New directions in approximate nearest neighbors for the angular distance

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Proximity Workshop, College Park (MD), USA
(January 13, 2016)

Nearest neighbor searching
$\stackrel{\bullet}{\mathcal{O}}$

Nearest neighbor searching

-

Data set

Nearest neighbor searching

-

Target

\square

TU/e

Nearest neighbor searching

Nearest neighbor

TU/e

Nearest neighbor searching

Nearest neighbor (ℓ_{1}-norm)

TU/e

Nearest neighbor searching

Nearest neighbor (angular distance)

TU/e

Nearest neighbor searching

Nearest neighbor (ℓ_{2}-norm)
-

TU/e

Nearest neighbor searching

Distance guarantee

TU/e

Nearest neighbor searching

Approximate nearest neighbor
-

TU/e

Nearest neighbor searching

Approximation factor $c>1$

\bullet

TU/e

Nearest neighbor searching

Example: Precompute Voronoi cells

-

Nearest neighbor searching

Problem setting

- High dimensions d

Nearest neighbor searching

Problem setting

- High dimensions d
- Large data set of size $n=2^{\Omega(d / \log d)}$
- Smaller n ? \Longrightarrow Use JLT to reduce d

Nearest neighbor searching

Problem setting

- High dimensions d
- Large data set of size $n=2^{\Omega(d / \log d)}$
- Smaller n ? \Longrightarrow Use JLT to reduce d
- Assumption: Data set lies on the sphere
- Angular NNS in \mathbb{R}^{d} equivalent to Eucl. NNS on the sphere
- Reduction from Eucl. NNS in \mathbb{R}^{d} to Eucl. NNS on the sphere [AR'15]

Nearest neighbor searching

Problem setting

- High dimensions d
- Large data set of size $n=2^{\Omega(d / \log d)}$
- Smaller n ? \Longrightarrow Use JLT to reduce d
- Assumption: Data set lies on the sphere
- Angular NNS in \mathbb{R}^{d} equivalent to Eucl. NNS on the sphere
- Reduction from Eucl. NNS in \mathbb{R}^{d} to Eucl. NNS on the sphere [AR'15]
- "Random" case: $c \cdot r=\sqrt{2}$
- Random unit vectors are usually approximately orthogonal

Nearest neighbor searching

Problem setting

- High dimensions d
- Large data set of size $n=2^{\Omega(d / \log d)}$
- Smaller n ? \Longrightarrow Use JLT to reduce d
- Assumption: Data set lies on the sphere
- Angular NNS in \mathbb{R}^{d} equivalent to Eucl. NNS on the sphere
- Reduction from Eucl. NNS in \mathbb{R}^{d} to Eucl. NNS on the sphere [AR'15]
- "Random" case: $c \cdot r=\sqrt{2}$
- Random unit vectors are usually approximately orthogonal
- Goal: Query time $O\left(n^{\rho}\right)$ with $\rho<1$

TU/e

Nearest neighbor searching

"Random" instances

TU/e

Locality-sensitive hashing

Overview

Locality-sensitive hashing

Overview

- Idea: Use nice partitions of the space
- Nearby vectors are often in the same region
- Distant vectors are unlikely to be in the same region

Locality-sensitive hashing

Overview

- Idea: Use nice partitions of the space
- Nearby vectors are often in the same region
- Distant vectors are unlikely to be in the same region
- Precomputation: Store hash tables of vectors per region
- For each region, store contained vectors from data set
- Rerandomization: Many partitions to increase success probability

Locality-sensitive hashing

Overview

- Idea: Use nice partitions of the space
- Nearby vectors are often in the same region
- Distant vectors are unlikely to be in the same region
- Precomputation: Store hash tables of vectors per region
- For each region, store contained vectors from data set
- Rerandomization: Many partitions to increase success probability
- Query: Check hash tables for collisions
- Compute target's region for each hash table
- Check corresponding buckets for potential nearest neighbors
- Reduces search space before doing a linear search

Hyperplane LSH

[Charikar, STOC'02]

TU/e

Hyperplane LSH

Random point

TU/e

Hyperplane LSH

Opposite point

Hyperplane LSH
Two Voronoi cells

Hyperplane LSH

Another pair of points

TU/e

Hyperplane LSH

Another hyperplane

TU/e

Hyperplane LSH

Defines partition

TU/e

Hyperplane LSH

Preprocessing

TU/e

Hyperplane LSH
 Query

TU/e

Hyperplane LSH
 Collisions

TU/e

Hyperplane LSH

Failure

TU/e

Hyperplane LSH
 Rerandomization

TU/e

Hyperplane LSH
 Collisions

TU/e

Hyperplane LSH
 Success

TU/e

Hyperplane LSH
 Overview

TU/e

Hyperplane LSH

Overview

- 2 regions induced by each hyperplane
- Simple: one hyperplane corresponds to one inner product
- Fast: k hyperplanes give you 2^{k} regions

TU/e

Hyperplane LSH

Overview

- 2 regions induced by each hyperplane
- Simple: one hyperplane corresponds to one inner product
- Fast: k hyperplanes give you 2^{k} regions

For "random" settings, query time $O\left(n^{\rho}\right)$ with

$$
\rho=\frac{\sqrt{2}}{\pi \ln 2} \cdot \frac{1}{c}\left(1+o_{d, c}(1)\right) .
$$

TU/e

Hyperplane LSH

Overview

- 2 regions induced by each hyperplane
- Simple: one hyperplane corresponds to one inner product
- Fast: k hyperplanes give you 2^{k} regions

For "random" settings, query time $O\left(n^{\rho}\right)$ with

$$
\rho=\frac{\sqrt{2}}{\pi \ln 2} \cdot \frac{1}{c}\left(1+o_{d, c}(1)\right)
$$

Efficient but suboptimal as $\rho \propto \frac{1}{c^{2}}$ is achievable

TU/e

Cross-Polytope LSH

[Terasawa-Tanaka, WADS'07]
[Andoni et al., NIPS'15]

Cross-Polytope LSH
 Vertices of cross-polytope (simplex)

Cross-Polytope LSH

Random rotation

TU/e

Cross-Polytope LSH

Voronoi regions

TU/e

Cross-Polytope LSH
Defines partition

TU/e

Cross-Polytope LSH

TU/e

Cross-Polytope LSH

Overview

- $2 d$ regions in d dimensions
- Advantage: regions same size and more symmetric For "random" settings, query time $O\left(n^{\rho}\right)$ with

$$
\rho=\frac{1}{2 c^{2}-1}\left(1+o_{d}(1)\right)
$$

TU/e

Cross-Polytope LSH

Overview

- $2 d$ regions in d dimensions
- Advantage: regions same size and more symmetric For "random" settings, query time $O\left(n^{\rho}\right)$ with

$$
\rho=\frac{1}{2 c^{2}-1}\left(1+o_{d}(1)\right)
$$

Essentially optimal for large c and $n=2^{o(d)}$ [Dub'10, AR'15]

TU/e

Spherical/Voronoi LSH

[Andoni et al., SODA'14]
[Andoni-Razenshteyn, STOC'15]

TU/e

Spherical/Voronoi LSH

Random points

TU/e
Spherical/Voronoi LSH

TU/e

Spheri4al/Voronoi LSH
Defines partition

TU/e

Spherical/Voronoi LSH

Overview

TU/e

Spherical/Voronoi LSH

Overview

$2^{O(\sqrt{d})}$ points in d dimensions

- More points improves performance
- More points makes decoding slower

TU/e

Spherical/Voronoi LSH

Overview

$2^{O(\sqrt{d})}$ points in d dimensions

- More points improves performance
- More points makes decoding slower

For "random" settings, query time $O\left(n^{\rho}\right)$ with

$$
\rho=\frac{1}{2 c^{2}-1}\left(1+o_{d}(1)\right) .
$$

TU/e

Spherical/Voronoi LSH

Overview

$2^{O(\sqrt{d})}$ points in d dimensions

- More points improves performance
- More points makes decoding slower

For "random" settings, query time $O\left(n^{\rho}\right)$ with

$$
\rho=\frac{1}{2 c^{2}-1}\left(1+o_{d}(1)\right) .
$$

Essentially optimal for large c and $n=2^{o(d)}$

TU/e

LSH overview

- Hyperplane LSH: 2 Voronoi cells
- Efficient decoding
- Suboptimal for large d, c
- Cross-Polytope LSH: $2 d$ Voronoi cells
- Reasonably efficient decoding
- Optimal for large c and $n=2^{o(d)}$
- Spherical/Voronoi LSH: $2 O(\sqrt{d})$ Voronoi cells
- Slow decoding
- Optimal for large c and $n=2^{o(d)}$

TU/e

LSH overview

- Hyperplane LSH: 2 Voronoi cells
- Efficient decoding
- Suboptimal for large d, c
- Cross-Polytope LSH: $2 d$ Voronoi cells
- Reasonably efficient decoding
- Optimal for large c and $n=2^{o(d)}$
- Spherical/Voronoi LSH: $2 O(\sqrt{d})$ Voronoi cells
- Slow decoding
- Optimal for large c and $n=2^{o(d)}$

1. Can we use even more Voronoi cells?

TU/e

LSH overview

- Hyperplane LSH: 2 Voronoi cells
- Efficient decoding
- Suboptimal for large d, c
- Cross-Polytope LSH: $2 d$ Voronoi cells
- Reasonably efficient decoding
- Optimal for large c and $n=2^{o(d)}$
- Spherical/Voronoi LSH: $2 O(\sqrt{d})$ Voronoi cells
- Slow decoding
- Optimal for large c and $n=2^{o(d)}$

1. Can we use even more Voronoi cells?
2. Can decoding be made faster?

TU/e

LSH overview

- Hyperplane LSH: 2 Voronoi cells
- Efficient decoding
- Suboptimal for large d, c
- Cross-Polytope LSH: $2 d$ Voronoi cells
- Reasonably efficient decoding
- Optimal for large c and $n=2^{o(d)}$
- Spherical/Voronoi LSH: $2 O(\sqrt{d})$ Voronoi cells
- Slow decoding
- Optimal for large c and $n=2^{0(d)}$

1. Can we use even more Voronoi cells?
2. Can decoding be made faster?
3. What about $n=2^{\Omega(d)}$?

TU/e

Structured filters

Overview

TU/e

Structured filters

Partition dimensions into blocks

TU/e

Structured filters

TU/e

Structured filters

Construct con¢atenated code

TU/e

Structured filters

Construct con¢atenated code

TU/e

Structured filters

Normalize (only for example)

TU/e

Structured filters

Normalize (only for example)

Structured filters
Normalize (only for example)

TU/e

Structured filters

TU/e

Structured filters

TU/e

Structured filters

TU/e

Structured filters

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
- Number of hash tables increases to $2^{\Theta(d)}$ - ok for $n=2^{\Theta(d)}$
- Decoding cost potentially too large

TU/e

Structured filters

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
- Number of hash tables increases to $2^{\Theta(d)}$ - ok for $n=2^{\Theta(d)}$
- Decoding cost potentially too large
- Idea 2: Use structured codes for random regions
- Spherical/Voronoi LSH with dependent random points
- Concatenated code of $\log d$ low-dim. spherical codes
- Allows for efficient list-decoding

TU/e

Structured filters

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
- Number of hash tables increases to $2^{\Theta(d)}$ - ok for $n=2^{\Theta(d)}$
- Decoding cost potentially too large
- Idea 2: Use structured codes for random regions
- Spherical/Voronoi LSH with dependent random points
- Concatenated code of $\log d$ low-dim. spherical codes
- Allows for efficient list-decoding
- Idea 3: Replace partitions with filters
- Relaxation: filters need not partition the space
- Simplified analysis
- Might not be needed to achieve improvement

TU/e

Structured filters

Results

For random sparse settings $\left(n=2^{o(d)}\right)$, query time $O\left(n^{\rho}\right)$ with

$$
\rho=\frac{1}{2 c^{2}-1}\left(1+o_{d}(1)\right) .
$$

TU/e

Structured filters

Results

For random sparse settings $\left(n=2^{o(d)}\right)$, query time $O\left(n^{\rho}\right)$ with

$$
\rho=\frac{1}{2 c^{2}-1}\left(1+o_{d}(1)\right) .
$$

For random dense settings ($n=2^{\kappa d}$ with small κ), we obtain

$$
\rho=\frac{1-\kappa}{2 c^{2}-1}\left(1+o_{d, \kappa}(1)\right) .
$$

TU/e

Structured filters

Results

For random sparse settings $\left(n=2^{o(d)}\right)$, query time $O\left(n^{\rho}\right)$ with

$$
\rho=\frac{1}{2 c^{2}-1}\left(1+o_{d}(1)\right) .
$$

For random dense settings ($n=2^{\kappa d}$ with small κ), we obtain

$$
\rho=\frac{1-\kappa}{2 c^{2}-1}\left(1+o_{d, \kappa}(1)\right) .
$$

For random dense settings ($n=2^{\kappa d}$ with large κ), we obtain

$$
\rho=\frac{-1}{2 \kappa} \log \left(1-\frac{1}{2 c^{2}-1}\right)\left(1+o_{d}(1)\right) .
$$

TU/e

Asymmetric nearest neighbors

Previous results: symmetric NNS

- Query time: $O\left(n^{\rho}\right)$
- Update time: $O\left(n^{\rho}\right)$
- Preprocessing time: $O\left(n^{1+\rho}\right)$
- Space complexity: $O\left(n^{1+\rho}\right)$

TU/e

Asymmetric nearest neighbors

Previous results: symmetric NNS

- Query time: $O\left(n^{\rho}\right)$
- Update time: $O\left(n^{\rho}\right)$
- Preprocessing time: $O\left(n^{1+\rho}\right)$
- Space complexity: $O\left(n^{1+\rho}\right)$

Can we get a tradeoff between these costs?

TU/e

Asymmetric nearest neighbors

Voronoi regions

TU/e

Asymmetric nearest neighbors

Spherical cap

TU/e

Asymmetric nearest neighbors

Cap height α

TU/e

Asymmetric nearest neighbors

Smaller $\alpha \Longrightarrow$ Larger caps, mone work

TU/e

Asymmetric nearest neighbors

Larger $\alpha \Longrightarrow$ Smaller caps, less work

TU/e

Asymmetric nearest neighbors

$\alpha_{\mathrm{q}}>\alpha_{\mathrm{u}} \Longrightarrow$ Faster queries, slowep updates

TU/e

Asymmetric nearest neighbors

$\alpha_{\mathrm{q}}<\alpha_{\mathrm{u}} \Longrightarrow$ Slower queries, fastep updates

TU/e

Asymmetric nearest neighbors

Results

General expressions

$$
\begin{array}{ll}
\text { Minimize space } & \rho_{\mathrm{q}}=\left(2 \mathbf{c}^{2}-\mathbf{1}\right) / \mathbf{c}^{4} \\
\left(\alpha_{\mathrm{q}} / \alpha_{\mathrm{u}}=\cos \theta\right) & \rho_{\mathrm{u}}=\mathbf{0}
\end{array}
$$

Balance costs
$\left(\alpha_{\mathrm{q}} / \alpha_{\mathrm{u}}=1\right)$

$$
\begin{aligned}
& \rho_{\mathrm{q}}=\mathbf{1} /\left(\mathbf{2} \mathbf{c}^{2}-\mathbf{1}\right) \\
& \rho_{\mathrm{u}}=\mathbf{1} /\left(\mathbf{2} \mathbf{c}^{2}-\mathbf{1}\right)
\end{aligned}
$$

Minimize time

$$
\rho_{\mathrm{q}}=\mathbf{0}
$$

$\left(\alpha_{\mathrm{q}} / \alpha_{\mathrm{u}}=1 / \cos \theta\right) \rho_{\mathrm{u}}=\left(\mathbf{2} \mathbf{c}^{2}-\mathbf{1}\right) /\left(\mathbf{c}^{2}-\mathbf{1}\right)^{2}$
Query time $O\left(n^{\rho_{\mathrm{q}}}\right)$, update time $O\left(n^{\rho_{\mathrm{u}}}\right)$, preprocessing time $O\left(n^{1+\rho_{\mathrm{u}}}\right)$, space complexity $O\left(n^{1+\rho_{\mathrm{u}}}\right)$

TU/e

Asymmetric nearest neighbors

Results

General expressions
 Small $c=1+\varepsilon$

$\begin{array}{cll}\text { Minimize space } & \rho_{\mathrm{q}}=\left(2 \mathbf{c}^{2}-\mathbf{1}\right) / \mathbf{c}^{4} & \rho_{\mathrm{q}}=1-4 \varepsilon^{2}+O\left(\varepsilon^{3}\right) \\ \left(\alpha_{\mathrm{q}} / \alpha_{\mathrm{u}}=\cos \theta\right) & \rho_{\mathrm{u}}=\mathbf{0} & \rho_{\mathrm{u}}=0\end{array}$
Balance costs $\quad \rho_{\mathrm{q}}=\mathbf{1} /\left(\mathbf{2 c}^{2}-\mathbf{1}\right) \quad \rho_{\mathrm{q}}=1-4 \varepsilon+O\left(\varepsilon^{2}\right)$
$\left(\alpha_{\mathrm{q}} / \alpha_{\mathrm{u}}=1\right)$
$\rho_{\mathrm{u}}=1 /\left(2 \mathrm{c}^{2}-1\right) \quad \rho_{\mathrm{u}}=1-4 \varepsilon+O\left(\varepsilon^{2}\right)$

Minimize time $\quad \rho_{\mathrm{q}}=0 \quad \rho_{\mathrm{q}} \neq 0$
$\left(\alpha_{\mathrm{q}} / \alpha_{\mathrm{u}}=1 / \cos \theta\right) \rho_{\mathrm{u}}=\left(2 \mathbf{c}^{2}-\mathbf{1}\right) /\left(\mathbf{c}^{2}-\mathbf{1}\right)^{2} \rho_{\mathrm{u}}=1 /\left(4 \varepsilon^{2}\right)+O(1 / \varepsilon)$
Query time $O\left(n^{\rho_{\mathrm{q}}}\right)$, update time $O\left(n^{\rho_{\mathrm{u}}}\right)$, preprocessing time $O\left(n^{1+\rho_{\mathrm{u}}}\right)$, space complexity $O\left(n^{1+\rho_{\mathrm{u}}}\right)$

TU/e

Asymmetric nearest neighbors

Results

General expressions Large $c \rightarrow \infty$

Minimize space	$\rho_{\mathrm{q}}=\left(2 \mathbf{c}^{2}-\mathbf{1}\right) / \mathbf{c}^{4}$	$\rho_{\mathrm{q}}=2 / \mathrm{c}^{2}+O\left(1 / \mathrm{c}^{4}\right)$
$\left(\alpha_{\mathrm{q}} / \alpha_{\mathrm{u}}=\cos \theta\right)$	$\rho_{\mathrm{u}}=\mathbf{0}$	$\rho_{\mathrm{u}}=0$

Balance costs

$$
\left(\alpha_{\mathrm{q}} / \alpha_{\mathrm{u}}=1\right)
$$

$$
\begin{array}{ll}
\rho_{\mathrm{q}}=\mathbf{1} /\left(2 \mathbf{c}^{2}-\mathbf{1}\right) & \rho_{\mathrm{q}}=1 /\left(2 c^{2}\right)+O\left(1 / c^{4}\right) \\
\rho_{\mathrm{u}}=\mathbf{1} /\left(2 \mathbf{c}^{2}-\mathbf{1}\right) & \rho_{\mathrm{u}}=1 /\left(2 c^{2}\right)+O\left(1 / c^{4}\right)
\end{array}
$$

Minimize time $\quad \rho_{\mathrm{q}}=\mathbf{0}$

$$
\rho_{\mathrm{q}} \neq 0
$$

$$
\left(\alpha_{\mathrm{q}} / \alpha_{\mathrm{u}}=1 / \cos \theta\right) \rho_{\mathrm{u}}=\left(2 \mathbf{c}^{2}-\mathbf{1}\right) /\left(\mathbf{c}^{2}-\mathbf{1}\right)^{2} \rho_{\mathrm{u}}=2 / c^{2}+O\left(1 / c^{4}\right)
$$

Query time $O\left(n^{\rho_{\mathrm{q}}}\right)$, update time $O\left(n^{\rho_{\mathrm{u}}}\right)$, preprocessing time $O\left(n^{1+\rho_{\mathrm{u}}}\right)$, space complexity $O\left(n^{1+\rho_{\mathrm{u}}}\right)$

TU/e

Asymmetric nearest neighbors

Tradeoffs

TU/e

Conclusions

Main result: Allow using more regions with list-decodable codes

- For $n=2^{o(d)}$, non-asymptotic improvement
- For $n=2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n=2^{o(d)}$ do not hold for $n=2^{\Theta(d)}$
- Improved tradeoffs between query and update complexities

TU/e

Conclusions

Main result: Allow using more regions with list-decodable codes

- For $n=2^{o(d)}$, non-asymptotic improvement
- For $n=2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n=2^{o(d)}$ do not hold for $n=2^{\Theta(d)}$
- Improved tradeoffs between query and update complexities

Open problems

- Tradeoff for $n=2^{o(d)}$ optimal?
- Lower bounds for $n=2^{\Theta(d)}$?
- Apply similar ideas to other norms?
- Practicality?

TU/e

Conclusions

Main result: Allow using more regions with list-decodable codes

- For $n=2^{o(d)}$, non-asymptotic improvement
- For $n=2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n=2^{o(d)}$ do not hold for $n=2^{\Theta(d)}$
- Improved tradeoffs between query and update complexities

Open problems

- Tradeoff for $n=2^{o(d)}$ optimal?
- Lower bounds for $n=2^{\Theta(d)}$?
- Apply similar ideas to other norms?
- Practicality?

Questions?

