An Optimal Bloom Filter Replacement*

Anna Pagh'

Abstract

This paper considers space-efficient data structures for
storing an approximation S’ to a set S such that S C S’
and any element not in S belongs to S’ with probability
at most €. The Bloom filter data structure, solving this
problem, has found widespread use. Our main result is
a new RAM data structure that improves Bloom filters
in several ways:

e The time for looking up an element in S’ is O(1),
independent of €.

e The space usage is within a lower order term of the
lower bound.

e The data structure uses ezplicit hash function
families.

e The data structure supports insertions and dele-
tions on S in amortized expected constant time.

The main technical ingredient is a succinct representa-
tion of dynamic multisets. We also consider three recent
generalizations of Bloom filters.

1 Introduction

In many applications where a set S of elements (from
a finite universe) is to be stored, it is acceptable to
include in the set some false positives, i.e., elements
that appear to be in S but are not. For example,
on the question of whether a remote server contains a
desired piece of information, it is acceptable that there
is a small probability that we are wrongly led to believe
that this is indeed the case, since the only cost would
be making an unfruitful request for the item. Storing
only an approximation to a set can yield great dividends
compared to storing the set explicitly. If we only require
that every element not in S is a false positive with
probability at most e, the number of bits needed to

" *This work was initiated during Dagstuhl seminar No. 04091
on Data Structures, 2004.
fIT University of Copenhagen, Rued Langgaards Vej 7 2300
Kgbenhavn S, Denmark Email: {annao,pagh}@itu.dk
tDepartment of Computer Science, University of Waterloo,
Ontario, N2L 3G1, Canada Email: ssrao@monod.uwaterloo.ca

Rasmus Pagh'

S. Srinivasa Raof

store the approximation is roughly nlog(1/€)*, where
n = |S| and the logarithm has base 2 [5]. In contrast,
the amount of space for storing S C {0,1}* explicitly
is at least log (2:) > n(w — logn) bits, which may be
much larger if w is large. Here, we consider subsets
of the set of w-bit machine words on a standard RAM
model, since this is the usual framework in which RAM
dictionaries are studied.

Let the (random) set S’ D S consist of the elements
that are stored (including false positives). We want S’
to be chosen such that any element not in .S belongs to
S’ with probability at most €. For ease of exposition, we
assume that € < 1/2 is an integer power of 2. A Bloom
filter [1] is an elegant data structure for selecting and
representing a suitable set S’. It works by storing, as a
bit vector, the set

Is={hi(z) |z €S, i=1,...,k}

where hy,...,h; : {0,1}* — [nlog(1/e)loge] are
assumed to be truly random hash functions, and k =
log(1/€). The set S’ consists of those z € {0,1}" for
which {h;(z) | i = 1,...,k} C Is. Looking up a key
in S’ requires k = log(1/¢) hash function evaluations
and memory lookups. Insertions are handled by setting
k bits in the bit vector to 1. Deletions, on the other
hand, are not supported: Setting any bit to 0 might
exclude from S’ some other element in S. In [10] the
authors instead store the multiset defined as Ig above,
which makes it possible to support deletions. However,
this incurs a loglogn factor space overhead, as single
bits are replaced by small counters.

Bloom filters have found many applications, in the-
ory and practice, in particular in distributed systems.
We refer to [2] for an overview of applications. In spite of
its strength, the data structure has several weaknesses:

1. Dependence on e. The lookup time grows as the
false positive rate decreases. For example, to get a
false positive rate below 1%, 7 memory accesses are
needed. If S is large this will almost surely mean 7
cache misses, since the addresses are random hash
function values.

TThis assumes that n < 2 /2 and that e is not very small. For

€ less than about n/2" we might as well store the exact set S.

2. Suboptimal space usage. The space usage is a
factor loge ~ 1.44 from the information theoret-
ically best possible.

3. Lack of hash functions. There is no known way
of choosing the hash functions such that the scheme
can be shown to work, unless O(nlogn) bits of
space is used [14]. The use of cryptographic hash
functions has been suggested in e.g. [6]. However,
since the range of the hash functions is small, it is
computationally easy to find a set S for which any
fixed set of (efficiently computable) hash functions
behave badly, i.e., yield too large a set S”.

4. No deletions. Deletions are not supported (unless
modified to use asymptotically more space than the
minimum possible, as in [10]).

Issues 1 and 2 were considered in [12], where it was
observed that increasing the size of the bit vector makes
it possible to reduce the number of hash functions. In
particular, if O(n/€) space is used, a single hash function
suffices. In distributed applications, the data structure
may be compressed to the optimal nlog(1l/e) + O(n)
bits before being transferred over the network. As
most previous results, this assumes that truly random
hash functions are available, and deletions are not
supported. Solutions based on space-optimal minimal
perfect hashing [11], mentioned e.g. in [2], resolve issues
1-3, but fail to support insertions as well as deletions.

In this paper we revisit a reduction from the ap-
proximate membership problem to the exact member-
ship problem. The reduction, first described in [5], cor-
responds to the extreme case with a single hash function
n [12]. Using the reduction with succinct solutions to
the exact membership problem, e.g. [16], addresses is-
sues 1-3. To obtain a dynamic solution, resolving all
issues above, a succinct dynamic multiset representa-
tion of independent interest is developed.

THEOREM 1.1. A dynamic multiset of n elements from
[u], supporting lookup, insertion and deletion, can be
implemented using B+ o(B)+ O(n) bits of space, where
B =1log[(*I™)] = nlog(u/n) + ©(n) is the information
theoretic space lower bound. Insertions and deletions
can be performed in amortized expected constant time
and lookup in worst case constant time. Reporting
the number ¢ of occurrences of an element takes time

O(1+loge).
The above theorem implies our main result:

THEOREM 1.2. Let a positive integer n and € > 0 be
giwen. On a RAM with word length w we can maintain
a data structure for a dynamic multiset M of size at
most n, with elements from {0,1}", such that:

e Inserting in M and deleting from M can be done
i amortized expected constant time. The data
structure does not check that deletions are valid.

e Looking up whether a given x € {0,1}* belongs
to M can be done in worst case constant time. If
x € M the answer is always yes’. If x & M the
answer is 'no’ with probability at least 1 — €.

e The space usage is at most (1 + o(1)) nlogy(1/€) +
O(n + w) bits.

The reduction from [5] is described in Section 2. We
show how to extend a known result about succinct set
representations [19] to succinct multiset representations,
by a general reduction described in Section 4. The
reduction uses a result on redundant binary counters
described in Section 3.

The theorem is mainly a theoretical contribution,
and the data structure is probably only competitive
with Bloom filters for rather small e. In section 5
we describe an alternative data structure based on [8],
for which no provably good choice of hash function is
known, but which is likely to improve on Bloom filters
in practice even for large €. This data structure allows
only insertions, not deletions. Finally, in section 6
we obtain new results on three recent Bloom filter
generalizations [6, 9, 17].

2 From approximate to exact set membership

Choose h as a random function from a universal class
of hash functions [4] mapping {0,1}" to [n/e]. The
function can be chosen in constant time and stored in
space O(w) bits. For any set S C {0,1}" of at most n
elements, and any x € {0,1}"\S it holds that

Prih(z) € h(S)] < ZPr[h(m) =h(y)] <n/(nje) =€ .

yeS

(The first inequality is by the union bound, and the sec-
ond is by definition of universality.) This was observed
in [5], along with the implication that we can solve the
approximate membership problem simply by storing the
set h(S). If a space optimal set representation is used,
the resulting space usage is nlog(1/e) + ©(n + w) bits
(see [3]), which is within ©(n + w) bits of the best pos-
sible.

It is easy to see that if we instead store the
multiset h(S), we have enough information to maintain
h(S) under insertions to and deletions from S. (But
obviously we can’t detect an attempt to delete a false
positive.) Using the dynamic multiset representation of
Theorem 1.1 we obtain Theorem 1.2.

If we double the size of the range of h, it suffices that
h be chosen from a 2-universal family. A function from
the 2-universal family described in [15] can be stored
using O(logn+log w) bits, and chosen in expected time
(logn + logw)®®. This could be used to reduce the
O(w) additive term in the space bound to an optimal
O(logw) term. However, the data structure would then
have to use time (logn + logw)®™) on preprocessing.

Another observation is that the reduction can be
slightly improved by exploiting that h(.S) is expected to
be somewhat smaller than n, in particular if € is not
too large. In other words: Use a bound tighter than
the union bound to estimate the probability of a false
positive. In particular, if we choose h from a family
of 4-wise independent functions, we may use a range
smaller than [n/e] while preserving the property that
the probability of a false positive is at most e. However,
even if h is assumed to be a truly random function, this
approach still gives a space usage that is ©(n) bits from
optimal.

3 Counters in the bit probe model

In this section we discuss the problem of how to main-
tain a counter in almost optimal space while performing
updates (incrementing and decrementing the counter)
efficiently. The solution will be used in the next section
to obtain a succinct dynamic multiset data structure.

More formally, we consider the following problem:
Given an integer counter C, maintain it efficiently under
the following operations:

e increment(): C' — C + 1,
e decrement(): if C' > 0 then C «— C' — 1, and

o iszero(): return 1 if C'= 0 and 0 otherwise.

Many efficient solutions to this problem are known,
e.g., Clancy and Knuth [7] show how to implement
each operation in worst case constant time, using space
O(logC) on a RAM. We consider the problem in a
variant of the bit probe model, where time is counted
as the number of bits accessed to perform an operation,
and space as the number of bits used. The special
feature of the bit probe model we consider is that
it allows a special value L, in addition to the usual
alphabet {0,1}. The special value is the initial value
of every bit, and we count only bits that are 0 or 1
when talking about space usage. We need counters
in such a restricted model since we will be simulating
accesses to single bits by lookups and updates in set data
structures. In such a simulation, reading and updating
a pointer would require too much time. In particular,
this means that the solution in [7] is not efficient, as it

1 10 01 01 00
1 01 00 10 01

0] (i) (iii)

Figure 1: Transformation rules. The top row contains
one or two adjacent bits in C* and the bottom row
contains the corresponding bit(s) in C'~.

uses pointers. Our solution uses standard ideas, and is
included mainly for completeness.

If we simply maintain the value of C' in binary,
then a sequence of alternate increment and decrement
operations may require Q(logC) time per operation.
Note that if we do not have decrements, then one can
easily show that each increment takes O(1) amortized
time. So, we implement C using two counters C* and
C~, maintaining the invariant C = C* — C~. We
denote the ith least significant bit of a counter C' by C;.
To perform an increment operation we increment the
C* counter, and to perform a decrement operation we
increment the C~ counter. To reduce space usage, we
maintain the invariant that all 0-bits having only 0-bits
to the left (in more significant positions) are represented
by L in the data structure. This also gives a way of
detecting when the most significant bit of C* or C~
has been read.

To bound the values of CT and C~, we also
maintain the invariant that for any ¢ > 1, out of the
4 bits C;F, Cf4, C; and C;, at most one is a 1. This
invariant is maintained by using the transformation
rules shown in Figure 1. Whenever we update a bit,
we check to see if any of the transformation rules
involving that bit can be applied, and if so we apply
it. If we start from the point where CT = C~ = 0
and make the updates while maintaining the invariant
after each update, it is possible to show that at most
one transformation rule will be used after each update.
However, this is not important for our argument.

The invariant ensures that C* > 2C~ and hence
CT < 2C. Thus the space required by this solution is
at most 2[log C 4 2 bits. Additionally we can ensure
that the space used by the two counters is no larger
than C. This is done by minimizing the number of bits
used if C' < 4, and will be important in our application.
Note that by transformation rule (i) there are only three
possible assignments for the two bits, C;r and C;, at
each position in the two counters. We use this fact later
to represent the counter efficiently.

One can easily show that updates in this structure
take O(1) amortized time, by associating a potential of 1
to each bit that is 1: Each of the transformation rules

strictly reduces the number of 1s, and incrementing one
of the counters increases the number of 1s by at most
one. An iszero query can be answered by simply testing
whether Cfr is represented by L in the data structure.

LEMMA 3.1. In the bit probe model with alphabet
{0,1, L} one can maintain an integer counter C that
supports increment() and decrement() in O(1) bit probes
and bit updates, amortized, and iszero() in 1 bit probe,
using space min(2[log C'| + 2,C) bits.

4 From dynamic sets to dynamic multisets

In this section we consider the problem of storing a
dynamic multiset succinctly. While the dynamic set
problem has received considerable interest, the same is
not true for the dynamic multiset problem, presumably
due to the fact that most solutions to the dynamic set
problem can easily be extended by associating a counter
with each element. However, the space usage of the
counters is nlogn bits, which means that the resulting
multiset representation cannot be succinct, i.e., cannot
use close to the information theoretically optimum
space. We note that this optimum is within O(n) bits
of the optimum for sets, i.e., log (“Z") < log (*) +O(n).
The only previous succinct representation of a multiset
that allows constant time lookups is static [18].

A static multiset can be efficiently implemented
using a number of set data structures, as follows. Let
U = [u] be the universe, let M be the multiset of
elements from U, and let n = |M| be the size of
the multiset. The multiset M can be represented by
[log(n 4 1)] sets S1,...,SM0gn] € [2u]. An element
x € U has two corresponding elements in [2u], ¢ and
x1. An element z is represented by exactly one of zg
and z7 in the set S; if the number of occurrences, c,., of
x in M is at least 2°=1. It is represented in S; by the
element x4, where d is the ith least significant bit in the
binary representation of the number c,. Implementing a
multiset in this way, it is enough to perform two lookups
in the set S to decide if an element is in the multiset.
The total number of elements to store is at most equal
to the number of elements in the multiset. The time
to get the number of occurrences of an element x in
the multiset depends on c¢,. All sets in which x is
represented have to be searched to find out the exact
number, so O(1 + log ¢,)) lookups are necessary.

We want a dynamic multiset for the Bloom filter
implementation. There are two problems with the above
multiset data structure if we want to make it dynamic.
First, updates may take Q(logn) time. The second
problem is memory management, i.e., how to allocate
space for the data structures, which may grow and
shrink independently of each other.

The solution to the first problem is to use redundant
counters instead of binary counters. The redundant
counters described in Section 3 require only amortized
O(1) bits updated when increasing or decreasing the
counter. On the other hand we need to represent each
element by one of three, rather than one of two, elements
in each set, and two extra bits are needed for the
counter.

Our data structure consists of [logn| + 2 dynamic
sets, S1,...,Sogn]+2, With elements from [3u]. An
element 2 € U has three corresponding elements in [3u],
call them xg, x1, and x_1. We include exactly one of the
corresponding elements in S; if the redundant counter
C for x does not have both C’;‘ and C; represented by
L. Otherwise, depending on the values of C;r and C;
we include either xg, 21, or x_1 in S;. (There are only
three possibilities because of transformation rule (i).)

Memory management according to Lemma 4.1 be-
low is used to efficiently store the collection of sets. It is
possible to maintain all sets under insertions and dele-
tions without using too much extra time or space. The
time for the update operations is O(1), expected amor-
tized.

LEMMA 4.1. A collection of dynamic sets Sy,...Sk C
[u] can be maintained under insertions/deletions of el-
ements to/from the individual sets, which take O(1)
amortized expected time, while supporting member-
ship queries on any set in O(1) time. If B; is the
information-theoretic minimum space required to store
the set S;, for 1 < i <k, then the total space occupied
by this structure is s + o(s) + O(v/sklogu) + O(klogu)
bits, where s = Zle B,.

Proof sketch. We maintain each set .S; using the suc-
cinct dynamic dictionary structure of [19], which uses
B;+o(B;) bits and supports insertions and deletions on
S; in expected amortized O(1) time and membership
queries in O(1) time. Each of these dynamic dictionar-
ies are stored in ‘extendable arrays’ (see [19] for details)
with record size w. We then store these extendable ar-
rays using the structure of Lemma 1 of [19]. The space
bound follows, since the total ‘nominal size’ of all the
extendable arrays is s + o(s) bits.]

We have now shown part of Theorem 1.1, namely
that in any of the set data structures, we can do lookup
in O(1) time and updates in amortized expected O(1)
time, including memory management of the collection
of sets. The O(1 + logc) time to report the number of
occurrences follows this and from the above description.

What remains to show Theorem 1.1 is to calculate
the total space usage for the multiset data structure.
Denote by m1,no,... the number of elements in the

sets S1,S52,.... By Lemma 3.1 the space of a counter
will never exceed the value of the counter. Thus, an
element occurring in the multiset ¢ times is stored in at
most ¢ sets, so y_.n; < n. Also, since the space of a
counter of value ¢ is at most 2[log ¢] +2, and since only
counters with space at least ¢ give rise to elements in S;,
it follows that n; = O(n/2%/?). Theorem 1.1 follows by
bounding the sum of information theoretical minimum
space usage for the sets in the collection:

Z B; < Z n; log(3ue/n;)

< nlog(u/n) + Zm log(3en/n;)

= nlog(u/n) + O(Z(n/?) log(Ben/(n/2i/2))

i

= nlog(u/n) + O(Z ni/2?)
=nlog(u/n) + O(n) .

5 A practical variant

The dynamic dictionary structure of Raman and
Rao [19] is not efficient in terms of practical perfor-
mance. To get a more practical variant in the case where
we have only insertions and thus only need to store a
set, we can replace this dynamic dictionary by a simpler
dynamic hashing scheme by Cleary [8], based on linear
probing. Using this scheme, a set of size n from the uni-
verse {1,...,u} can be stored using (1/a)(nlog(4u/n))
bits while supporting insertions, deletions and member-
ship queries in expected O(ﬁ) time, for 0 < a < 1.
Note that if a =1 — O(m) then the space usage is
O(n) bits from optimal.

The time bound, but not the space bound, uses the
assumption that there is free access to a hash function
that is a uniformly random permutation of the universe.
However, heuristically linear probing works very well
even with restricted randomness. For example, if u + 1
is prime one could use the permutation

x+—ax mod (u-+1)

where a is a random number in {1,...,u}. fu+1is
not prime, there exists a prime not much larger than
u + 1 which can be used instead, causing only a small
degradation in space usage.)

The main insight behind Cleary’s data structure is
that, when using as a hash function the last bits of the
random permutation on the universe, an uninterrupted
sequence of t occupied locations in the hash table
can be represented using t(log(4u/n)) bits, such that
efficient decoding of the elements residing in these

positions is possible. In our application, each cell of
the linear probing hash table will be just log(1/€) + 2
bits (assuming € is a negative power of 2), and the
expected number of sequential bits involved in a lookup
or update is O(l(olg_(la/)z)). Fora=1- O(m) this is
O(log®(1/€)) bits, which is O(1) machine words unless
€ is quite small. Choosing constant o < 1, the expected
worst case number of bits accessed is O(log(n) log(1/¢)),
which is O(log(1/¢€)) machine words. Hence, the worst
case number of machine words accessed is the same
as for Bloom filters. An important point here is
that memory accesses are sequential, and hence cache
performance will be much better than for Bloom filters.

6 On some Bloom filter generalizations

6.1 Spectral Bloom filters. Spectral Bloom fil-
ters [9] generalize Bloom filters to storing an approx-
imate multiset. The membership query is generalized
to a query on the multiplicity of an element. Now, the
answer to any multiplicity query is never smaller than
the true multiplicity, and greater only with probabil-
ity e. The space usage is similar to that of a Bloom
filter for a set of the same size (adding multiplicities).
The construction generalizes Bloom filters, and thus the
query time is ©(log(1/€)). Using our data structure it
is also possible to answer cardinality queries, and the
answer is approximate in the same sense as for Spec-
tral Bloom Filters. The time needed to determine a
multiplicity of k is O(logk). This result is not strictly
comparable to that in [9]. Notice, however, that if the
dynamic multiset representation of Theorem 1.1 could
be replaced with a representation supporting constant
time cardinality queries, we could also obtain constant
time approximate cardinality queries.

6.2 Bloomier filters. Bloomier filters [6] generalize
Bloom filters to associate with each element of S some
satellite information from {1,...,m}. Elements not in
S are false positives with probability €, and will in that
case have associated information equaling that of some
element in S. The result in [6] is that one can get
by with O(nlog(1/€) + nlogm) bits of space, which is
within a constant factor of optimal, in the case where S
is a static set. The lookup time is constant, assuming
that logm = O(w). The analysis assumes truly random
hash functions. It is shown that without free access
to random hash functions, Q(logw) bits of space are
needed.

There is a conceptually very simple way of im-
proving the result to use explicit hash functions and
have space that is O(n + logw) bits from optimal.
The idea is to store a minimal perfect hash function

for S, using O(n + logw) bits [11], and a function
h: {0,1}* — {0,1}1°8(/9)] from a 2-universal fam-
ily, using O(log n+logw) bits [15]. Then store an array
of size n, where the entry that is the perfect hash value
of x € S contains:

1. The value h(z), and
2. The information associated with x.

Lookup of x simply consists of computing a value of
the perfect hash function and checking whether the
stored hash function value is h(z). It follows from
the definition of 2-universal hashing that any element
y & S has probability at most € of having the same hash
function value h(y) as the element in S that maps to
the same entry of the array.

An efficient data structure for the dynamic version
of the Bloomier filter problem was recently given in [13].

6.3 Lossy dictionaries. Lossy dictionaries, consid-
ered in [17], are set representations with false positives
and false negatives. It was shown in [17] that a lossy
dictionary with yn false negatives requires space that
is 1 — v times that of a lossy dictionary without false
negatives (up to an additive O(n) term). Thus, a space
optimal lossy dictionary can be obtained by omitting
a fraction ~ of the keys in the set stored by our data
structure. This improves upon the static lossy dictio-
nary described in [17].

In the dynamic case we need to “remember” which
keys were not stored, since these should never be deleted
from the data structure. This can be done by using
a strongly universal (i.e., pairwise independent) hash
function p : {0,1}* — {1,...,2"} and omitting keys z
where p(x) < 2¥y. The expected number of omitted
keys is then exactly yn (assuming 2%+ is an integer),
and hence the expected space usage is optimal, up to
lower order terms.

7 Conclusion

We have described a data structure dealing with some
of the most important shortcomings of Bloom filters:
Time dependence on €, suboptimal space usage, lack
of explicit analyzable hash functions, and the inability
to do deletions. Additionally, we described a variant
that is likely to compete well with Bloom filters in
practice. The main technical contribution of the paper
is a succinct multiset representation that, when used
with a reduction from [5], gives our main result.

An interesting open problem is whether it is possible
to obtain the information theoretic lower bound for
the approximate membership problem, in a way that
facilitates efficient lookups. All present data structures

use Q(n) bits more than this. Finding an optimal
space dynamic multiset representation that supports
cardinality queries in constant time is another open
problem.

References

[1] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422-426, July 1970.

[2] A. Z. Broder and M. Mitzenmacher. Network applica-
tions of Bloom filters: A survey. In Proceedings of the
40th Annual Allerton Conference on Communication,
Control, and Computing, pages 636—646. ACM Press,
2002.

[3] A. Brodnik and J. I. Munro. Membership in constant
time and almost-minimum space. SIAM J. Comput.,
28(5):1627-1640, 1999.

[4] J. L. Carter and M. N. Wegman. Universal classes of
hash functions. J. Comput. System Sci., 18(2):143—
154, 1979.

[5] L. Carter, R. Floyd, J. Gill, G. Markowsky, and
M. Wegman. Exact and approximate membership
testers. In Proceedings of the 10th Annual ACM
Symposium on Theory of Computing (STOC '78),
pages 59—65. ACM Press, 1978.

[6] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
Bloomier filter: An efficient data structure for static
support lookup tables. In Proceedings of the 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’04), pages 30-39. ACM Press, 2004.

[7] M. J. Clancy and D. E. Knuth. A programming and
problem-solving seminar. Technical Report CS-TR-
77-606, Stanford University, Department of Computer
Science, 1977.

[8] J. G. Cleary. Compact hash tables using bidirectional
linear probing. IEEFE Transactions on Computers, C-
33(9):828-834, Sept. 1984.

[9] S. Cohen and Y. Matias. Spectral Bloom filters. In

Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data 2003, pages 241—

252. ACM Press, 2003.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sum-

mary cache: A scalable wide-area web cache sharing

protocol. IEEE/ACM Transactions on Networking,

8(3):281-293, 2000.

T. Hagerup and T. Tholey. Efficient minimal perfect

hashing in nearly minimal space. In Proceedings of the

18th Symposium on Theoretical Aspects of Computer

Science (STACS ’01), volume 2010 of Lecture Notes

in Computer Science, pages 317—-326. Springer-Verlag,

2001.

M. Mitzenmacher. Compressed Bloom filters.

IEEE/ACM Transactions on Networking, 10(5):604—

612, 2002.

C. W. Mortensen, R. Pagh, and M. Patragcu. On dy-

namic range reporting in one dimension. Manuscript,

2004.

[10]

(1]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

A. Ostlin and R. Pagh. Uniform hashing in constant
time and linear space. In Proceedings of the 35th
Annual ACM Symposium on Theory of Computing
(STOC ’03), pages 622-628. ACM Press, 2003.

R. Pagh. Dispersing Hash Functions. In Proceedings
of the 4th International Workshop on Randomization
and Approzimation Techniques in Computer Science
(RANDOM ’00), volume 8 of Proceedings in Informat-
ics, pages 53—67. Carleton Scientific, 2000.

R. Pagh. Low redundancy in static dictionaries with
constant query time. SIAM J. Comput., 31(2):353—
363, 2001.

R. Pagh and F. F. Rodler. Lossy dictionaries. In Pro-
ceedings of the 9th European Symposium on Algorithms
(ESA °01), volume 2161 of Lecture Notes in Computer
Science, pages 300-311. Springer-Verlag, 2001.

R. Raman, V. Raman, and S. S. Rao. Succinct index-
able dictionaries with applications to encoding k-ary
trees and multisets. In Proceedings of the 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’02), pages 233-242. ACM Press, 2002.

R. Raman and S. S. Rao. Succinct dynamic dictio-
naries and trees. In Proceedings of the 30th Interna-
tional Colloguium on Automata, Languages and Pro-
gramming (ICALP ’03), volume 2719 of Lecture Notes
in Computer Science, pages 357—368. Springer-Verlag,
2003.

