Probabilistic Polynomials and Hamming Nearest Neighbors

Josh Alman Ryan Williams

Stanford University

Workshop on Multi-dimensional Proximity Problems, January 13, 2016

Hamming Nearest Neighbor Problem

Definition (Hamming Nearest Neighbor Problem)
Given a set D of n database points in $\{0,1\}^{d}$, we wish to preprocess D so that for queries $q \in\{0,1\}^{d}$, we answer a point $u \in D$ that differs from q in a minimum number of coordinates.

Hamming Nearest Neighbor Problem

Definition (Hamming Nearest Neighbor Problem)
Given a set D of n database points in $\{0,1\}^{d}$, we wish to preprocess D so that for queries $q \in\{0,1\}^{d}$, we answer a point $u \in D$ that differs from q in a minimum number of coordinates.

Curse of Dimensionality (Barkol, Rabani '00)
All solutions require either

- $2^{\Omega(d)}$ size data structure (store all answers), or
- $\Omega(n / \operatorname{polylog}(n))$ query time (try all points).

Hamming Nearest Neighbor Problem: Past Work

Past work has gotten around this problem in a variety of ways:

- Approximate solutions: find a point with distance within $(1+\epsilon)$ of the optimal
- Lots of beautiful results and impact: hashing, dimensionality reduction, ...
- "Curse of approximation": still requires $n^{\Omega\left(1 / \epsilon^{2}\right)}$ space. [Andoni, Indyk, Patrascu '06]

Hamming Nearest Neighbor Problem: Past Work

Past work has gotten around this problem in a variety of ways:

- Approximate solutions: find a point with distance within $(1+\epsilon)$ of the optimal
- Lots of beautiful results and impact: hashing, dimensionality reduction, ...
- "Curse of approximation": still requires $n^{\Omega\left(1 / \epsilon^{2}\right)}$ space. [Andoni, Indyk, Patrascu '06]
- 'Planted' case: All vectors are random except one pair with distance much smaller than expected; find the planted pair among the n vectors
- $O\left(n^{1.62}\right)$ time algorithm, independent of dimension. [G. Valiant '12]

Batch Hamming Nearest Neighbor Problem

Definition (Batch Hamming Nearest Neighbor Problem)
Given a set D of n database points in $\{0,1\}^{d}$, and a set Q of n query points in $\{0,1\}^{d}$, find the HNN in D for each point in Q.

Batch Hamming Nearest Neighbor Problem

Definition (Batch Hamming Nearest Neighbor Problem)

Given a set D of n database points in $\{0,1\}^{d}$, and a set Q of n query points in $\{0,1\}^{d}$, find the HNN in D for each point in Q.

Lower bounds no longer apply, but still best previously known solutions take either:

- $n \cdot 2^{\Omega(d)}$ time (build a table of all answers), or
- $n^{2} \cdot d^{\Omega(1)}$ time (try all pairs).

Batch Hamming Nearest Neighbor Problem: Our Result

Theorem (AW '15)
Let $D \subseteq\{0,1\}^{d}$ be a database of n vectors of dimension $d=c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1 / O\left(c \log ^{2} c\right)}$ time, whp.

Batch Hamming Nearest Neighbor Problem: Our Result

Theorem (AW '15)
Let $D \subseteq\{0,1\}^{d}$ be a database of n vectors of dimension $d=c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1 / O\left(c \log ^{2} c\right)}$ time, whp.

- If $d=O(\log n)$, then the algorithm runs in truly subquadratic time: $n^{2-\epsilon}$, for some $\epsilon>0$.

Batch Hamming Nearest Neighbor Problem: Our Result

Theorem (AW '15)
Let $D \subseteq\{0,1\}^{d}$ be a database of n vectors of dimension $d=c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1 / O\left(c \log ^{2} c\right)}$ time, whp.

- If $d=O(\log n)$, then the algorithm runs in truly subquadratic time: $n^{2-\epsilon}$, for some $\epsilon>0$.
- Improves on the trivial algorithm when

$$
d=o\left(\log ^{2}(n) / \log \log ^{2}(n)\right)
$$

Batch Hamming Nearest Neighbor Problem: Our Result

Theorem (AW '15)

Let $D \subseteq\{0,1\}^{d}$ be a database of n vectors of dimension $d=c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1 / O\left(c \log ^{2} c\right)}$ time, whp.

- If $d=O(\log n)$, then the algorithm runs in truly subquadratic time: $n^{2-\epsilon}$, for some $\epsilon>0$.
- Improves on the trivial algorithm when $d=o\left(\log ^{2}(n) / \log \log ^{2}(n)\right)$.
- Algorithm technique: Compute Hamming distances using Efficiently Computable Low-Degree Probabilistic Polynomials (Very different techniques from past work)

Batch Hamming Nearest Neighbor Problem: Our Result

Theorem (AW '15)
Let $D \subseteq\{0,1\}^{d}$ be a database of n vectors of dimension $d=c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1 / O\left(c \log ^{2} c\right)}$ time, whp.

- If $d=O(\log n)$, then the algorithm runs in truly subquadratic time: $n^{2-\epsilon}$, for some $\epsilon>0$.

Theorem (AW '15)
Suppose there is $\epsilon>0$ such that for all constant c, Batch HNN can be solved in $2^{o(d)} \cdot n^{2-\epsilon}$ time on a set of n points in $\{0,1\}^{c \log n}$. Then the Strong Exponential Time Hypothesis is false.

Polynomials that Compute Boolean Functions

Let R be a ring (can be $\mathbb{Z}_{m}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \ldots$). A polynomial p in n variables over R computes the boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ if for each $x \in\{0,1\}^{n}$ we have $p(x)=f(x)$.

Polynomials that Compute Boolean Functions

Let R be a ring (can be $\mathbb{Z}_{m}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \ldots$). A polynomial p in n variables over R computes the boolean function
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ if for each $x \in\{0,1\}^{n}$ we have $p(x)=f(x)$.
Example (OR function)

$$
O R\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}0 & \text { if } x_{1}=x_{2}=\cdots=x_{n}=0 \\ 1 & \text { otherwise }\end{cases}
$$

Then,

$$
O R(x)=p(x):=1-\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{n}\right)
$$

Polynomials that Compute Boolean Functions

Let R be a ring (can be $\mathbb{Z}_{m}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \ldots$). A polynomial p in n variables over R computes the boolean function
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ if for each $x \in\{0,1\}^{n}$ we have $p(x)=f(x)$.
Example (OR function)

$$
O R\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}0 & \text { if } x_{1}=x_{2}=\cdots=x_{n}=0 \\ 1 & \text { otherwise }\end{cases}
$$

Then,

$$
O R(x)=p(x):=1-\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{n}\right)
$$

The polynomial p has degree n, and 2^{n} terms when expanded out.

Polynomials that Compute Boolean Functions

Let R be a ring (can be $\mathbb{Z}_{m}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \ldots$). A polynomial p in n variables over R computes the boolean function
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ if for each $x \in\{0,1\}^{n}$ we have $p(x)=f(x)$.
Example (OR function)

$$
O R\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}0 & \text { if } x_{1}=x_{2}=\cdots=x_{n}=0 \\ 1 & \text { otherwise }\end{cases}
$$

Then,

$$
O R(x)=p(x):=1-\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{n}\right)
$$

The polynomial p has degree n, and 2^{n} terms when expanded out.

Note: We never need to take powers of a variable greater than 1 , since $x_{i}=x_{i}^{2}$ when $x_{i} \in\{0,1\}$. (We only need to look at multilinear polynomials)

Probabilistic Polynomial

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be any Boolean function on n variables.
Definition (Probabilistic Polynomial)
A probabilistic polynomial over R for f with error ϵ and degree d is a distribution \mathcal{D} of degree- d polynomials over R with the property that for each $x \in\{0,1\}^{n}$,

$$
\operatorname{Pr}_{p \sim \mathcal{D}}[p(x)=f(x)] \geq 1-\epsilon .
$$

Note: The probability is only over the polynomial p, not over the input x.

Probabilistic Polynomial Example: OR over $R=\mathbb{Z}$

[Aspnes, Beigel, Furst, Rudich '93]
Set $S_{0}=\{1,2, \ldots, n\}$ and
construct subsets

$$
S_{0} \supseteq S_{1} \supseteq S_{2} \cdots \supseteq S_{\log _{2}(n)+1}
$$

such that each element of S_{i} is included in S_{i+1} with probability $1 / 2$.
Let $p_{i}(x)=\sum_{j \in S_{i}} x_{j}$.
Our probabilistic polynomial for $O R$ is

$$
p(x)=1-\prod_{i}\left(1-p_{i}(x)\right)
$$

Probabilistic Polynomial Example: OR over $R=\mathbb{Z}$

[Aspnes, Beigel, Furst, Rudich '93]

Set $S_{0}=\{1,2, \ldots, n\}$ and construct subsets

$$
S_{0} \supseteq S_{1} \supseteq S_{2} \cdots \supseteq S_{\log _{2}(n)+1}
$$

such that each element of S_{i} is included in S_{i+1} with probability $1 / 2$.
Let $p_{i}(x)=\sum_{j \in S_{i}} x_{j}$.
Our probabilistic polynomial for $O R$ is

$$
p(x)=1-\prod_{i}\left(1-p_{i}(x)\right)
$$

- If $x=(0, \ldots, 0)$, then $p_{j}(x) \equiv 0$ and $p(x)=0$.
- If $x \neq(0, \ldots, 0)$ then we want there to be a j such that $p_{j}(x)=1$ with some (constant) probability.

Probabilistic Polynomial Example: OR over $R=\mathbb{Z}$

[Aspnes, Beigel, Furst, Rudich ‘93]

Set $S_{0}=\{1,2, \ldots, n\}$ and construct subsets

$$
S_{0} \supseteq S_{1} \supseteq S_{2} \cdots \supseteq S_{\log _{2}(n)+1}
$$

such that each element of S_{i} is included in S_{i+1} with probability $1 / 2$.
Let $p_{i}(x)=\sum_{j \in S_{i}} x_{j}$.
Our probabilistic polynomial for $O R$ is

$$
p(x)=1-\prod_{i}\left(1-p_{i}(x)\right)
$$

- If $x=(0, \ldots, 0)$, then $p_{j}(x) \equiv 0$ and $p(x)=0$.
- If $x \neq(0, \ldots, 0)$ then we want there to be a j such that $p_{j}(x)=1$ with some (constant) probability.

Probabilistic Polynomial Example: OR over $R=\mathbb{Z}$

[Aspnes, Beigel, Furst, Rudich '93]

Set $S_{0}=\{1,2, \ldots, n\}$ and construct subsets

$$
S_{0} \supseteq S_{1} \supseteq S_{2} \cdots \supseteq S_{\log _{2}(n)+1}
$$

such that each element of S_{i} is included in S_{i+1} with probability $1 / 2$.
Let $p_{i}(x)=\sum_{j \in S_{i}} x_{j}$.
Our probabilistic polynomial for $O R$ is

$$
p(x)=1-\prod_{i}\left(1-p_{i}(x)\right)
$$

- If $x=(0, \ldots, 0)$, then $p_{j}(x) \equiv 0$ and $p(x)=0$.
- If $x \neq(0, \ldots, 0)$ then we want there to be a j such that $p_{j}(x)=1$ with some (constant) probability.

Probabilistic Polynomial Example: OR over $R=\mathbb{Z}$

[Aspnes, Beigel, Furst, Rudich '93]

Set $S_{0}=\{1,2, \ldots, n\}$ and construct subsets

$$
S_{0} \supseteq S_{1} \supseteq S_{2} \cdots \supseteq S_{\log _{2}(n)+1}
$$

such that each element of S_{i} is included in S_{i+1} with probability $1 / 2$.
Let $p_{i}(x)=\sum_{j \in S_{i}} x_{j}$.
Our probabilistic polynomial for $O R$ is

$$
p(x)=1-\prod_{i}\left(1-p_{i}(x)\right)
$$

- If $x=(0, \ldots, 0)$, then $p_{j}(x) \equiv 0$ and $p(x)=0$.
- If $x \neq(0, \ldots, 0)$ then we want there to be a j such that $p_{j}(x)=1$ with some (constant) probability.

Probabilistic Polynomial Example: OR over $R=\mathbb{Z}$

[Aspnes, Beigel, Furst, Rudich '93]

Set $S_{0}=\{1,2, \ldots, n\}$ and construct subsets

$$
S_{0} \supseteq S_{1} \supseteq S_{2} \cdots \supseteq S_{\log _{2}(n)+1}
$$

such that each element of S_{i} is included in S_{i+1} with probability $1 / 2$.
Let $p_{i}(x)=\sum_{j \in S_{i}} x_{j}$.
Our probabilistic polynomial for $O R$ is

$$
p(x)=1-\prod_{i}\left(1-p_{i}(x)\right)
$$

- If $x=(0, \ldots, 0)$, then $p_{j}(x) \equiv 0$ and $p(x)=0$.
- If $x \neq(0, \ldots, 0)$ then we want there to be a j such that $p_{j}(x)=1$ with some (constant) probability.

Probabilistic Polynomial Example: OR over $R=\mathbb{Z}$

[Aspnes, Beigel, Furst, Rudich '93]
Set $S_{0}=\{1,2, \ldots, n\}$ and
construct subsets

$$
S_{0} \supseteq S_{1} \supseteq S_{2} \cdots \supseteq S_{\log _{2}(n)+1}
$$

such that each element of S_{i} is included in S_{i+1} with probability $1 / 2$.
Let $p_{i}(x)=\sum_{j \in S_{i}} x_{j}$.
Our probabilistic polynomial for OR is

$$
p(x)=1-\prod_{i}\left(1-p_{i}(x)\right)
$$

- $O(\log (n))$ degree polynomial for OR with $\epsilon=2 / 3$.
- Can augment to degree $O(\log (n) \log (1 / \epsilon))$ for any $\epsilon>0$ (use the fact that the error is one-sided).

Probabilistic Polynomials for MAJORITY

Notation: For $x \in\{0,1\}^{n}$, write $|x|=\sum_{i=1}^{n} x_{i}$.
$\operatorname{MAJORITY}(x)=1$ iff $|x| \geq n / 2$.

Probabilistic Polynomials for MAJORITY

Notation: For $x \in\{0,1\}^{n}$, write $|x|=\sum_{i=1}^{n} x_{i}$.
$\operatorname{MAJORITY}(x)=1$ iff $|x| \geq n / 2$.
Theorem (Razborov, Smolensky '87)
A probabilistic polynomial with ϵ error for MAJORITY requires degree $\Omega(\sqrt{n \log (1 / \epsilon)})$.

Probabilistic Polynomials for MAJORITY

Notation: For $x \in\{0,1\}^{n}$, write $|x|=\sum_{i=1}^{n} x_{i}$.
$\operatorname{MAJORITY}(x)=1$ iff $|x| \geq n / 2$.
Theorem (Razborov, Smolensky '87)
A probabilistic polynomial with ϵ error for MAJORITY requires degree $\Omega(\sqrt{n \log (1 / \epsilon)})$.

Theorem (AW '15)
There is a probabilistic polynomial for MAJORITY on n variables with error ϵ and degree $O(\sqrt{n \log (1 / \epsilon)})$.

Probabilistic Polynomials for MAJORITY

Notation: For $x \in\{0,1\}^{n}$, write $|x|=\sum_{i=1}^{n} x_{i}$.
$\operatorname{MAJORITY}(x)=1$ iff $|x| \geq n / 2$.
Theorem (Razborov, Smolensky '87)
A probabilistic polynomial with ϵ error for MAJORITY requires degree $\Omega(\sqrt{n \log (1 / \epsilon)})$.

Theorem (AW '15)
There is a probabilistic polynomial for MAJORITY on n variables with error ϵ and degree $O(\sqrt{n \log (1 / \epsilon)})$.

We will actually look at the threshold function:
$T H_{\theta}(x)=1$ iff $|x| / n \geq \theta$. In particular, MAJORITY $=T H_{1 / 2}$.

THRESHOLD: Recursive Intuition

Two cases depending on how close $|x| / n$ is to θ (whether or not it is within $\delta=\Theta(\sqrt{\log (1 / \epsilon) / n}))$:

THRESHOLD: Recursive Intuition

Two cases depending on how close $|x| / n$ is to θ (whether or not it is within $\delta=\Theta(\sqrt{\log (1 / \epsilon) / n}))$:

- If $|x| / n \notin[\theta-\delta, \theta+\delta]$, then if we construct a new smaller vector \tilde{x} by sampling $1 / 10$ of the entries of x, it is likely that $|\tilde{x}| /(n / 10)$ lies on the same side of θ as $|x| / n$ (by Chernoff-Hoeffding).

THRESHOLD: Recursive Intuition

Two cases depending on how close $|x| / n$ is to θ (whether or not it is within $\delta=\Theta(\sqrt{\log (1 / \epsilon) / n}))$:

- If $|x| / n \notin[\theta-\delta, \theta+\delta]$, then if we construct a new smaller vector \tilde{x} by sampling $1 / 10$ of the entries of x, it is likely that $|\tilde{x}| /(n / 10)$ lies on the same side of θ as $|x| / n$ (by Chernoff-Hoeffding).
- If $|x| / n \in[\theta-\delta, \theta+\delta]$, we can use an exact polynomial of degree $O(n \delta)=O(\sqrt{n \log (1 / \epsilon)})$ (by polynomial interpolation) that is guaranteed to give the correct answer.

THRESHOLD: Recursive Intuition

Two cases depending on how close $|x| / n$ is to θ (whether or not it is within $\delta=\Theta(\sqrt{\log (1 / \epsilon) / n}))$:

- If $|x| / n \notin[\theta-\delta, \theta+\delta]$, then if we construct a new smaller vector \tilde{x} by sampling $1 / 10$ of the entries of x, it is likely that $|\tilde{x}| /(n / 10)$ lies on the same side of θ as $|x| / n$ (by Chernoff-Hoeffding).
- If $|x| / n \in[\theta-\delta, \theta+\delta]$, we can use an exact polynomial of degree $O(n \delta)=O(\sqrt{n \log (1 / \epsilon)})$ (by polynomial interpolation) that is guaranteed to give the correct answer.
- To decide which of the two cases we are in, we can use $T H_{\theta+\delta}(\tilde{x})$ and $T H_{\theta-\delta}(\tilde{x})$.

From Probabilistic Polynomial to Hamming Distance Algorithm

Given an efficient (small number of monomials) polynomial, we can evaluate it on many points quickly:

Lemma (R. Williams '14)
Given a polynomial $P\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots, y_{d}\right)$ with at most $n^{0.17}$ monomials, and two sets of n inputs $A=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq\{0,1\}^{d}$, $B=\left\{b_{1}, \ldots, b_{n}\right\} \subseteq\{0,1\}^{d}$, we can evaluate P on all pairs $\left(a_{i}, b_{j}\right) \in A \times B$ in $\tilde{O}\left(n^{2}\right)$ time.

From Probabilistic Polynomial to Hamming Distance Algorithm

Given an efficient (small number of monomials) polynomial, we can evaluate it on many points quickly:
Lemma (R. Williams '14)
Given a polynomial $P\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots, y_{d}\right)$ with at most $n^{0.17}$ monomials, and two sets of n inputs $A=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq\{0,1\}^{d}$, $B=\left\{b_{1}, \ldots, b_{n}\right\} \subseteq\{0,1\}^{d}$, we can evaluate P on all pairs $\left(a_{i}, b_{j}\right) \in A \times B$ in $\tilde{O}\left(n^{2}\right)$ time.

- Beats the trivial runtime of $\Omega\left(n^{2.17}\right)$ time.
- Since we want a subquadratic algorithm, we can't just let A, B be our sets of vectors.
- Instead, group our vectors into n / s groups of size s. Each element of A or B will correspond to a group.

Hamming distance subproblem

We will use this to solve the following sub-problem of Batch HNN:
Definition (Hamming distance problem)
Given an integer k and two collections of s vectors of dimension d as input, output 1 iff there is a pair of vectors (one from each collection) with Hamming distance at most k.

Polynomial for Hamming distance problem over \mathbb{F}_{2}

- Let x_{1}, \ldots, x_{s} and y_{1}, \ldots, y_{s} be the two collections of vectors. We will write $x_{i, j}$ for the j th variable of vector x_{i}.

Polynomial for Hamming distance problem over \mathbb{F}_{2}

- Let x_{1}, \ldots, x_{s} and y_{1}, \ldots, y_{s} be the two collections of vectors. We will write $x_{i, j}$ for the j th variable of vector x_{i}.
- Let \mathcal{D}_{d} be the probabilistic polynomial of degree $O(\sqrt{d \log (1 / \epsilon)})$ for the threshold function $T H_{(k+1) / d}$ on d inputs. Sample $p \sim \mathcal{D}_{d}$ with error $\epsilon=1 / s^{3}$.

Polynomial for Hamming distance problem over \mathbb{F}_{2}

- Let x_{1}, \ldots, x_{s} and y_{1}, \ldots, y_{s} be the two collections of vectors. We will write $x_{i, j}$ for the j th variable of vector x_{i}.
- Let \mathcal{D}_{d} be the probabilistic polynomial of degree $O(\sqrt{d \log (1 / \epsilon)})$ for the threshold function $T H_{(k+1) / d}$ on d inputs. Sample $p \sim \mathcal{D}_{d}$ with error $\epsilon=1 / s^{3}$.
- Choose a uniform random subset $R \subseteq\{1,2, \ldots, s\}^{2}$

Polynomial for Hamming distance problem over \mathbb{F}_{2}

- Let x_{1}, \ldots, x_{s} and y_{1}, \ldots, y_{s} be the two collections of vectors. We will write $x_{i, j}$ for the j th variable of vector x_{i}.
- Let \mathcal{D}_{d} be the probabilistic polynomial of degree $O(\sqrt{d \log (1 / \epsilon)})$ for the threshold function $T H_{(k+1) / d}$ on d inputs. Sample $p \sim \mathcal{D}_{d}$ with error $\epsilon=1 / s^{3}$.
- Choose a uniform random subset $R \subseteq\{1,2, \ldots, s\}^{2}$

Our polynomial is:

$$
q\left(x_{1}, y_{1}, \ldots, x_{s}, y_{s}\right):=\sum_{(i, j) \in R}\left(1+p\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)\right) .
$$

Polynomial for Hamming distance problem over \mathbb{F}_{2} :

Correctness

$$
q\left(x_{1}, y_{1}, \ldots, x_{s}, y_{s}\right):=\sum_{(i, j) \in R}\left(1+p\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)\right) .
$$

- Since we are working over \mathbb{F}_{2}, the number of 1 s in the vector $\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)$ is the Hamming distance between x_{i} and y_{j}.

Polynomial for Hamming distance problem over \mathbb{F}_{2} :

Correctness

$$
q\left(x_{1}, y_{1}, \ldots, x_{s}, y_{s}\right):=\sum_{(i, j) \in R}\left(1+p\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)\right) .
$$

- Since we are working over \mathbb{F}_{2}, the number of 1 s in the vector $\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)$ is the Hamming distance between x_{i} and y_{j}.
- $1+p\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)$ is 1 iff x_{i} and y_{j} have Hamming distance at most k (assuming p is correct)

Polynomial for Hamming distance problem over \mathbb{F}_{2} :

Correctness

$$
q\left(x_{1}, y_{1}, \ldots, x_{s}, y_{s}\right):=\sum_{(i, j) \in R}\left(1+p\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)\right) .
$$

- Since we are working over \mathbb{F}_{2}, the number of 1 s in the vector $\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)$ is the Hamming distance between x_{i} and y_{j}.
- $1+p\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)$ is 1 iff x_{i} and y_{j} have Hamming distance at most k (assuming p is correct)
- If all the x_{i} and y_{j} have Hamming distance $>k$, then the sum is 0 . Otherwise, it is 0 or 1 with $1 / 2$ chance each (based on our choice of R)

Polynomial for Hamming distance problem over \mathbb{F}_{2} :

Correctness

$$
q\left(x_{1}, y_{1}, \ldots, x_{s}, y_{s}\right):=\sum_{(i, j) \in R}\left(1+p\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)\right) .
$$

- Since we are working over \mathbb{F}_{2}, the number of 1 s in the vector $\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)$ is the Hamming distance between x_{i} and y_{j}.
- $1+p\left(x_{i, 1}+y_{j, 1}, \ldots, x_{i, d}+y_{j, d}\right)$ is 1 iff x_{i} and y_{j} have Hamming distance at most k (assuming p is correct)
- If all the x_{i} and y_{j} have Hamming distance $>k$, then the sum is 0 . Otherwise, it is 0 or 1 with $1 / 2$ chance each (based on our choice of R)
- Since the error is one-sided, we can amplify to get as high a success probability as we want.

Solving Batch Hamming Nearest Neighbor

Two more steps:

- Hamming distance problem (is there a pair with distance $\leq k$) polynomial \Rightarrow algorithm.
- Hamming distance problem algorithm \Rightarrow Batch Hamming nearest neighbor (for each vector, find its nearest neighbor) algorithm.

Hamming distance problem polynomial \Rightarrow algorithm

Lemma
Given a threshold k, and subsets $R, B \subseteq\{0,1\}^{d}$ with $|R|=|B|=n$ and $d=c \log n$, we can find $a v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1 / O\left(c \log ^{2} c\right)}$ (or determine that none exist).

Hamming distance problem polynomial \Rightarrow algorithm

Lemma
Given a threshold k, and subsets $R, B \subseteq\{0,1\}^{d}$ with $|R|=|B|=n$ and $d=c \log n$, we can find $a v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1 / O\left(c \log ^{2} c\right)}$ (or determine that none exist).

- Partition each of R and B into n / s groups of size $s=n^{1 / O\left(c \log ^{2} c\right)}$.

Hamming distance problem polynomial \Rightarrow algorithm

Lemma
Given a threshold k, and subsets $R, B \subseteq\{0,1\}^{d}$ with $|R|=|B|=n$ and $d=c \log n$, we can find $a v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1 / O\left(c \log ^{2} c\right)}$ (or determine that none exist).

- Partition each of R and B into n / s groups of size $s=n^{1 / O\left(c \log ^{2} c\right)}$.
- Our probabilistic polynomial on each group has degree $O(\sqrt{d \log s})$. Hence the number of monomials is $\left(\frac{2 d}{d \log s}\right)$, which is $\leq n^{0.17}$ for a suitable choice of constants.

Hamming distance problem polynomial \Rightarrow algorithm

Lemma
Given a threshold k, and subsets $R, B \subseteq\{0,1\}^{d}$ with $|R|=|B|=n$ and $d=c \log n$, we can find $a v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1 / O\left(c \log ^{2} c\right)}$ (or determine that none exist).

- Partition each of R and B into n / s groups of size $s=n^{1 / O\left(c \log ^{2} c\right)}$.
- Our probabilistic polynomial on each group has degree $O(\sqrt{d \log s})$. Hence the number of monomials is $\left(\frac{2 d}{d \log s}\right)$, which is $\leq n^{0.17}$ for a suitable choice of constants.
- Using the fast evaluation lemma, we can evaluate on all pairs of groups in $n^{2-1 / O\left(c \log ^{2} c\right)}$ time.

Hamming distance problem polynomial \Rightarrow algorithm

Lemma
Given a threshold k, and subsets $R, B \subseteq\{0,1\}^{d}$ with $|R|=|B|=n$ and $d=c \log n$, we can find $a v \in R$ and $u \in B$ whose Hamming distance is $\leq k$ in time $n^{2-1 / O\left(c \log ^{2} c\right)}$ (or determine that none exist).

- Partition each of R and B into n / s groups of size $s=n^{1 / O\left(c \log ^{2} c\right)}$.
- Our probabilistic polynomial on each group has degree $O(\sqrt{d \log s})$. Hence the number of monomials is $\left(\frac{2 d}{d \log s}\right)$, which is $\leq n^{0.17}$ for a suitable choice of constants.
- Using the fast evaluation lemma, we can evaluate on all pairs of groups in $n^{2-1 / O\left(c \log ^{2} c\right)}$ time.
- Brute force within a pair of groups which has a close pair to find the vectors.

Hamming distance problem algorithm \Rightarrow Batch Hamming

 nearest neighbor
Lemma

If the Hamming distance problem can be solved in $T(n, d)$ time, then the Batch Hamming nearest neighbor problem can be solved in $O(n d T(\sqrt{n}, d))$ time.

Hamming distance problem algorithm \Rightarrow Batch Hamming

 nearest neighbor
Lemma

If the Hamming distance problem can be solved in $T(n, d)$ time, then the Batch Hamming nearest neighbor problem can be solved in $O(n d T(\sqrt{n}, d))$ time.

- Partition each of D and Q into n / s groups of size $s=\sqrt{n}$.
- For k from $0,1,2, \ldots, d-1$:
- Call the Hamming distance problem algorithm on each pair of a group from D and a group from Q. If a pair $(u, v) \in Q \times D$ is found, then v is a nearest neighbor for u. Remove u from Q and continue.
- There are at most n calls that do not return a vector pair for each k, so $d n$ total such calls.
- There are at most n calls that return a vector pair since we remove each vector from Q once we find a pair for it.

Putting it all together

Combining our lemmas yields:
Theorem (AW '15)
Let $D \subseteq\{0,1\}^{d}$ be a database of n vectors of dimension $d=c \log n$, where c can be a function of n. Any batch of n Hamming nearest neighbor queries on D can be answered in randomized $n^{2-1 / O\left(c \log ^{2} c\right)}$ time, whp.

Future Work?

Future Work?

- Better dependence on c in the exponent
- A similar 'Polynomial Method’ algorithm for Orthogonal Vectors has runtime $n^{2-1 / O(\log c)}$.

Future Work?

- Better dependence on c in the exponent
- A similar 'Polynomial Method' algorithm for Orthogonal Vectors has runtime $n^{2-1 / O(\log c)}$.
- Use the 'Polynomial Method' for other problems
- Has already been used for APSP, OV, SAT, CSPs, string matching...

Future Work?

- Better dependence on c in the exponent
- A similar 'Polynomial Method' algorithm for Orthogonal Vectors has runtime $n^{2-1 / O(\log c)}$.
- Use the 'Polynomial Method' for other problems
- Has already been used for APSP, OV, SAT, CSPs, string matching...
- Derandomize the MAJORITY probabilistic polynomial
- Timothy Chan and Ryan Williams derandomized most 'Polynomial Method' algorithms at SODA'16.
- Would also give circuit lower bounds (e.g. for $T H R \circ T H R$ circuits)

Future Work?

- Better dependence on c in the exponent
- A similar 'Polynomial Method' algorithm for Orthogonal Vectors has runtime $n^{2-1 / O(\log c)}$.
- Use the 'Polynomial Method' for other problems
- Has already been used for APSP, OV, SAT, CSPs, string matching...
- Derandomize the MAJORITY probabilistic polynomial
- Timothy Chan and Ryan Williams derandomized most 'Polynomial Method' algorithms at SODA'16.
- Would also give circuit lower bounds (e.g. for THR $\circ T H R$ circuits)
- Other ways to quickly evaluate polynomials
- Feels strange to use matrix multiplication instead of FFT
- That said, fast MM used here is not necessarily impractical!

