From Independence to Expansion and Back Again

Tobias Christiani, Rasmus Pagh
IT University of Copenhagen

Mikkel Thorup
University of Copenhagen
Introduction

Topic of this talk:
- Upper bounds on the space-time tradeoff of k-independent functions in the word RAM model
Introduction

Topic of this talk:
• Upper bounds on the space-time tradeoff of k-independent functions in the word RAM model

Definition A family of functions \mathcal{F} from $[u]$ to $[r]$ is k-independent if for every set of k distinct keys $x_1, x_2, \ldots, x_k \in [u]$ and k values $y_1, y_2, \ldots, y_k \in [r]$ we have that

$$\Pr_{f \in \mathcal{F}}[f(x_1) = y_1, f(x_2) = y_2, \ldots, f(x_k) = y_k] = r^{-k}$$
Introduction

Topic of this talk:
- Upper bounds on the space-time tradeoff of k-independent functions in the word RAM model

Definition A family of functions \mathcal{F} from $[u]$ to $[r]$ is k-independent if for every set of k distinct keys $x_1, x_2, \ldots, x_k \in [u]$ and k values $y_1, y_2, \ldots, y_k \in [r]$ we have that

$$\Pr_{f \in \mathcal{F}}[f(x_1) = y_1, f(x_2) = y_2, \ldots, f(x_k) = y_k] = r^{-k}$$

- Example of a k-independent function:

$$f(x) = \sum_{i=0}^{k-1} a_i x^i \mod p$$
Introduction

Topic of this talk:
- Upper bounds on the space-time tradeoff of k-independent functions in the word RAM model

Definition A family of functions \mathcal{F} from $[u]$ to $[r]$ is k-independent if for every set of k distinct keys $x_1, x_2, \ldots, x_k \in [u]$ and k values $y_1, y_2, \ldots, y_k \in [r]$ we have that

$$\Pr_{f \in \mathcal{F}}[f(x_1) = y_1, f(x_2) = y_2, \ldots, f(x_k) = y_k] = r^{-k}$$

- Example of a k-independent function:

$$f(x) = \sum_{i=0}^{k-1} a_i x^i \mod p$$

- Tradeoff:
 - Space used to represent $f \in \mathcal{F}$
 - Time used to evaluate $f \in \mathcal{F}$
Theorem [Siegel’89] A data structure for representing a k-independent function $f : [u] \rightarrow [r]$ with evaluation time $t < k$ must use at least $ku^{1/t}$ words of space.
Lower bound

Theorem [Siegel’89] A data structure for representing a k-independent function $f : [u] \rightarrow [r]$ with evaluation time $t < k$ must use at least $ku^{1/t}$ words of space.

Main result (vanilla version)

Randomized data structure for representing a k-independent function $f : [u] \rightarrow [r]$ with a space usage of $O(ku^{1/t}t)$ and evaluation time $O(t \log t)$.
Space-time tradeoff: Lower and upper bounds

Lower bound

Theorem [Siegel’89] A data structure for representing a k-independent function $f : [u] \rightarrow [r]$ with evaluation time $t < k$ must use at least $ku^{1/t}$ words of space.

Main result (vanilla version)

Randomized data structure for representing a k-independent function $f : [u] \rightarrow [r]$ with a space usage of $O(ku^{1/t})$ and evaluation time $O(t \log t)$.

Previous results

<table>
<thead>
<tr>
<th>Reference</th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomials [Joffe’74]</td>
<td>$O(k)$</td>
<td>$O(k)$</td>
</tr>
<tr>
<td>Graph powering [Siegel’89]</td>
<td>$O(k^tu^{1/t})$</td>
<td>$O(t)^t$</td>
</tr>
<tr>
<td>Recursive tabulation [Thorup’13]</td>
<td>$O(\text{poly } k + u^{1/t})$</td>
<td>$O(t^{\log t})$</td>
</tr>
</tbody>
</table>
Constructions of k-independent families of functions based on bipartite expander graphs

Neighbor function $\Gamma : U \rightarrow V^d$
• Constructions of k-independent families of functions based on bipartite expander graphs

• Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S
• Constructions of k-independent families of functions based on bipartite expander graphs

• Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S
• Constructions of k-independent families of functions based on bipartite expander graphs

• Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S
From independence to expansion and back again

- Constructions of k-independent families of functions based on bipartite expander graphs
- Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S
From expansion to independence

- Constructions of k-independent families of functions based on bipartite expander graphs
- Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S

Lemma [Siegel’89] Let $\Gamma : U \rightarrow V^d$ be k-unique and $h : V \rightarrow [r]$ be a random function. Then $f(x) = \sum_i h(\Gamma(x)_i) \mod r$ defines a k-independent family of functions
From expansion to independence

- Constructions of k-independent families of functions based on bipartite expander graphs
- Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S

- Peeling argument example:

$$f(x_3) = h(v_2) + h(v_4) + h(v_5) \mod r$$

Lemma [Siegel’89] Let $\Gamma : U \rightarrow V^d$ be k-unique and $h : V \rightarrow [r]$ be a random function. Then $f(x) = \sum_i h(\Gamma(x)_i) \mod r$ defines a k-independent family of functions
From expansion to independence

- Constructions of \(k \)-independent families of functions based on bipartite expander graphs
- Neighbor function \(\Gamma : U \to V^d \)

Definition A bipartite graph \(\Gamma \) is \(k \)-unique if for every \(S \subseteq U \) with \(|S| \leq k \) there exists \(v \in V \) with exactly one neighbor in \(S \)

- Peeling argument example:
 \[
 f(x_3) = h(v_2) + h(v_4) + h(v_5) \mod r
 \]

Lemma [Siegel’89] Let \(\Gamma : U \to V^d \) be \(k \)-unique and \(h : V \to [r] \) be a random function. Then \(f(x) = \sum_i h(\Gamma(x)_i) \mod r \) defines a \(k \)-independent family of functions
• Constructions of k-independent families of functions based on bipartite expander graphs

• Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S

• Peeling argument example:

$$f(x_3) = h(v_2) + h(v_4) + h(v_5) \mod r$$

Lemma [Siegel’89] Let $\Gamma : U \rightarrow V^d$ be k-unique and $h : V \rightarrow [r]$ be a random function. Then $f(x) = \sum_i h(\Gamma(x)_i) \mod r$ defines a k-independent family of functions
From expansion to independence

- Constructions of k-independent families of functions based on bipartite expander graphs
- Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S

- Peeling argument example:

$$f(x_3) = h(v_2) + h(v_4) + h(v_5) \mod r$$

Lemma [Siegel’89] Let $\Gamma : U \rightarrow V^d$ be k-unique and $h : V \rightarrow \mathbb{Z}_r$ be a random function. Then $f(x) = \sum_i h(\Gamma(x)_i) \mod r$ defines a k-independent family of functions
From expansion to independence

- Constructions of k-independent families of functions based on bipartite expander graphs
- Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S

- Peeling argument example:

$$f(x_3) = h(v_2) + h(v_4) + h(v_5) \mod r$$

Lemma [Siegel’89] Let $\Gamma : U \rightarrow V^d$ be k-unique and $h : V \rightarrow [r]$ be a random function. Then $f(x) = \sum_i h(\Gamma(x)_i) \mod r$ defines a k-independent family of functions
From expansion to independence

• Constructions of k-independent families of functions based on bipartite expander graphs
• Neighbor function $\Gamma : U \rightarrow V^d$

Definition A bipartite graph Γ is k-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $v \in V$ with exactly one neighbor in S

• Peeling argument example:

$$ f(x_3) = h(v_2) + h(v_4) + h(v_5) \mod r $$

Lemma [Siegel’89] Let $\Gamma : U \rightarrow V^d$ be k-unique and $h : V \rightarrow [r]$ be a random function. Then $f(x) = \sum_i h(\Gamma(x)_i) \mod r$ defines a k-independent family of functions
Existence of optimal k-unique graphs

k-unique $\Gamma : U \rightarrow V^d$
Existence of optimal k-unique graphs

k-unique $\Gamma : U \rightarrow V^d$

k-independent family \mathcal{F}

\[f(x) = \sum_i h(\Gamma(x)_i) \mod r \]

$h : V \rightarrow [r]$ is random

Space $|V|$

Time d
Existence of optimal k-unique graphs

k-unique $\Gamma : U \rightarrow V^d$

k-independent family \mathcal{F}

$$f(x) = \sum_i h(\Gamma(x)_i) \mod r$$

$h : V \rightarrow [r]$ is random

Space $|V|$

Time d

Lemma [Siegel’89] Most graphs Γ give an optimal space-time tradeoff for k-independent hashing
Existence of optimal k-unique graphs

k-unique $\Gamma : U \to V^d$

k-independent family F

$f(x) = \sum_i h(\Gamma(x)_i) \mod r$

$h : V \to [r]$ is random

Space $|V|$

Time d

Lemma [Siegel’89] Most graphs Γ give an optimal space-time tradeoff for k-independent hashing

- Explicit k-unique graphs with optimal parameters are not known
Existence of optimal k-unique graphs

k-unique $\Gamma : U \to V^d$

k-independent family \mathcal{F}

$$f(x) = \sum_i h(\Gamma(x)_i) \mod r$$

$h : V \to [r]$ is random

Space $|V|$

Time d

Lemma [Siegel’89] Most graphs Γ give an optimal space-time tradeoff for k-independent hashing

- Explicit k-unique graphs with optimal parameters are not known
- Storing a random Γ defeats the purpose of k-independent hashing
Existence of optimal k-unique graphs

k-unique $\Gamma : U \to V^d$

k-independent family \mathcal{F}

$$f(x) = \sum_i h(\Gamma(x)_i) \mod r$$

$h : V \to [r]$ is random

Space $|V|$

Time d

Lemma [Siegel’89] Most graphs Γ give an optimal space-time tradeoff for k-independent hashing

- Explicit k-unique graphs with optimal parameters are not known
- Storing a random Γ defeats the purpose of k-independent hashing
- Verifying that a given Γ is k-unique is infeasible
Set of all functions $\Gamma : U \rightarrow V^d$
Set of all functions $\Gamma : U \rightarrow V^d$

Optimally k-unique
Set of all functions $\Gamma : U \rightarrow V^d$

- Optimally k-unique
- k-independent family
Set of all functions $\Gamma : U \rightarrow V^d$

Optimally k-unique

k-independent family
Set of all functions $\Gamma : U \rightarrow V^d$

Optimally k-unique

k-independent family

Lemma A k-independent function $\Gamma : U \rightarrow V^d$ with $|U| = u$, $|V| = O(ku^{1/t}t)$ and $d = O(t)$ is k-unique with high probability.
Set of all functions $\Gamma : U \rightarrow V^d$

Lemma A k-independent function $\Gamma : U \rightarrow V^d$ with $|U| = u$, $|V| = O(ku^{1/t}t)$ and $d = O(t)$ is k-unique with high probability.

k-unique \quad k-independent family \quad k-unique whp.

$\Gamma \quad \rightarrow \quad \mathcal{F} \quad \rightarrow \quad \Gamma \in \mathcal{F}$
Overview of technique

k-unique
Overview of technique

Increase domain

k-unique
Overview of technique

k-unique

Increase domain

k-unique

Define family

F

k-independent
Overview of technique

k-unique

Increase domain

\vdots

Define family

\vdots

Sample $\Gamma \in \mathcal{F}$

k-independent

k-unique

k-unique

k-unique whp.
A randomized recursive construction of a k-unique function

- View $x \in [u]$ as a string of characters from an alphabet Σ

$$
\Gamma(ax) = \bigoplus_i h(a, \Gamma(x)_i), \quad a \in \Sigma, \ ax \in \Sigma^*
$$

$h : \Sigma \times V \rightarrow V^d$ is random
A randomized recursive construction of a k-unique function

- View $x \in [u]$ as a string of characters from an alphabet Σ

$$\Gamma(ax) = \bigoplus_i h(a, \Gamma(x)_i), \quad a \in \Sigma, \ ax \in \Sigma^*$$

$h : \Sigma \times V \rightarrow V^d$ is random
A randomized recursive construction of a k-unique function

- View $x \in [u]$ as a string of characters from an alphabet Σ

 $$\Gamma(ax) = \bigoplus_i h(a, \Gamma(x)_i), \quad a \in \Sigma, \ ax \in \Sigma^*$$

 $$h : \Sigma \times V \rightarrow V^d \text{ is random}$$
A randomized recursive construction of a k-unique function

- View $x \in [u]$ as a string of characters from an alphabet Σ

$$\Gamma(ax) = \bigoplus_i h(a, \Gamma(x)_i), \quad a \in \Sigma, \ ax \in \Sigma^*$$

$h : \Sigma \times V \to V^d$ is random
A randomized recursive construction of a k-unique function

- View $x \in [u]$ as a string of characters from an alphabet Σ

$$\Gamma(ax) = \bigoplus_i h(a, \Gamma(x)_i), \quad a \in \Sigma, \ ax \in \Sigma^*$$

$h : \Sigma \times V \rightarrow V^d$ is random

From Independence to Expansion and Back Again
A randomized recursive construction of a k-unique function

- View $x \in [u]$ as a string of characters from an alphabet Σ

$$\Gamma(ax) = \bigoplus_i h(a, \Gamma(x)_i), \quad a \in \Sigma, \ ax \in \Sigma^*$$

$h : \Sigma \times V \rightarrow V^d$ is random

Lemma Γ is k-unique over Σ^j

$\Rightarrow \Gamma$ is k-independent over Σ^{j+1}

$\Rightarrow \Gamma$ is k-unique over Σ^{j+1} whp.
A randomized recursive construction of a k-unique function

- View $x \in [u]$ as a string of characters from an alphabet Σ

$$\Gamma(ax) = \bigoplus_i h(a, \Gamma(x)_i), \quad a \in \Sigma, \ ax \in \Sigma^*$$

$h : \Sigma \times V \rightarrow V^d$ is random

Lemma Γ is k-unique over Σ^j

$\implies \Gamma$ is k-independent over Σ^{j+1}

$\implies \Gamma$ is k-unique over Σ^{j+1} whp.

- Parameterizing for k-independence with domain size u and tradeoff parameter t

$$|\Sigma| = u^{1/2t}$$
$$|V| = O(ku^{1/2t}t)$$
$$d = O(t)$$

- Space $O(ku^{1/t}t^2)$. Time $O(t^2)$.
Definition A bipartite graph Γ is k-majority-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $x \in S$ such that the majority of vertices in $\Gamma(\{x\})$ have exactly one neighbor in S.

\[U \quad \xrightarrow{d} \quad V \]
Definition A bipartite graph Γ is k-majority-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $x \in S$ such that the majority of vertices in $\Gamma(\{x\})$ have exactly one neighbor in S.
A stronger expansion property

Definition A bipartite graph Γ is k-majority-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $x \in S$ such that the majority of vertices in $\Gamma(\{x\})$ have exactly one neighbor in S.

![Diagram of a bipartite graph](image-url)
Definition A bipartite graph Γ is k-majority-unique if for every $S \subseteq U$ with $|S| \leq k$ there exists $x \in S$ such that the majority of vertices in $\Gamma(\{x\})$ have exactly one neighbor in S.
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1x_2)_i = \Gamma(x_1)_i\Gamma(x_2)_i$ is k-unique over Σ^2.
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1 x_2)_i = \Gamma(x_1)_i \Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
- Goal: Find a key $x'_1 x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1x_2)_i = \Gamma(x_1)_i\Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
• Goal: Find a key $x'_1x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
• There exists $x'_1 \in \{x_1 \mid x_1x_2 \in S\}$ with $> d/2$ unique neighbors
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1x_2)_i = \Gamma(x_1)_i \Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
- Goal: Find a key $x'_1 x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
- There exists $x'_1 \in \{x_1 \mid x_1 x_2 \in S\}$ with $> d/2$ unique neighbors
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1x_2)_i = \Gamma(x_1)_i\Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
- Goal: Find a key $x'_1x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
- There exists $x'_1 \in \{x_1 \mid x_1x_2 \in S\}$ with $>d/2$ unique neighbors
- There exists $x'_2 \in \{x_2 \mid x'_1x_2 \in S\}$ with $>d/2$ unique neighbors
A graph product based on component-wise concatenation

Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1x_2)_i = \Gamma(x_1)_i \Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
- Goal: Find a key $x'_1 x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
- There exists $x'_1 \in \{x_1 \mid x_1 x_2 \in S\}$ with $> d/2$ unique neighbors
- There exists $x'_2 \in \{x_2 \mid x'_1 x_2 \in S\}$ with $> d/2$ unique neighbors
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1x_2)_i = \Gamma(x_1)_i\Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
- Goal: Find a key $x'_1 x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
- There exists $x'_1 \in \{x_1 \mid x_1x_2 \in S\}$ with $> d/2$ unique neighbors
- There exists $x'_2 \in \{x_2 \mid x'_1x_2 \in S\}$ with $> d/2$ unique neighbors
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1 x_2)_i = \Gamma(x_1)_i \Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
- Goal: Find a key $x'_1 x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
- There exists $x'_1 \in \{x_1 \mid x_1 x_2 \in S\}$ with $> d/2$ unique neighbors
- There exists $x'_2 \in \{x_2 \mid x'_1 x_2 \in S\}$ with $> d/2$ unique neighbors
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1 x_2)_i = \Gamma(x_1)_i \Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
- Goal: Find a key $x'_1 x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
- There exists $x'_1 \in \{x_1 \mid x_1 x_2 \in S\}$ with $> d/2$ unique neighbors
- There exists $x'_2 \in \{x_2 \mid x'_1 x_2 \in S\}$ with $> d/2$ unique neighbors
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1x_2)_i = \Gamma(x_1)_i\Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
- Goal: Find a key $x'_1x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
- There exists $x'_1 \in \{x_1 \mid x_1x_2 \in S\}$ with $> d/2$ unique neighbors
- There exists $x'_2 \in \{x_2 \mid x'_1x_2 \in S\}$ with $> d/2$ unique neighbors
Lemma Let Γ be k-majority-unique over an alphabet Σ. Then the function defined by $\Gamma(x_1x_2)_i = \Gamma(x_1)_i\Gamma(x_2)_i$ is k-unique over Σ^2.

Proof:
- Goal: Find a key $x'_1x'_2 \in S \subseteq \Sigma^2$ that has a unique neighbor
- There exists $x'_1 \in \{x_1 \mid x_1x_2 \in S\}$ with $> d/2$ unique neighbors
- There exists $x'_2 \in \{x_2 \mid x'_1x_2 \in S\}$ with $> d/2$ unique neighbors
A divide-and-conquer recursion

- View $x \in [u]$ as a string of two characters and recurse on each

$$\Gamma(x_1 x_2) = \bigoplus_i h(\Gamma(x_1)_i, \Gamma(x_2)_i)$$
A divide-and-conquer recursion

- View $x \in [u]$ as a string of two characters and recurse on each

$$
\Gamma(x_1 x_2) = \bigoplus_i h(\Gamma(x_1)_i, \Gamma(x_2)_i)
$$

<table>
<thead>
<tr>
<th>Universe</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>d</td>
</tr>
</tbody>
</table>
A divide-and-conquer recursion

- View $x \in [u]$ as a string of two characters and recurse on each

$$\Gamma(x_1 x_2) = \bigoplus_i h(\Gamma(x_1)_i, \Gamma(x_2)_i)$$

Universes: u Degree: d

Degree: $d/2$
A divide-and-conquer recursion

- View $x \in [u]$ as a string of two characters and recurse on each

$$\Gamma(x_1 x_2) = \bigoplus_i h(\Gamma(x_1)_i, \Gamma(x_2)_i)$$

```
\begin{array}{c|cc|cc|cc|cc}
\Gamma(x) & \Gamma(x_1) & \Gamma(x_2) & \Gamma(x_{1,1}) & \Gamma(x_{1,2}) & \Gamma(x_{2,1}) & \Gamma(x_{2,2}) \\
\hline
\text{Universe} & u & u^{1/2} & u^{1/4} & \text{Degree} & d & d/2 & d/4
\end{array}
```
A divide-and-conquer recursion

- View $x \in [u]$ as a string of two characters and recurse on each

$$\Gamma(x_1 x_2) = \bigoplus_i h(\Gamma(x_1)_i, \Gamma(x_2)_i)$$

```
\begin{array}{c}
\Gamma(x) \\
| \rho | \\
\Gamma(x_1) \quad \Gamma(x_2) \\
| \rho | \\
\Gamma(x_{1,1}) \quad \Gamma(x_{1,2}) \quad \Gamma(x_{2,1}) \quad \Gamma(x_{2,2}) \\
| \rho | \quad | \rho | \quad | \rho | \\
\vdots \\
| \rho | \\
\end{array}
```

<table>
<thead>
<tr>
<th>Universe</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>d</td>
</tr>
<tr>
<td>$u^{1/2}$</td>
<td>$d/2$</td>
</tr>
<tr>
<td>$u^{1/4}$</td>
<td>$d/4$</td>
</tr>
</tbody>
</table>
A divide-and-conquer recursion

- View $x \in [u]$ as a string of two characters and recurse on each

$$\Gamma(x_1x_2) = \bigoplus_i h(\Gamma(x_1)_i, \Gamma(x_2)_i)$$

![Diagram of a divide-and-conquer recursion]

Problems:

- By the lower bound h must have a domain of size at least k^2
 - Use the first recursion to implement h
A divide-and-conquer recursion

- View $x \in [u]$ as a string of two characters and recurse on each

$$\Gamma(x_1 x_2) = \bigoplus_i h(\Gamma(x_1)_i, \Gamma(x_2)_i)$$

Problems:

- By the lower bound h must have a domain of size at least k^2
 - Use the first recursion to implement h

- Low space usage, high degree: representing $\Gamma(x)$ in few words
 - Graph products that take the structure of S into account
Summary

Result:
• Near-optimal space-time tradeoff for k-independent functions
Summary

Result:
- Near-optimal space-time tradeoff for k-independent functions

Technique:
- Graph products and alternating between expansion and independence
Summary

Result:
- Near-optimal space-time tradeoff for k-independent functions

Technique:
- Graph products and alternating between expansion and independence

Open questions:
- Optimal expanders without k-independence
Summary

Result:
- Near-optimal space-time tradeoff for k-independent functions

Technique:
- Graph products and alternating between expansion and independence

Open questions:
- Optimal expanders without k-independence

Thanks for listening!