Low redundancy in static dictionaries with $O(1)$ lookup time

Rasmus Pagh

BRICS, Aarhus University
The problem

A static dictionary stores a subset S of a finite universe U.

Model: Unit cost RAM with multiplication, word size w. $U = \{0, \ldots, 2^w - 1\}$.

Bit vectors of length 2^w allow constant time lookup.

Can we achieve this using less memory (as a function of $n = |S|$ and w)?
Low redundancy in static dictionaries

Dictionaries using minimal perfect hashing

The minimal perfect hash functions of Fredman, Komlós & Szemerédi (1982):

Evaluation time: $O(1)$.

Space usage: $o(n)$ machine words.

proc lookup(x)
 return (T[h(x)]=x);
end
Redundancy in the hash table

There are $n!$ ways of arranging the elements of S in a table:

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

So a table uses at least $\log_2(n!) = n \log_2 n - \Theta(n)$ bits more than optimum.

Example: The set of $n \approx 5,400,000$ Danish personal identity numbers.

- Table size: $25n$ bits.
- Table redundancy: $\log_2(n!) > 20n$ bits.
The information theoretical minimum

To represent any subset of U of size n we need at least

$$B = \lceil \log_2 \left(\frac{2^w}{n} \right) \rceil = n \left(w - \log_2 n + \Theta(1) \right) \text{ bits}.$$

How close can we get to B bits of space without sacrificing lookup efficiency?
Previous work

The dictionary of Brodnik & Munro (1994):

Lookup time: Worst case $O(1)$.

Space usage: $O(B)$ bits --- later improved to $B + O(B/\log^3(B))$ bits.

Approach:
Two-level splitting into subranges which are stored using either

- A pointer to a “table of small ranges” (dense subsets), or
- Non-oblivious hashing (sparse subsets).
Main result

A static dictionary with:

Lookup time: Worst case $O(1)$.

Space usage: $B + o(n) + O(\log w)$ bits.

Redundancy reduction factor:

Non-sparse sets: $\log w \ (\log n)^{1-o(1)}$.

Sparse sets: $\Theta(n)$.
A simple observation on saving space in hash tables

For a fixed hash function, only certain values are possible in each hash table cell.

Each hash table element can be stored *relative* to a set of size $\approx 2^w/n$.

About $\log_2 n$ bits are saved for each element!
Quotient functions

A quotient function q (of a hash function h) maps from explicit to “compressed” form.

$$x \mapsto (h(x), q(x))$$ must be 1-1.

Using $T' = [q(T[0]), q(T[1]), \ldots, q(T[n-1])]$:

```plaintext
proc lookup'(x)
  return (T'[h(x)] = q(x));
end
```

Example: $h(x) = (kx \mod p) \mod n$, $q(x) = (x \div p, (kx \mod p) \div n)$.

A fast, space-efficient minimal perfect hashing scheme

The minimal perfect hash functions of Schmidt & Siegel (1990):

Evaluation time: $O(1)$.

Space usage: $O(n + \log w)$ bits (optimal).

Corresponding quotient function:

Evaluation time: $O(1)$.

Space usage: No extra space needed.

Range: $\{0, \ldots, r\}$, where $r = O(2^w/n)$.

Low redundancy in static dictionaries

Putting things together

We have seen the ingredients of a static dictionary with $O(1)$ worst case lookup time, and space usage:

Hash function: $O(n + \log w)$ bits.

Hash table: $n (w - \log_2 n + O(1))$ bits.

Total: $B + O(n + \log w)$ bits.
Low redundancy in static dictionaries

Bottlenecks

Minimal perfect hash function: The representation is $\Omega(n)$ bit redundant.

Hash table: The quotient function values generally don’t span all bit combinations.

```
0 unused r 2^y - 1
```

Can we

- Avoid the use of minimal perfect hashing?
- Make sure that $|q[U]|$ is close to (but not higher than) a power of two?
Abandoning minimality

Perfect hash functions with larger range consume less memory . . .

... and $|q[U]|$ can be adjusted by changing the range slightly.
The virtual hash table

To cope with holes in the table, we introduce a partial function ν, defined and 1-1 on the non-empty table entries.

For virtual table size $a = n (\log n)^{O(1)}$ there is an efficient data structure for ν.
Abandoning perfection

Universal hash functions are nearly perfect when the range is large.

The few colliding elements can be stored using a less efficient method.
Putting things together — tighter

Let n_1 denote the number of elements in the “primary” dictionary.

Hash function:
\[n_1 \log_2 \left(\frac{ea}{n} \right) + O\left(\log n + \log w \right) \] bits.

Virtual table:
\[n_1 \log_2 \left(\frac{2^w}{a} \right) + O\left(\frac{n \log^2 \log n}{\log n} \right) \] bits.

Hash table:
\[n_1 \log_2 \left(\frac{2^w}{a} \right) + o(-) \] bits.

Dictionary 2:
\[(n - n_1) \log_2 \left(\frac{e^2 w}{n} \right) + o(-) \] bits.

Total:
\[n \log_2 \left(\frac{e^2 w}{n} \right) + O \left(\frac{n \log^2 \log n}{\log n} + \log w \right) \]
\[= B + o(n) + O(\log w) \] bits.
Conclusion and open problems

We have seen that:

- Using a quotient function one can save $\approx n \log_2 n$ bits in a hash table.
- Vanishing redundancy per element in a dictionary can be achieved.

It would be interesting to:

- See any lower bound.
- Improve the virtual table mapping.