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Nearest neighbor searching
Problem setting

• High dimensions d

• Large data set of size n = 2Ω(d/ log d)

I Smaller n? =⇒ Use JLT to reduce d

• Assumption: Data set lies on the sphere

I Angular NNS in Rd equivalent to Eucl. NNS on the sphere
I Reduction from Eucl. NNS in Rd to Eucl. NNS on the sphere [AR’15]

• “Random” case: c · r =
√
2

I Random unit vectors are usually approximately orthogonal

• Goal: Query time O(nρ) with ρ < 1
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Locality-sensitive hashing
Overview

• Idea: Use nice partitions of the space

I Nearby vectors are often in the same region
I Distant vectors are unlikely to be in the same region

• Precomputation: Store hash tables of vectors per region

I For each region, store contained vectors from data set
I Rerandomization: Many partitions to increase success probability

• Query: Check hash tables for collisions

I Compute target’s region for each hash table
I Check corresponding buckets for potential nearest neighbors
I Reduces search space before doing a linear search
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Hyperplane LSH
[Charikar, STOC’02]
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Overview

• 2 regions induced by each hyperplane
• Simple: one hyperplane corresponds to one inner product
• Fast: k hyperplanes give you 2k regions

For “random” settings, query time O(nρ) with

ρ =
√
2

π ln 2 ·
1
c

(
1 + od ,c(1)

)
.

Efficient but suboptimal as ρ ∝ 1
c2 is achievable
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Cross-Polytope LSH
[Terasawa–Tanaka, WADS’07]

[Andoni et al., NIPS’15]
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Cross-Polytope LSH
Vertices of cross-polytope (simplex)
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• 2d regions in d dimensions
• Advantage: regions same size and more symmetric

For “random” settings, query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)

Essentially optimal for large c and n = 2o(d) [Dub’10, AR’15]
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Spherical/Voronoi LSH
[Andoni et al., SODA’14]

[Andoni–Razenshteyn, STOC’15]
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LSH overview

• Hyperplane LSH: 2 Voronoi cells
I Efficient decoding
I Suboptimal for large d , c

• Cross-Polytope LSH: 2d Voronoi cells
I Reasonably efficient decoding
I Optimal for large c and n = 2o(d)

• Spherical/Voronoi LSH: 2O(
√

d) Voronoi cells
I Slow decoding
I Optimal for large c and n = 2o(d)

1. Can we use even more Voronoi cells?
2. Can decoding be made faster?
3. What about n = 2Ω(d)?
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Structured filters
Techniques

• Idea 1: Increase number of regions to 2Θ(d)

I Number of hash tables increases to 2Θ(d) – ok for n = 2Θ(d)

I Decoding cost potentially too large

• Idea 2: Use structured codes for random regions

I Spherical/Voronoi LSH with dependent random points
I Concatenated code of log d low-dim. spherical codes
I Allows for efficient list-decoding

• Idea 3: Replace partitions with filters

I Relaxation: filters need not partition the space
I Simplified analysis
I Might not be needed to achieve improvement
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Structured filters
Results

For random sparse settings (n = 2o(d)), query time O(nρ) with

ρ = 1
2c2 − 1

(
1 + od(1)

)
.

For random dense settings (n = 2κd with small κ), we obtain

ρ = 1− κ
2c2 − 1

(
1 + od ,κ(1)

)
.

For random dense settings (n = 2κd with large κ), we obtain

ρ = −12κ log
(
1− 1

2c2 − 1

) (
1 + od(1)

)
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Asymmetric nearest neighbors

Previous results: symmetric NNS
• Query time: O(nρ)
• Update time: O(nρ)
• Preprocessing time: O(n1+ρ)
• Space complexity: O(n1+ρ)

Can we get a tradeoff between these costs?
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Asymmetric nearest neighbors
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Asymmetric nearest neighbors
Smaller α =⇒ Larger caps, more work
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Larger α =⇒ Smaller caps, less work
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Asymmetric nearest neighbors
αq > αu =⇒ Faster queries, slower updates
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Asymmetric nearest neighbors
αq < αu =⇒ Slower queries, faster updates
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Asymmetric nearest neighbors
Results

General expressions

Minimize space
(αq/αu = cos θ)

ρq = (2c2 − 1)/c4
ρu = 0

Balance costs
(αq/αu = 1)

ρq = 1/(2c2 − 1)
ρu = 1/(2c2 − 1)

Minimize time
(αq/αu = 1/ cos θ)

ρq = 0
ρu = (2c2 − 1)/(c2 − 1)2

Query time O(nρq), update time O(nρu), preprocessing time O(n1+ρu),
space complexity O(n1+ρu)
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Conclusions

Main result: Allow using more regions with list-decodable codes
• For n = 2o(d), non-asymptotic improvement
• For n = 2Θ(d), asymptotic improvement
• Corollary: Lower bounds for n = 2o(d) do not hold for n = 2Θ(d)

• Improved tradeoffs between query and update complexities

Open problems
• Tradeoff for n = 2o(d) optimal?
• Lower bounds for n = 2Θ(d)?
• Apply similar ideas to other norms?
• Practicality?

Questions?
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