
Approximate Voronoi Diagrams: Techniques, tools,
and applications to kth ANN search

Nirman Kumar

University of California, Santa-Barbara

January 13th, 2016



Similarity Search

?

Need similarity search to make sense of the world!



When an appropriate metric is defined

Similarity search reduces to NN
search



Nearest neighbor search

Set of points P : find quickly for a
query q, the closest point to q in

P



Nearest neighbor search

Also important in other domains



Approximate nearest neighbor search (ANN)

Find any point x with
d(q, x) ≤ (1 + ε)d1(q, P )



Space partitioning

Most data structures for NN (or
ANN) search partition space



Space partitioning

In low dimensions this is an
explicit paritioning



Space partitioning

In high dimensions the
partitioning is implicit (via hash

functions)



Voronoi diagrams



Voronoi diagrams

Very efficient in dimensions d ≤ 2



Voronoi diagrams

Performance degrades sharply -
bad even for d = 3



This talk

I Construction of Approximate Voronoi
Diagrams

I Tools used - Quadtrees, WSPD

I Construction of AVD for kth ANN

I Some open problems



Approximate Voronoi Diagrams (AVD)

A space partition as before



Approximate Voronoi Diagrams (AVD)

With each region is associated 1
rep (a point of P )



Approximate Voronoi Diagrams (AVD)

This rep is a valid ANN for any q
in region



Main ideas behind ANN search and AVDs

I If the query point is “far” any point is a
good ANN

I A region can be approximated well by cubes

I Point location can be done in a set of cubes
efficiently



Tool 1: Quadtrees

A quadtree - intuitively

[0, 1]× [0, 1]



Tool 1: Quadtrees

A quadtree on points

a

b

c

d

e

f

g
h

i

a

c

b d

i

g h

e f



Tool 1: Quadtrees

The compressed version

a

b

c

d

e

f

g
h

i

a

c

b d

i

g h

e f



Tool 1: Quadtrees

Point Location ≡ find leaf node
containing a point



Tool 1: Quadtrees

Height h: O(log h) time -
O(log log n) for balanced tree!



Tool 1: Quadtrees

But height not bounded as
function of n



Tool 1: Quadtrees

Use compressed quadtree -
height bounded by O(n)



Tool 2: Well separated pairs decomposition

How many distances among
points - Ω(n2)



Tool 2: Well separated pairs decomposition

What if distances within (1± ε)
are considered the same?



Tool 2: Well separated pairs decomposition

About O(n/εd) different distinct
distances upto (1± ε)



Tool 2: Well separated pairs decomposition

I How can we represent them?

I Given a pair of points, which
bucket does it belong to?



Tool 2: Well separated pairs decomposition

The WSPD data structure
captures this



Tool 2: Well separated pairs decomposition

More formally

I A collection of pairs Ai, Bi ⊂ P

I Ai ∩Bi = ∅

I Every pair of points is separated by some Ai, Bi

I Each pair Ai, Bi is well separated



Tool 2: Well separated pairs decomposition

A well separated pair is a dumbbell

` ≥ 1/εmax{r1, r2}r1

r2



Tool 2: Well separated pairs decomposition

WSPD example

a

a b

c

d e

f

b c

d f e

a

b c

d f e

A1 = {a, b, c}, B1 = {e}
A1 = {a}, B1 = {b, c}

...



Tool 2: Well separated pairs decomposition

Main result about WSPDs

There is a ε−1-WSPD of size O(nε−d) - It can be
constructed in O(n log n + nε−d) time



AVD results

The main result

I O(n/εd) cells

I Query time - O(log(n/ε))



The AVD algorithm

Construct a 8-WSPD for the
point set



The AVD algorithm

Let (Ai, Bi) for i = 1, . . . ,m be the
pairs



The AVD algorithm

For each pair do some processing
- output some cells



The AVD algorithm

Preprocess them for point
location



The AVD algorithm

So what is the processing per
pair?



The AVD algorithm

Consider a WSPD dumbbell



The AVD algorithm

Concentric balls increasing radii - r/4 to ≈ r/ε



The AVD algorithm

Tile each ball (rad x) by cubes of size ≈ εx



The AVD algorithm

Store the ε/c ANN for some
point in each cell



So why does it work?

Every pair of competing points is
resolved



So why does it work?

p1, p2 resolved by the WSPD pair
separating them



So why does it work?

p1
p2



So why does it work?

q

p1
p2



So why does it work?

q

p1
p2



So why does it work?

q
p1

p2



Bounding the AVD complexity

The shown method gives
O(n/εd log 1/ε) cubes



Bounding the AVD complexity

This can be improved to O(n/εd)



kth ANN search

Given q output a point u ∈ P such that:

(1− ε)dk(q, P ) ≤ d(q, u) ≤ (1 + ε)dk(q, P )



Applications of kth ANN search

I Density estimation

I Functions of the form : F (q) =
∑k

i=1 f(di(q, P ))

I kth ANN on balls



Applications of kth ANN search

Density estimation

density ≈ #points
area



The result

AVD for kth ANN

I O((n/k)ε−d log 1/ε) cells

I Query time - O(log(n/(kε)))



Quorum clustering



Quorum clustering

Find smallest ball containing k points



Quorum clustering

Find smallest ball containing k points



Quorum clustering

Remove points and repeat



Quorum clustering

Remove points and repeat



Quorum clustering

Remove points and repeat



Quorum clustering

Remove points and repeat



Quorum clustering

Remove points and repeat



Quorum clustering

Remove points and repeat



Quorum clustering

A way to summarize points



Quorum clustering

Has properties favorable for kth ANN problem



Quorum clustering

Quorum clustering too expensive to compute



Quorum clustering

Can compute approximate quorum clustering



Quorum clustering

I Computed in: O(n logd n) time in IRd [Carmi, Dolev,
Har-Peled, Katz and Segal, 2005]

I Computed in: O(n log n) time in IRd [Har-Peled and K.,
2012]



Why is quorum clustering useful

c1c2 c3

r1

r2

r3

q

I x = dk(q, P )

I r1 ≤ x

I x+ r1 ≥ d(q, c1) =⇒ d(q, c1) ≤ 2x

I x ≤ d(q, c1) + r1 ≤ 3x



Refining the approximation

Just as in AVDs generate a list of
cells



Refining the approximation



Refining the approximation



Refining the approximation

For closest ball use ANN data
structure in IRd+1



Refining the approximation

b = b(c, r)→ (c, r) ∈ IRd+1



Refining the approximation

Some cells generated by AVD for
ball centers



Refining the approximation

Store some info with each cell



Refining the approximation

A kth ANN, and approximate
closest ball



Open problems

I In high dimensions, is there a data structure for kth NN
whose space requirement is f(n/k)?

I There is an AVD for weighted ANN similar to AVD as
shown - is there an extension to weighted kth ANN?


