

New directions in approximate nearest neighbors for the angular distance

Thijs Laarhoven

mail@thijs.com http://www.thijs.com/

Proximity Workshop, College Park (MD), USA (January 13, 2016)

Nearest neighbor searching

Nearest neighbor •

 \mathcal{O}

Nearest neighbor searching

Nearest neighbor (ℓ_1 -norm)

- Nearest neighbor (angular distance)
 - - 0
 - •

Nearest neighbor searching

Nearest neighbor (ℓ_2 -norm)

Nearest neighbor searching

Distance guarantee

- 0
- •

- r
 - •

Nearest neighbor searching

Approximate nearest neighbor

Nearest neighbor searching

Approximation factor c > 1

•

•

- Example: Precompute Voronoi cells
 - •
- - (7)
 - C
 - _
 - •

Nearest neighbor searching

Problem setting

• High dimensions d

Nearest neighbor searching

- High dimensions *d*
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - Smaller $n? \implies$ Use JLT to reduce d

Nearest neighbor searching

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - Smaller $n? \implies$ Use JLT to reduce d
- Assumption: Data set lies on the sphere
 - ▶ Angular NNS in \mathbb{R}^d equivalent to Eucl. NNS on the sphere
 - ▶ Reduction from Eucl. NNS in \mathbb{R}^d to Eucl. NNS on the sphere [AR'15]

Nearest neighbor searching

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - Smaller $n? \implies$ Use JLT to reduce d
- Assumption: Data set lies on the sphere
 - Angular NNS in \mathbb{R}^d equivalent to Eucl. NNS on the sphere
 - ▶ Reduction from Eucl. NNS in \mathbb{R}^d to Eucl. NNS on the sphere [AR'15]
- "Random" case: $c \cdot r = \sqrt{2}$
 - Random unit vectors are usually approximately orthogonal

Nearest neighbor searching

- High dimensions d
- Large data set of size $n = 2^{\Omega(d/\log d)}$
 - Smaller $n? \implies$ Use JLT to reduce d
- Assumption: Data set lies on the sphere
 - Angular NNS in \mathbb{R}^d equivalent to Eucl. NNS on the sphere
 - ▶ Reduction from Eucl. NNS in \mathbb{R}^d to Eucl. NNS on the sphere [AR'15]
- "Random" case: $c \cdot r = \sqrt{2}$
 - Random unit vectors are usually approximately orthogonal
- Goal: Query time $O(n^{
 ho})$ with ho < 1

Nearest neighbor searching

Locality-sensitive hashing

Locality-sensitive hashing

- Idea: Use nice partitions of the space
 - Nearby vectors are often in the same region
 - Distant vectors are unlikely to be in the same region

Locality-sensitive hashing

- Idea: Use nice partitions of the space
 - Nearby vectors are often in the same region
 - Distant vectors are unlikely to be in the same region
- Precomputation: Store hash tables of vectors per region
 - ▶ For each region, store contained vectors from data set
 - ▶ Rerandomization: Many partitions to increase success probability

Locality-sensitive hashing

- Idea: Use nice partitions of the space
 - Nearby vectors are often in the same region
 - Distant vectors are unlikely to be in the same region
- Precomputation: Store hash tables of vectors per region
 - ▶ For each region, store contained vectors from data set
 - ► Rerandomization: Many partitions to increase success probability
- Query: Check hash tables for collisions
 - Compute target's region for each hash table
 - Check corresponding buckets for potential nearest neighbors
 - Reduces search space before doing a linear search

Hyperplane LSH [Charikar, STOC'02]

Hyperplane LSH

Random point

Hyperplane LSH

Opposite point

Hyperplane LSH

Two Voronoi cells

Hyperplane LSH

Another pair of points

Hyperplane LSH

Another hyperplane

Hyperplane LSH

Defines partition

Hyperplane LSH

Preprocessing

Hyperplane LSH

Query

Hyperplane LSH

Collisions

Hyperplane LSH

Failure

Hyperplane LSH

Overview

- 2 regions induced by each hyperplane
- Simple: one hyperplane corresponds to one inner product
- Fast: *k* hyperplanes give you 2^{*k*} regions

Hyperplane LSH

Overview

- 2 regions induced by each hyperplane
- Simple: one hyperplane corresponds to one inner product
- Fast: k hyperplanes give you 2^k regions

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{\sqrt{2}}{\pi \ln 2} \cdot \frac{1}{c} \left(1 + o_{d,c}(1) \right).$$

Hyperplane LSH

Overview

- 2 regions induced by each hyperplane
- Simple: one hyperplane corresponds to one inner product
- Fast: k hyperplanes give you 2^k regions

For "random" settings, query time $O(n^{\rho})$ with

$$ho = rac{\sqrt{2}}{\pi \ln 2} \cdot rac{1}{c} \left(1 + o_{d,c}(1)
ight).$$

Efficient but suboptimal as $ho \propto rac{1}{c^2}$ is achievable

Cross-Polytope LSH [Terasawa-Tanaka, WADS'07] [Andoni et al., NIPS'15]

Cross-Polytope LSH

Vertices of cross-polytope (simplex)

Cross-Polytope LSH

Random rotation

Cross-Polytope LSH

Overview

- 2*d* regions in *d* dimensions
- Advantage: regions same size and more symmetric

For "random" settings, query time $O(n^{
ho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right)$$

Cross-Polytope LSH

Overview

- 2*d* regions in *d* dimensions
- Advantage: regions same size and more symmetric

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right)$$

Essentially optimal for large c and $n = 2^{o(d)}$ [Dub'10, AR'15]

Spherical/Voronoi LSH [Andoni et al., SODA'14]

[Andoni–Razenshteyn, STOC'15]

Spherical/Voronoi LSH

Random points

Spherical/Voronoi LSH

Overview

- $2^{O(\sqrt{d})}$ points in *d* dimensions
 - More points improves performance
 - More points makes decoding slower

Spherical/Voronoi LSH

Overview

 $2^{O(\sqrt{d})}$ points in *d* dimensions

- More points improves performance
- More points makes decoding slower

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right).$$

Spherical/Voronoi LSH

Overview

 $2^{O(\sqrt{d})}$ points in *d* dimensions

- More points improves performance
- More points makes decoding slower

For "random" settings, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right).$$

Essentially optimal for large c and $n = 2^{o(d)}$

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - Optimal for large c and $n = 2^{o(d)}$

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - Optimal for large c and $n = 2^{o(d)}$
- 1. Can we use even more Voronoi cells?

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - Optimal for large c and $n = 2^{o(d)}$
- 1. Can we use even more Voronoi cells?
- 2. Can decoding be made faster?

- Hyperplane LSH: 2 Voronoi cells
 - Efficient decoding
 - Suboptimal for large d, c
- Cross-Polytope LSH: 2d Voronoi cells
 - Reasonably efficient decoding
 - Optimal for large c and $n = 2^{o(d)}$
- Spherical/Voronoi LSH: $2^{O(\sqrt{d})}$ Voronoi cells
 - Slow decoding
 - Optimal for large c and $n = 2^{o(d)}$
- 1. Can we use even more Voronoi cells?
- 2. Can decoding be made faster?
- 3. What about $n = 2^{\Omega(d)}$?

Structured filters

Overview

Structured filters

Partition dimensions into blocks

Structured filters

Construct concatenated code

Structured filters

Construct concatenated code

Structured filters

Normalize (only for example)

Structured filters

Normalize (only for example)

Structured filters

Normalize (only for example)

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
 - ▶ Number of hash tables increases to $2^{\Theta(d)}$ ok for $n = 2^{\Theta(d)}$
 - Decoding cost potentially too large

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
 - ▶ Number of hash tables increases to $2^{\Theta(d)}$ ok for $n = 2^{\Theta(d)}$
 - Decoding cost potentially too large
- Idea 2: Use structured codes for random regions
 - Spherical/Voronoi LSH with dependent random points
 - Concatenated code of log d low-dim. spherical codes
 - Allows for efficient list-decoding

Techniques

- Idea 1: Increase number of regions to $2^{\Theta(d)}$
 - ▶ Number of hash tables increases to $2^{\Theta(d)}$ ok for $n = 2^{\Theta(d)}$
 - Decoding cost potentially too large
- Idea 2: Use structured codes for random regions
 - Spherical/Voronoi LSH with dependent random points
 - Concatenated code of log d low-dim. spherical codes
 - Allows for efficient list-decoding
- Idea 3: Replace partitions with filters
 - Relaxation: filters need not partition the space
 - Simplified analysis
 - Might not be needed to achieve improvement

Results

 $ho = rac{1}{2c^2 - 1} \left(1 + o_d(1)
ight).$

For random sparse settings $(n = 2^{o(d)})$, query time $O(n^{\rho})$ with

Results

For random sparse settings $(n = 2^{o(d)})$, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right).$$

 $\rho = \frac{1-\kappa}{2c^2-1} \left(1+o_{d,\kappa}(1)\right).$

For random dense settings ($n = 2^{\kappa d}$ with small κ), we obtain

Results

For random sparse settings $(n = 2^{o(d)})$, query time $O(n^{\rho})$ with

$$\rho = \frac{1}{2c^2 - 1} \left(1 + o_d(1) \right).$$

For random dense settings ($n = 2^{\kappa d}$ with small κ), we obtain

$$\rho = \frac{1-\kappa}{2c^2-1} \left(1+o_{d,\kappa}(1)\right).$$

For random dense settings $(n = 2^{\kappa d}$ with large κ), we obtain

$$ho = rac{-1}{2\kappa} \log\left(1-rac{1}{2c^2-1}
ight) \left(1+o_d(1)
ight).$$

Asymmetric nearest neighbors

Previous results: symmetric NNS

- Query time: $O(n^{\rho})$
- Update time: O(n^ρ)
- Preprocessing time: $O(n^{1+
 ho})$
- Space complexity: $O(n^{1+
 ho})$

Asymmetric nearest neighbors

Previous results: symmetric NNS

- Query time: O(n^ρ)
- Update time: $O(n^{\rho})$
- Preprocessing time: $O(n^{1+
 ho})$
- Space complexity: $O(n^{1+
 ho})$

Can we get a tradeoff between these costs?

Asymmetric nearest neighbors

Larger $\alpha \implies$ Smaller caps, less work

Asymmetric nearest neighbors

Results

General expressions				
Minimize space $ ho_{ m q} = (2c^2 - 1)/c^4$				
$(\alpha_{\rm q}/\alpha_{\rm u}=\cos heta)$ $ ho_{\rm u}=0$	1			
Balance costs $ ho_{\rm q} = 1/(2c^2 - 1)\alpha_{\rm q}$	α_u			
$(lpha_{ m q} / lpha_{ m u} = 1) \qquad ho_{ m u} = 1 / (2 { m c}^2 - 1)$				
Minimize time $\rho_{\rm q} = 0$				
$(lpha_{ m q}/lpha_{ m u}=1/\cos heta)~ ho_{ m u}=(2{ m c}^2-1)/({ m c}^2-1)^2$				
Query time $O(n^{ ho_{ m q}})$, update time $O(n^{ ho_{ m u}})$, preproc	essing time $O(n^{1+ ho_{\mathrm{u}}})$,			
space complexity $O(n^{1+ ho_{\mathrm{u}}})$				

Asymmetric nearest neighbors

Results

	General expressions	Small $c = 1 + \varepsilon$	
Minimize space	$ ho_{ m q}=(2{ m c}^2-1)/{ m c}^4$	$ ho_{ m q} = 1 - 4arepsilon^2 + O(arepsilon^3)$	
$(lpha_{ m q}/lpha_{ m u}=\cos heta)$	$\rho_{\rm u} = 0$	$ ho_{ m u}=0$	
	2		
Balance costs	$ ho_{ m q}=1/(\mathbf{2c^2}-1)$ and $ ho_{ m q}$	$ ho ho_{ m q} = 1 - 4 arepsilon + O(arepsilon^2)$	
$(\alpha_{\rm q}/\alpha_{\rm u}=1)$	$ ho_{\mathrm{u}}=1/(\mathbf{2c^2}-1)$	$ ho_{ m u} = 1 - 4arepsilon + O(arepsilon^2)$	
Minimize time	$ ho_{ m q} = 0$	$ ho_{ m q}=0$	
$(lpha_{ m q}/lpha_{ m u}=1/\cos heta$	$(\theta) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	² $\rho_{\rm u} = 1/(4\varepsilon^2) + O(1/\varepsilon)$	
Query time $O(n^{\rho_{q}})$, update time $O(n^{\rho_{u}})$, preprocessing time $O(n^{1+\rho_{u}})$,			
space complexity $O($	$n^{1+\rho_{\mathrm{u}}}$		
	,		

Asymmetric nearest neighbors

Results

	General expressions	Large $c \to \infty$	
Minimize space	$ ho_{\mathrm{q}}=(2c^2-1)/c^4$	$ ho_{ m q} = 2/c^2 + O(1/c^4)$	
$(lpha_{ m q} / lpha_{ m u} = \cos heta)$	$ ho_{ m u} = 0$	$ ho_{ m u}=0$	
/			
Balance costs	$ ho_{ m q}=1/(\mathbf{2c^2}-1)$ ($ ho_{ m q} = 1/(2c^2) + O(1/c^4)$	
$(\alpha_{ m q}/\alpha_{ m u}=1)$	$ ho_{ m u}=1/(\mathbf{2c^2}-1)$	$ ho_{ m u} = 1/(2c^2) + O(1/c^4)$	
Minimize time	$ angle ho_{\mathbf{q}} = 0$	$ ho_{ m q} eq 0$	
$(lpha_{ m q}/lpha_{ m u}=1/\cos{1/2}$	$ heta) ho_{ m u} = (2c^2 - 1)/(c^2 - 1)^2$	$\rho_{\rm u} = 2/c^2 + O(1/c^4)$	
Query time $O(n^{ ho_{ m q}})$, update time $O(n^{ ho_{ m u}})$, preprocessing time $O(n^{1+ ho_{ m u}})$,			
space complexity O($n^{1+\rho_{\mathrm{u}}})$		

Asymmetric nearest neighbors

Tradeoffs

Conclusions

Main result: Allow using more regions with list-decodable codes

- For $n = 2^{o(d)}$, non-asymptotic improvement
- For $n = 2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n = 2^{o(d)}$ do not hold for $n = 2^{\Theta(d)}$
- Improved tradeoffs between query and update complexities

Conclusions

Main result: Allow using more regions with list-decodable codes

- For $n = 2^{o(d)}$, non-asymptotic improvement
- For $n = 2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n = 2^{o(d)}$ do not hold for $n = 2^{\Theta(d)}$
- Improved tradeoffs between query and update complexities

Open problems

- Tradeoff for $n = 2^{o(d)}$ optimal?
- Lower bounds for $n = 2^{\Theta(d)}$?
- Apply similar ideas to other norms?
- Practicality?

Conclusions

Main result: Allow using more regions with list-decodable codes

- For $n = 2^{o(d)}$, non-asymptotic improvement
- For $n = 2^{\Theta(d)}$, asymptotic improvement
- Corollary: Lower bounds for $n = 2^{o(d)}$ do not hold for $n = 2^{\Theta(d)}$
- Improved tradeoffs between query and update complexities

Open problems

- Tradeoff for $n = 2^{o(d)}$ optimal?
- Lower bounds for $n = 2^{\Theta(d)}$?
- Apply similar ideas to other norms?
- Practicality?

Questions?