be solved in $2^{o(d)} \cdot n^{2-\epsilon}$ time on a set of *n* points in $\{0,1\}^{c \log n}$. Then the Strong Exponential Time Hypothesis is false.

Let *R* be a ring (can be $\mathbb{Z}_m, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, ...$). A polynomial *p* in *n* variables over *R* computes the boolean function $f : \{0,1\}^n \to \{0,1\}$ if for each $x \in \{0,1\}^n$ we have p(x) = f(x).

Let *R* be a ring (can be $\mathbb{Z}_m, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, ...$). A polynomial *p* in *n* variables over *R* computes the boolean function $f: \{0,1\}^n \to \{0,1\}$ if for each $x \in \{0,1\}^n$ we have p(x) = f(x). Example (OR function)

$$OR(x_1, x_2, \dots, x_n) = \begin{cases} 0 & \text{if } x_1 = x_2 = \dots = x_n = 0\\ 1 & \text{otherwise.} \end{cases}$$

Then,

$$OR(x) = p(x) := 1 - (1 - x_1)(1 - x_2) \cdots (1 - x_n)$$

Let *R* be a ring (can be $\mathbb{Z}_m, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, ...$). A polynomial *p* in *n* variables over *R* computes the boolean function $f: \{0,1\}^n \to \{0,1\}$ if for each $x \in \{0,1\}^n$ we have p(x) = f(x). Example (OR function)

$$OR(x_1, x_2, \dots, x_n) = \begin{cases} 0 & \text{if } x_1 = x_2 = \dots = x_n = 0\\ 1 & \text{otherwise.} \end{cases}$$

Then,

$$OR(x) = p(x) := 1 - (1 - x_1)(1 - x_2) \cdots (1 - x_n)$$

The polynomial p has degree n, and 2^n terms when expanded out.

Let *R* be a ring (can be $\mathbb{Z}_m, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, ...$). A polynomial *p* in *n* variables over *R* computes the boolean function $f: \{0,1\}^n \to \{0,1\}$ if for each $x \in \{0,1\}^n$ we have p(x) = f(x). Example (OR function)

$$OR(x_1, x_2, \dots, x_n) = \begin{cases} 0 & \text{if } x_1 = x_2 = \dots = x_n = 0\\ 1 & \text{otherwise.} \end{cases}$$

Then,

$$OR(x) = p(x) := 1 - (1 - x_1)(1 - x_2) \cdots (1 - x_n)$$

The polynomial p has degree n, and 2^n terms when expanded out.

Note: We never need to take powers of a variable greater than 1, since $x_i = x_i^2$ when $x_i \in \{0, 1\}$. (We only need to look at multilinear polynomials)

Probabilistic Polynomial

Let $f : \{0,1\}^n \to \{0,1\}$ be any Boolean function on *n* variables.

Definition (Probabilistic Polynomial)

A probabilistic polynomial over R for f with error ϵ and degree d is a distribution \mathcal{D} of degree-d polynomials over R with the property that for each $x \in \{0, 1\}^n$,

$$\Pr_{p \sim \mathcal{D}}[p(x) = f(x)] \ge 1 - \epsilon.$$

Note: The probability is only over the polynomial p, not over the input x.

[Aspnes, Beigel, Furst, Rudich '93] Set $S_0 = \{1, 2, \dots, n\}$ and

construct subsets

$$S_0 \supseteq S_1 \supseteq S_2 \cdots \supseteq S_{\log_2(n)+1}$$

such that each element of S_i is included in S_{i+1} with probability 1/2.

Let
$$p_i(x) = \sum_{j \in S_i} x_j$$
.

Our probabilistic polynomial for OR is

$$p(x) = 1 - \prod_i (1 - p_i(x))$$

[Aspnes, Beigel, Furst, Rudich '93] Set $S_0 = \{1, 2, ..., n\}$ and construct subsets

$$S_0 \supseteq S_1 \supseteq S_2 \cdots \supseteq S_{\log_2(n)+1}$$

such that each element of S_i is included in S_{i+1} with probability 1/2.

Let
$$p_i(x) = \sum_{j \in S_i} x_j$$
.

Our probabilistic polynomial for OR is

$$p(x) = 1 - \prod_i (1 - p_i(x))$$

- ▶ If x = (0, ..., 0), then $p_j(x) \equiv 0$ and p(x) = 0.
- If x ≠ (0,...,0) then we want there to be a j such that p_j(x) = 1 with some (constant) probability.

[Aspnes, Beigel, Furst, Rudich '93] Set $S_0 = \{1, 2, ..., n\}$ and construct subsets

$$S_0 \supseteq S_1 \supseteq S_2 \cdots \supseteq S_{\log_2(n)+1}$$

such that each element of S_i is included in S_{i+1} with probability 1/2.

Let
$$p_i(x) = \sum_{j \in S_i} x_j$$
.

Our probabilistic polynomial for OR is

$$p(x) = 1 - \prod_i (1 - p_i(x))$$

- ▶ If x = (0, ..., 0), then $p_j(x) \equiv 0$ and p(x) = 0.
- If x ≠ (0,...,0) then we want there to be a j such that p_j(x) = 1 with some (constant) probability.

[Aspnes, Beigel, Furst, Rudich '93] Set $S_0 = \{1, 2, ..., n\}$ and construct subsets

$$S_0 \supseteq S_1 \supseteq S_2 \cdots \supseteq S_{\log_2(n)+1}$$

such that each element of S_i is included in S_{i+1} with probability 1/2.

Let
$$p_i(x) = \sum_{j \in S_i} x_j$$
.

Our probabilistic polynomial for OR is

$$p(x) = 1 - \prod_i (1 - p_i(x))$$

- ▶ If x = (0, ..., 0), then $p_j(x) \equiv 0$ and p(x) = 0.
- If x ≠ (0,...,0) then we want there to be a j such that p_j(x) = 1 with some (constant) probability.

[Aspnes, Beigel, Furst, Rudich '93] Set $S_0 = \{1, 2, ..., n\}$ and construct subsets

$$S_0 \supseteq S_1 \supseteq S_2 \cdots \supseteq S_{\log_2(n)+1}$$

such that each element of S_i is included in S_{i+1} with probability 1/2.

Let
$$p_i(x) = \sum_{j \in S_i} x_j$$
.

Our probabilistic polynomial for OR is

$$p(x) = 1 - \prod_i (1 - p_i(x))$$

- ▶ If x = (0, ..., 0), then $p_j(x) \equiv 0$ and p(x) = 0.
- If x ≠ (0,...,0) then we want there to be a j such that p_j(x) = 1 with some (constant) probability.

[Aspnes, Beigel, Furst, Rudich '93] Set $S_0 = \{1, 2, ..., n\}$ and construct subsets

$$S_0 \supseteq S_1 \supseteq S_2 \cdots \supseteq S_{\log_2(n)+1}$$

such that each element of S_i is included in S_{i+1} with probability 1/2.

Let
$$p_i(x) = \sum_{j \in S_i} x_j$$
.

Our probabilistic polynomial for OR is

$$p(x) = 1 - \prod_i (1 - p_i(x))$$

- ▶ If x = (0, ..., 0), then $p_j(x) \equiv 0$ and p(x) = 0.
- If x ≠ (0,...,0) then we want there to be a j such that p_j(x) = 1 with some (constant) probability.

[Aspnes, Beigel, Furst, Rudich '93] Set $S_0 = \{1, 2, \dots, n\}$ and

construct subsets

$$S_0 \supseteq S_1 \supseteq S_2 \cdots \supseteq S_{\log_2(n)+1}$$

such that each element of S_i is included in S_{i+1} with probability 1/2.

Let
$$p_i(x) = \sum_{j \in S_i} x_j$$
.

Our probabilistic polynomial for OR is

$$p(x) = 1 - \prod_i (1 - p_i(x))$$

- ► O(log(n)) degree polynomial for OR with e = 2/3.
- ► Can augment to degree O(log(n) log(1/ε)) for any ε > 0 (use the fact that the error is one-sided).

Notation: For $x \in \{0,1\}^n$, write $|x| = \sum_{i=1}^n x_i$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MAJORITY(x) = 1 iff $|x| \ge n/2$.

Notation: For $x \in \{0,1\}^n$, write $|x| = \sum_{i=1}^n x_i$.

MAJORITY(x) = 1 iff $|x| \ge n/2$.

Theorem (Razborov, Smolensky '87)

A probabilistic polynomial with ϵ error for MAJORITY requires degree $\Omega(\sqrt{n \log(1/\epsilon)})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notation: For $x \in \{0,1\}^n$, write $|x| = \sum_{i=1}^n x_i$.

MAJORITY(x) = 1 iff $|x| \ge n/2$.

Theorem (Razborov, Smolensky '87)

A probabilistic polynomial with ϵ error for MAJORITY requires degree $\Omega(\sqrt{n \log(1/\epsilon)})$.

Theorem (AW '15)

There is a probabilistic polynomial for MAJORITY on n variables with error ϵ and degree $O(\sqrt{n \log(1/\epsilon)})$.

Notation: For $x \in \{0,1\}^n$, write $|x| = \sum_{i=1}^n x_i$.

MAJORITY(x) = 1 iff $|x| \ge n/2$.

Theorem (Razborov, Smolensky '87)

A probabilistic polynomial with ϵ error for MAJORITY requires degree $\Omega(\sqrt{n \log(1/\epsilon)})$.

Theorem (AW '15)

There is a probabilistic polynomial for MAJORITY on n variables with error ϵ and degree $O(\sqrt{n \log(1/\epsilon)})$.

We will actually look at the threshold function: $TH_{\theta}(x) = 1$ iff $|x|/n \ge \theta$. In particular, $MAJORITY = TH_{1/2}$.

Two cases depending on how close |x|/n is to θ (whether or not it is within $\delta = \Theta(\sqrt{\log(1/\epsilon)/n})$):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two cases depending on how close |x|/n is to θ (whether or not it is within $\delta = \Theta(\sqrt{\log(1/\epsilon)/n})$):

If |x|/n ∉ [θ − δ, θ + δ], then if we construct a new smaller vector x̃ by sampling 1/10 of the entries of x, it is likely that |x̃|/(n/10) lies on the same side of θ as |x|/n (by Chernoff-Hoeffding).

Two cases depending on how close |x|/n is to θ (whether or not it is within $\delta = \Theta(\sqrt{\log(1/\epsilon)/n})$):

- If |x|/n ∉ [θ − δ, θ + δ], then if we construct a new smaller vector x̃ by sampling 1/10 of the entries of x, it is likely that |x̃|/(n/10) lies on the same side of θ as |x|/n (by Chernoff-Hoeffding).
- If |x|/n ∈ [θ − δ, θ + δ], we can use an exact polynomial of degree O(nδ) = O(√n log(1/ε)) (by polynomial interpolation) that is guaranteed to give the correct answer.

Two cases depending on how close |x|/n is to θ (whether or not it is within $\delta = \Theta(\sqrt{\log(1/\epsilon)/n})$):

- If |x|/n ∉ [θ − δ, θ + δ], then if we construct a new smaller vector x̃ by sampling 1/10 of the entries of x, it is likely that |x̃|/(n/10) lies on the same side of θ as |x|/n (by Chernoff-Hoeffding).
- If |x|/n ∈ [θ − δ, θ + δ], we can use an exact polynomial of degree O(nδ) = O(√n log(1/ε)) (by polynomial interpolation) that is guaranteed to give the correct answer.

► To decide which of the two cases we are in, we can use TH_{θ+δ}(x̃) and TH_{θ-δ}(x̃).

From Probabilistic Polynomial to Hamming Distance Algorithm

Given an efficient (small number of monomials) polynomial, we can evaluate it on many points quickly:

Lemma (R. Williams '14)

Given a polynomial $P(x_1, \ldots, x_d, y_1, \ldots, y_d)$ with at most $n^{0.17}$ monomials, and two sets of n inputs $A = \{a_1, \ldots, a_n\} \subseteq \{0, 1\}^d$, $B = \{b_1, \ldots, b_n\} \subseteq \{0, 1\}^d$, we can evaluate P on all pairs $(a_i, b_j) \in A \times B$ in $\tilde{O}(n^2)$ time.

(日) (同) (三) (三) (三) (○) (○)

From Probabilistic Polynomial to Hamming Distance Algorithm

Given an efficient (small number of monomials) polynomial, we can evaluate it on many points quickly:

Lemma (R. Williams '14)

Given a polynomial $P(x_1, \ldots, x_d, y_1, \ldots, y_d)$ with at most $n^{0.17}$ monomials, and two sets of n inputs $A = \{a_1, \ldots, a_n\} \subseteq \{0, 1\}^d$, $B = \{b_1, \ldots, b_n\} \subseteq \{0, 1\}^d$, we can evaluate P on all pairs $(a_i, b_j) \in A \times B$ in $\tilde{O}(n^2)$ time.

- Beats the trivial runtime of $\Omega(n^{2.17})$ time.
- Since we want a subquadratic algorithm, we can't just let A, B be our sets of vectors.
- Instead, group our vectors into n/s groups of size s. Each element of A or B will correspond to a group.

We will use this to solve the following sub-problem of Batch HNN: Definition (Hamming distance problem)

Given an integer k and two collections of s vectors of dimension d as input, output 1 iff there is a pair of vectors (one from each collection) with Hamming distance at most k.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let x₁,..., x_s and y₁,..., y_s be the two collections of vectors.
 We will write x_{i,i} for the *j*th variable of vector x_i.

- Let x₁,..., x_s and y₁,..., y_s be the two collections of vectors.
 We will write x_{i,j} for the *j*th variable of vector x_j.
- Let D_d be the probabilistic polynomial of degree O(√d log(1/ε)) for the threshold function TH_{(k+1)/d} on d inputs. Sample p ~ D_d with error ε = 1/s³.

(日) (同) (三) (三) (三) (○) (○)

- Let x₁,..., x_s and y₁,..., y_s be the two collections of vectors.
 We will write x_{i,j} for the *j*th variable of vector x_i.
- Let \mathcal{D}_d be the probabilistic polynomial of degree $O(\sqrt{d \log(1/\epsilon)})$ for the threshold function $TH_{(k+1)/d}$ on d inputs. Sample $p \sim \mathcal{D}_d$ with error $\epsilon = 1/s^3$.

(日) (同) (三) (三) (三) (○) (○)

• Choose a uniform random subset $R \subseteq \{1, 2, \dots, s\}^2$

- Let x₁,..., x_s and y₁,..., y_s be the two collections of vectors.
 We will write x_{i,j} for the *j*th variable of vector x_j.
- Let \mathcal{D}_d be the probabilistic polynomial of degree $O(\sqrt{d \log(1/\epsilon)})$ for the threshold function $TH_{(k+1)/d}$ on d inputs. Sample $p \sim \mathcal{D}_d$ with error $\epsilon = 1/s^3$.
- Choose a uniform random subset $R \subseteq \{1, 2, \dots, s\}^2$

Our polynomial is:

$$q(x_1, y_1, \ldots, x_s, y_s) := \sum_{(i,j)\in R} (1 + p(x_{i,1} + y_{j,1}, \ldots, x_{i,d} + y_{j,d})).$$

$$q(x_1, y_1, \ldots, x_s, y_s) := \sum_{(i,j) \in R} (1 + p(x_{i,1} + y_{j,1}, \ldots, x_{i,d} + y_{j,d})).$$

Since we are working over 𝔽₂, the number of 1s in the vector (x_{i,1} + y_{j,1},..., x_{i,d} + y_{j,d}) is the Hamming distance between x_i and y_j.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$q(x_1, y_1, \ldots, x_s, y_s) := \sum_{(i,j) \in R} (1 + p(x_{i,1} + y_{j,1}, \ldots, x_{i,d} + y_{j,d})).$$

Since we are working over 𝔽₂, the number of 1s in the vector (x_{i,1} + y_{j,1},..., x_{i,d} + y_{j,d}) is the Hamming distance between x_i and y_j.

► 1 + p(x_{i,1} + y_{j,1},..., x_{i,d} + y_{j,d}) is 1 iff x_i and y_j have Hamming distance at most k (assuming p is correct)

$$q(x_1, y_1, \ldots, x_s, y_s) := \sum_{(i,j) \in R} (1 + p(x_{i,1} + y_{j,1}, \ldots, x_{i,d} + y_{j,d})).$$

- Since we are working over 𝔽₂, the number of 1s in the vector (x_{i,1} + y_{j,1},..., x_{i,d} + y_{j,d}) is the Hamming distance between x_i and y_j.
- ► 1 + p(x_{i,1} + y_{j,1},..., x_{i,d} + y_{j,d}) is 1 iff x_i and y_j have Hamming distance at most k (assuming p is correct)
- If all the x_i and y_j have Hamming distance > k, then the sum is 0. Otherwise, it is 0 or 1 with 1/2 chance each (based on our choice of R)

$$q(x_1, y_1, \ldots, x_s, y_s) := \sum_{(i,j) \in R} (1 + p(x_{i,1} + y_{j,1}, \ldots, x_{i,d} + y_{j,d})).$$

- Since we are working over 𝔽₂, the number of 1s in the vector (x_{i,1} + y_{j,1},..., x_{i,d} + y_{j,d}) is the Hamming distance between x_i and y_j.
- ► 1 + p(x_{i,1} + y_{j,1},..., x_{i,d} + y_{j,d}) is 1 iff x_i and y_j have Hamming distance at most k (assuming p is correct)
- If all the x_i and y_j have Hamming distance > k, then the sum is 0. Otherwise, it is 0 or 1 with 1/2 chance each (based on our choice of R)
- Since the error is one-sided, we can amplify to get as high a success probability as we want.

Solving Batch Hamming Nearest Neighbor

Two more steps:

- ► Hamming distance problem (is there a pair with distance ≤ k) polynomial ⇒ algorithm.
- ► Hamming distance problem algorithm ⇒ Batch Hamming nearest neighbor (for each vector, find its nearest neighbor) algorithm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Lemma

Given a threshold k, and subsets $R, B \subseteq \{0,1\}^d$ with |R| = |B| = n and $d = c \log n$, we can find a $v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1/O(c \log^2 c)}$ (or determine that none exist).

Lemma

Given a threshold k, and subsets $R, B \subseteq \{0,1\}^d$ with |R| = |B| = n and $d = c \log n$, we can find a $v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1/O(c \log^2 c)}$ (or determine that none exist).

Partition each of R and B into n/s groups of size s = n^{1/O(c log² c)}.

Lemma

Given a threshold k, and subsets $R, B \subseteq \{0,1\}^d$ with |R| = |B| = n and $d = c \log n$, we can find a $v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1/O(c \log^2 c)}$ (or determine that none exist).

- Partition each of R and B into n/s groups of size s = n^{1/O(c log² c)}.
- Our probabilistic polynomial on each group has degree $O(\sqrt{d \log s})$. Hence the number of monomials is $(\frac{2d}{\sqrt{d \log s}})$, which is $\leq n^{0.17}$ for a suitable choice of constants.

Lemma

Given a threshold k, and subsets $R, B \subseteq \{0,1\}^d$ with |R| = |B| = n and $d = c \log n$, we can find a $v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1/O(c \log^2 c)}$ (or determine that none exist).

- Partition each of R and B into n/s groups of size s = n^{1/O(c log² c)}.
- Our probabilistic polynomial on each group has degree $O(\sqrt{d \log s})$. Hence the number of monomials is $\binom{2d}{\sqrt{d \log s}}$, which is $\leq n^{0.17}$ for a suitable choice of constants.
- ► Using the fast evaluation lemma, we can evaluate on all pairs of groups in n^{2-1/O(c log² c)} time.

Lemma

Given a threshold k, and subsets $R, B \subseteq \{0,1\}^d$ with |R| = |B| = n and $d = c \log n$, we can find a $v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1/O(c \log^2 c)}$ (or determine that none exist).

- Partition each of R and B into n/s groups of size s = n^{1/O(c log² c)}.
- Our probabilistic polynomial on each group has degree $O(\sqrt{d \log s})$. Hence the number of monomials is $\binom{2d}{\sqrt{d \log s}}$, which is $\leq n^{0.17}$ for a suitable choice of constants.
- ► Using the fast evaluation lemma, we can evaluate on all pairs of groups in n^{2-1/O(c log² c)} time.
- Brute force within a pair of groups which has a close pair to find the vectors.

Hamming distance problem algorithm \Rightarrow Batch Hamming nearest neighbor

Lemma

If the Hamming distance problem can be solved in T(n, d) time, then the Batch Hamming nearest neighbor problem can be solved in $O(ndT(\sqrt{n}, d))$ time.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hamming distance problem algorithm \Rightarrow Batch Hamming nearest neighbor

Lemma

If the Hamming distance problem can be solved in T(n, d) time, then the Batch Hamming nearest neighbor problem can be solved in $O(ndT(\sqrt{n}, d))$ time.

- Partition each of D and Q into n/s groups of size $s = \sqrt{n}$.
- For k from 0, 1, 2, ..., d 1:
- Call the Hamming distance problem algorithm on each pair of a group from D and a group from Q. If a pair (u, v) ∈ Q × D is found, then v is a nearest neighbor for u. Remove u from Q and continue.
- There are at most n calls that do not return a vector pair for each k, so dn total such calls.
- There are at most n calls that return a vector pair since we remove each vector from Q once we find a pair for it.

Putting it all together

Combining our lemmas yields:

Theorem (AW '15)

Let $D \subseteq \{0,1\}^d$ be a database of n vectors of dimension $d = c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1/O(c \log^2 c)}$ time, whp.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Better dependence on c in the exponent
 - ► A similar 'Polynomial Method' algorithm for Orthogonal Vectors has runtime n^{2-1/O(log c)}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Better dependence on c in the exponent
 - A similar 'Polynomial Method' algorithm for Orthogonal Vectors has runtime $n^{2-1/O(\log c)}$.
- Use the 'Polynomial Method' for other problems
 - Has already been used for APSP, OV, SAT, CSPs, string matching...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Better dependence on c in the exponent
 - A similar 'Polynomial Method' algorithm for Orthogonal Vectors has runtime $n^{2-1/O(\log c)}$.
- Use the 'Polynomial Method' for other problems
 - Has already been used for APSP, OV, SAT, CSPs, string matching...
- Derandomize the MAJORITY probabilistic polynomial
 - Timothy Chan and Ryan Williams derandomized most 'Polynomial Method' algorithms at SODA'16.
 - ► Would also give circuit lower bounds (e.g. for THR
 o THR circuits)

- Better dependence on c in the exponent
 - A similar 'Polynomial Method' algorithm for Orthogonal Vectors has runtime $n^{2-1/O(\log c)}$.
- Use the 'Polynomial Method' for other problems
 - Has already been used for APSP, OV, SAT, CSPs, string matching...

Derandomize the MAJORITY probabilistic polynomial

- Timothy Chan and Ryan Williams derandomized most 'Polynomial Method' algorithms at SODA'16.
- ► Would also give circuit lower bounds (e.g. for THR
 o THR circuits)
- Other ways to quickly evaluate polynomials
 - Feels strange to use matrix multiplication instead of FFT
 - That said, fast MM used here is not necessarily impractical!