Approximate Voronoi Diagrams: Techniques, tools, and applications to k th ANN search

Nirman Kumar

University of California, Santa-Barbara
January 13th, 2016

Similarity Search

?

Need similarity search to make sense of the world!

When an appropriate metric is defined

Similarity search reduces to NN search

Nearest neighbor search

Set of points P : find quickly for a query q, the closest point to q in P

Nearest neighbor search

Also important in other domains

Approximate nearest neighbor search (ANN)

Find any point x with
 $$
d(q, x) \leq(1+\varepsilon) d_{1}(q, P)
$$

Space partitioning

Most data structures for NN (or ANN) search partition space

Space partitioning

In low dimensions this is an explicit paritioning

Space partitioning

In high dimensions the partitioning is implicit (via hash functions)

Voronoi diagrams

Voronoi diagrams

Very efficient in dimensions $d \leq 2$

Voronoi diagrams

Performance degrades sharply bad even for $d=3$

This talk

- Construction of Approximate Voronoi Diagrams
- Tools used - Quadtrees, WSPD
- Construction of AVD for k th ANN
- Some open problems

Approximate Voronoi Diagrams (AVD)

A space partition as before

Approximate Voronoi Diagrams (AVD)

With each region is associated 1 rep (a point of P)

Approximate Voronoi Diagrams (AVD)

This rep is a valid ANN for any q in region

Main ideas behind ANN search and AVDs

- If the query point is "far" any point is a good ANN
- A region can be approximated well by cubes
- Point location can be done in a set of cubes efficiently

Tool 1: Quadtrees
A quadtree - intuitively

Tool 1: Quadtrees

A quadtree on points

Tool 1: Quadtrees

The compressed version

Tool 1: Quadtrees

Point Location \equiv find leaf node containing a point

Tool 1: Quadtrees

Height h : $O(\log h)$ time $O(\log \log n)$ for balanced tree!

Tool 1: Quadtrees

But height not bounded as function of n

Tool 1: Quadtrees

Use compressed quadtree height bounded by $O(n)$

Tool 2: Well separated pairs decomposition

How many distances among points - $\Omega\left(n^{2}\right)$

Tool 2: Well separated pairs decomposition

What if distances within ($1 \pm \varepsilon$) are considered the same?

Tool 2: Well separated pairs decomposition

About $O\left(n / \varepsilon^{d}\right)$ different distinct distances upto ($1 \pm \varepsilon$)

Tool 2: Well separated pairs decomposition

- How can we represent them?
- Given a pair of points, which bucket does it belong to?

Tool 2: Well separated pairs decomposition

The WSPD data structure captures this

Tool 2: Well separated pairs decomposition

More formally

- A collection of pairs $A_{i}, B_{i} \subset P$
- $A_{i} \cap B_{i}=\emptyset$
- Every pair of points is separated by some A_{i}, B_{i}
- Each pair A_{i}, B_{i} is well separated

Tool 2: Well separated pairs decomposition

A well separated pair is a dumbbell

Tool 2: Well separated pairs decomposition

WSPD example

Tool 2: Well separated pairs decomposition

Main result about WSPDs

There is a ε^{-1}-WSPD of size $O\left(n \varepsilon^{-d}\right)$ - It can be constructed in $O\left(n \log n+n \varepsilon^{-d}\right)$ time

AVD results

The main result

- $O\left(n / \varepsilon^{d}\right)$ cells
- Query time - $O(\log (n / \varepsilon))$

The AVD algorithm

Construct a 8 -WSPD for the point set

The AVD algorithm

Let $\left(A_{i}, B_{i}\right)$ for $i=1, \ldots, m$ be the pairs

The AVD algorithm

For each pair do some processing - output some cells

The AVD algorithm

Preprocess them for point location

The AVD algorithm

So what is the processing per pair?

The AVD algorithm

Consider a WSPD dumbbell

The AVD algorithm

Concentric balls increasing radii - $r / 4$ to $\approx r / \varepsilon$

The AVD algorithm

Tile each ball $(\operatorname{rad} x)$ by cubes of size $\approx \varepsilon x$

The AVD algorithm

Store the ε / c ANN for some point in each cell

So why does it work?

Every pair of competing points is resolved

So why does it work?

p_{1}, p_{2} resolved by the WSPD pair separating them

So why does it work?

Bounding the AVD complexity

The shown method gives $O\left(n / \varepsilon^{d} \log 1 / \varepsilon\right)$ cubes

Bounding the AVD complexity

This can be improved to $O\left(n / \varepsilon^{d}\right)$

k th ANN search

Given q output a point $u \in P$ such that:

$$
(1-\varepsilon) d_{k}(q, P) \leq d(q, u) \leq(1+\varepsilon) d_{k}(q, P)
$$

Applications of k th ANN search

- Density estimation
- Functions of the form : $F(q)=\sum_{i=1}^{k} f\left(d_{i}(q, P)\right)$
- k th ANN on balls

Applications of k th ANN search

Density estimation

The result

AVD for k th ANN

- $O\left((n / k) \varepsilon^{-d} \log 1 / \varepsilon\right)$ cells
- Query time - $O(\log (n /(k \varepsilon)))$

Quorum clustering

Quorum clustering

-

Find smallest ball containing k points

Quorum clustering

Find smallest ball containing k points

Quorum clustering

Remove points and repeat

Quorum clustering

A way to summarize points

Quorum clustering

Has properties favorable for k th ANN problem

Quorum clustering

Quorum clustering too expensive to compute

Quorum clustering

Can compute approximate quorum clustering

Quorum clustering

- Computed in: $O\left(n \log ^{d} n\right)$ time in \mathbb{R}^{d} [Carmi, Dolev, Har-Peled, Katz and Segal, 2005]
- Computed in: $O(n \log n)$ time in \mathbb{R}^{d} [Har-Peled and K., 2012]

Why is quorum clustering useful

- $x=d_{k}(q, P)$
- $r_{1} \leq x$
- $x+r_{1} \geq d\left(q, c_{1}\right) \Longrightarrow d\left(q, c_{1}\right) \leq 2 x$
- $x \leq d\left(q, c_{1}\right)+r_{1} \leq 3 x$

Refining the approximation

Just as in AVDs generate a list of cells

Refining the approximation

Refining the approximation

Refining the approximation

For closest ball use ANN data structure in \mathbb{R}^{d+1}

Refining the approximation

$$
b=b(c, r) \rightarrow(c, r) \in \mathbb{R}^{d+1}
$$

Refining the approximation

Some cells generated by AVD for ball centers

Refining the approximation

Store some info with each cell

Refining the approximation

A k th ANN, and approximate closest ball

Open problems

- In high dimensions, is there a data structure for k th NN whose space requirement is $f(n / k)$?
- There is an AVD for weighted ANN similar to AVD as shown - is there an extension to weighted k th ANN?

