Optimal Time-Space Trade-Offs for Non-Comparison-Based Sorting

Rasmus Pagh

BRICS, University of Aarhus, Denmark

joint work with

Jakob Pagter

CRYPTOMATHIC, Denmark
The problem

Sort a list of n integers of w bits.

- Unit cost RAM with word size w.
- Read-only input, write-only output.

Goal:

- Determine the time-space trade-off, i.e., the range of possible combinations of time and workspace usage.
Known time-space trade-off results for sorting

\[T \cdot S = \Omega(n^2) \text{ for } T \geq n \log n \]

\[T \cdot S = O(n^2) \text{ for } T \geq n \log n \]

\(t_{\text{sort}} \): The time complexity of sorting

Time-space trade-offs for sorting
Best results on sorting in time $o(n \log n)$

- $2\Omega(w)$
- nw
- n
- $n/\log n$
- $n \log n$

$T = n \log \log n$ [Andersson et al. '95]

$T = n \log \log n \log \log \log n$ [Han '01]

Deterministic
Randomized

Time-space trade-offs for sorting
Our results (vanilla versions)

Theorem.

Sorting in time \(T(n) \geq n \log^* n \) \(\Rightarrow \)

Sorting in time \(T(n) \) w.h.p. and space \(S = O\left(\frac{n^2}{T(n)} + n^\epsilon w\right) \).

The proof of the theorem uses a reduction of [Thorup ’96]:

| Sorting in time \(n t(n) \) and space \(s(n) \) \(\Rightarrow \) Monotone priority queue with time \(t(n)/\text{op} \) and space \(s(n) + O(nw) \) bits. |

Main lemma.

A monotone priority queue using time \(t(n) \geq \log^* n \) and space \(n^{O(1)}w \) \(\Rightarrow \)

Sorting in time \(O(n t(n)) \) using space \(S = O\left(\frac{n}{t(n)} + n^\epsilon w\right) \).

(The reduction does not introduce randomization.)
Beame’s sorting lower bound can be met:

- For $T(n) \geq n \log \log n$, w.h.p., by a randomized algorithm.
- For $T(n) \geq n \log \log n \log \log \log n$ deterministically.
The rest of the talk outlines our proof of the main lemma in the special case where:

- the priority queue uses $O(n \log n)$ bits of space, and
- $t(n) \geq \log \log \log n$.
We will use the comparison-based Pagter-Rauhe heap which reports the elements from an interval, in sorted order, using optimal space.

The Pagter-Rauhe heap

We will use the comparison-based Pagter-Rauhe heap which reports the elements from an interval, in sorted order, using optimal space.
The case $t(n) \geq \log \log n$
Data structure summary

The case $t(n) \geq \log \log n$:

- A PR-heap reports elements from each “small” interval.
- A fast priority queue on top always contains the smallest remaining element from each interval.
The case $t(n) \geq \log \log \log n$:

- A PR-heap reports elements from each *very* small interval.
- For each small interval of PR-heaps we have a buffer with pointers to the smallest remaining elements.
- When the buffer runs out, it is filled using a *temporary* fast priority queue. This costs time $t(n)$ per element in the buffer.
- A fast priority queue on top always contains the smallest remaining element from each buffer.
The case $t(n) \geq \log \log \log n$

Time-space trade-offs for sorting
The general case

Handling greater speeds:

- Use more levels of buffers.
- Use constant-time priority queues (Q-heaps) for very small sets.

Improving dependence on word length:

- Replace the top priority queue by $O(1)$ levels of buffers of size n^ε.
Conclusion

The time-space trade-off of randomized sorting is almost completely understood. Depending on the time complexity of sorting, we have one of these situations:

\[
T \cdot S = n^2
\]

Time-space trade-offs for sorting
Open problems

• Give deterministic upper bounds.

• Close the small gap for time $o(n \lg^* n)$
 – or show a lower bound on the time for sorting!

• Give better upper bounds in special cases, e.g., $w = O(\log n)$.