Approximate Voronoi Diagrams: Techniques, tools, and applications to kth ANN search

Nirman Kumar

University of California, Santa-Barbara

January 13th, 2016

Similarity Search

Need similarity search to make sense of the world!

When an appropriate metric is defined

Similarity search reduces to NN search

Nearest neighbor search

Set of points P: find quickly for a query q, the closest point to q in P

Nearest neighbor search

Also important in other domains

Approximate nearest neighbor search (ANN)

Find any point x with $d(q, x) \leq (1 + \varepsilon)d_1(q, P)$

Space partitioning

Most data structures for NN (or ANN) search partition space

Space partitioning

In low dimensions this is an explicit paritioning

Space partitioning

In high dimensions the partitioning is implicit (via hash functions)

Voronoi diagrams

Voronoi diagrams

Very efficient in dimensions $d \leq 2$

Voronoi diagrams

Performance degrades sharply - bad even for d = 3

This talk

- Construction of Approximate Voronoi Diagrams
- ► Tools used Quadtrees, WSPD
- ► Construction of AVD for *k*th ANN
- ▶ Some open problems

Approximate Voronoi Diagrams (AVD)

A space partition as before

Approximate Voronoi Diagrams (AVD)

With each region is associated 1 rep (a point of P)

Approximate Voronoi Diagrams (AVD)

This rep is a valid ANN for any q in region

Main ideas behind ANN search and AVDs

- ► If the query point is "far" any point is a good ANN
- A region can be approximated well by cubes
- Point location can be done in a set of cubes efficiently

A quadtree - intuitively

 $[0,1]\times [0,1]$

A quadtree on points

The compressed version

Point Location \equiv find leaf node containing a point

Height $h: O(\log h)$ time - $O(\log \log n)$ for balanced tree!

But height not bounded as function of n

Use compressed quadtree - height bounded by O(n)

How many distances among points - $\Omega(n^2)$

What if distances within $(1 \pm \varepsilon)$ are considered the same?

About $O(n/\varepsilon^d)$ different distinct distances upto $(1 \pm \varepsilon)$

• How can we represent them?

• Given a pair of points, which bucket does it belong to?

The WSPD data structure captures this

More formally

- A collection of pairs $A_i, B_i \subset P$
- $\blacktriangleright A_i \cap B_i = \emptyset$
- Every pair of points is separated by some A_i, B_i
- Each pair A_i, B_i is well separated

A well separated pair is a dumbbell

Tool 2: Well separated pairs decomposition WSPD example

Main result about WSPDs

There is a ε^{-1} -WSPD of size $O(n\varepsilon^{-d})$ - It can be constructed in $O(n \log n + n\varepsilon^{-d})$ time

The main result

- ▶ $O(n/\varepsilon^d)$ cells
- Query time $O(\log(n/\varepsilon))$

The AVD algorithm

Construct a 8-WSPD for the point set

The AVD algorithm

Let (A_i, B_i) for i = 1, ..., m be the pairs
For each pair do some processing - output some cells

Preprocess them for point location

So what is the processing per pair?

Consider a WSPD dumbbell

Concentric balls increasing radii - r/4 to $\approx r/\varepsilon$

Tile each ball (rad x) by cubes of size $\approx \varepsilon x$

Store the ε/c ANN for some point in each cell

Every pair of competing points is resolved

p_1, p_2 resolved by the WSPD pair separating them

Bounding the AVD complexity

The shown method gives $O(n/\varepsilon^d \log 1/\varepsilon)$ cubes

Bounding the AVD complexity

This can be improved to $O(n/\varepsilon^d)$

Given q output a point $u \in P$ such that: $(1 - \varepsilon)d_k(q, P) \le d(q, u) \le (1 + \varepsilon)d_k(q, P)$

Applications of kth ANN search

Density estimation

• Functions of the form : $F(q) = \sum_{i=1}^{k} f(d_i(q, P))$

▶ *k*th ANN on balls

Applications of kth ANN search

Density estimation

The result

AVD for kth ANN

•
$$O((n/k)\varepsilon^{-d}\log 1/\varepsilon)$$
 cells

• Query time -
$$O(\log(n/(k\varepsilon)))$$

Find smallest ball containing k points

Find smallest ball containing k points

A way to summarize points

Has properties favorable for kth ANN problem

Quorum clustering too expensive to compute

Can compute approximate quorum clustering

- ▶ Computed in: $O(n \log^d n)$ time in \mathbb{R}^d [Carmi, Dolev, Har-Peled, Katz and Segal, 2005]
- ▶ Computed in: $O(n \log n)$ time in \mathbb{R}^d [Har-Peled and K., 2012]

Why is quorum clustering useful

- $\blacktriangleright \ x = d_k(q, P)$
- $r_1 \leq x$
- $\blacktriangleright \ x + r_1 \ge d(q, c_1) \implies d(q, c_1) \le 2x$
- $\bullet \ x \le d(q, c_1) + r_1 \le 3x$

Refining the approximation

Just as in AVDs generate a list of cells

Refining the approximation

For closest ball use ANN data structure in \mathbb{R}^{d+1}

$b = b(c, r) \to (c, r) \in \mathbb{R}^{d+1}$

Some cells generated by AVD for ball centers

Store some info with each cell

A kth ANN, and approximate *closest* ball

Open problems

- ▶ In high dimensions, is there a data structure for kth NN whose space requirement is f(n/k)?
- There is an AVD for weighted ANN similar to AVD as shown - is there an extension to weighted kth ANN?