Scalable computation of acyclic joins

Rasmus Pagh
IT University of Copenhagen

Joint work with Anna Östlin Pagh
PODS 2006
Outline

‣ What is an acyclic join?
‣ Case study: Star schemas
 • Worst case performance of known algorithms
 • Using our new approach
‣ Our general result
‣ Cyclic joins
Natural join

- Given relations R_1,\ldots,R_k, compute the relation R consisting of all tuples whose projections (to appropriate attributes) can be found in R_1,\ldots,R_k.
- **NP-hard** in general [MSY ‘81].
- Special case of acyclic joins known to be polynomial time computable [G,YO ‘79], [Y ‘81].
Acyclic join

- **Definition.** A join of relations R_1, \ldots, R_k is *acyclic* if there exists a tree with vertices R_1, \ldots, R_k such that the join can be expressed as a theta-join with equality conditions only between adjacent relations.

- **Example:**

 cyclic join

R$_1$(a,b)
R$_5$(z,b)
R$_4$(y,z)
R$_2$(a,c)
R$_3$(a,d)
R$_3$(a,z)
Special case: Star schema

- **Star schema**: The attribute sets of the relations are disjoint, except R_1 which contains an attribute from each of $R_2, ..., R_k$.

- **Example**:

```
R_1(a,b,c)
  /    \
 R_2(a,x)  R_3(b,y)  R_4(c,z)
```

5
Star schema join

- Natural join of R_1,\ldots,R_k having a star schema.
- Any join not involving R_1 is a cartesian product.
- Best query plan usually highly unbalanced:
 - All intermediate results, and the final result, may have roughly the same size as R_1.

 ![Diagram showing a join tree with height $\Omega(k)$]
Worst-case complexity

• Let n denote the size of input (\approx size of output).

• Total size of inputs to binary joins $\Omega(kn) \Rightarrow$

 \[
 \begin{cases}
 \Omega(kn) \text{ time on a RAM} \\
 \Omega(kn/B) \text{ I/Os in the I/O model}
 \end{cases}
 \]

• Pipelining and indexing don’t help asymptotically.

• Next: Eliminating the dependence on k.
New approach

- Abandon the idea of intermediate results.
- Compute relationship between input and output.
New approach

- Abandon the idea of intermediate results.
- Compute relationship between input and output.

sort by row numbers
1. Count number of tuples matching each tuple in R_1.

R_1:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>b</td>
</tr>
</tbody>
</table>

R_2:

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>α</td>
</tr>
<tr>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>b</td>
<td>β</td>
</tr>
</tbody>
</table>

R_3:

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
</tbody>
</table>
Implementation

1. Count number of tuples matching each tuple in R_1.

2.Enumerate the output tuples.
General algorithm

- More complicated application of the same ideas — guided by the tree of the acyclic join.
- **Counting phase** proceeds bottom-up in tree — computes #tuple occurrences in sub-joins.
- **Enumeration phase** proceeds top-down — assigns output tuple numbers to all tuples.
- **Sort** to produce the result.
General result

- Acyclic join of k relations.
- Let n denote the input size plus the size of data involved in the equality conditions of the join. Let z denote the output size.

We can compute the join in

- $O(sort(n+z))$ I/Os on external memory
- $O(n+z)$ expected time on a RAM
Cyclic joins: 3-cycles

Analysis: Each tuple in R_3 is a possible match $O(n/M)$ times.

$O(n^2/(MB) + sort(n))$ I/Os
(previously: $O(n^2/B)$ I/Os)
Conclusion

- Relational algebra forms the basis of query languages, but it is not always the best basis for query processing!
- We saw two examples where evaluation based on a relational algebra expression is suboptimal.
Open problems

• Experimental evaluation — how many relations are needed before the new algorithm is better?

• Are any cyclic joins computable in sorting complexity (worst case)?

• Which other join graphs can be handled in $\tilde{O}(n^2/(MB))$ I/Os (worst case)?

 Status: 3-cycles and 4-cycles.
Thank you!