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ABSTRACT
Min-wise hashing is an important method for estimating the
size of the intersection of sets, based on a succinct summary
(a “min-hash”) independently computed for each set. One
application is estimation of the number of data points that
satisfy the conjunction of m ≥ 2 simple predicates, where
a min-hash is available for the set of points satisfying each
predicate. This has applications in query optimization and
for approximate computation of COUNT aggregates. In this
paper we address the question: How many bits is it neces-
sary to allocate to each summary in order to get an estimate
with 1 ± ε relative error? The state-of-the-art technique
for minimizing the encoding size, for any desired estimation
error, is b-bit min-wise hashing due to Li and König (Com-
munications of the ACM, 2011). We give new lower and
upper bounds:

• Using information complexity arguments, we show that
b-bit min-wise hashing is space optimal for m = 2
predicates in the sense that the estimator’s variance is
within a constant factor of the smallest possible among
all summaries with the given space usage. But for con-
junctions of m > 2 predicates we show that the perfor-
mance of b-bit min-wise hashing (and more generally
any method based on “k-permutation” min-hash) de-
teriorates as m grows.

• We describe a new summary that nearly matches our
lower bound for m ≥ 2. It asymptotically outper-
form all k-permutation schemes (by around a factor
Ω(m/ logm)), as well as methods based on subsam-
pling (by a factor Ω(lognmax), where nmax is the max-
imum set size).

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General
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1. INTRODUCTION
Many basic information processing problems can be ex-

pressed in terms of intersection sizes within a preprocessed
collection of sets. For example, in databases and data ana-
lytics, aggregation queries often use a conjunction of several
simple conditions such as “How many sales occurred in June
2013, in Sweden, where the sold object is a car?” In this pa-
per we consider the problem of quickly estimating the size
of the intersection of several sets, where a succinct precom-
puted summary of s bits is available for each set. Specifi-
cally, we answer the question:

How many bits is it necessary to allocate to each summary
in order to get an estimate with 1± ε relative error?

Note that we require the summaries to be independently
computed, which for example prevents solutions based on
precomputing all answers. This restriction is motivated by
yielding scalable and flexible methods for estimating inter-
section sizes, with no need for a centralized data structure.

Motivation.
Estimates of intersection size can be used directly as part

of algorithms with approximation guarantees, but are also
useful for exact computation. For example, when evaluat-
ing conjunctive database queries the order in which intersec-
tions are computed can have a large impact on performance.
Good estimates of intersection sizes allow a query optimizer
to make a choice that is near-optimal. In other settings, es-
timates of intersection sizes can be used as a filter to skip
parts of an exact computation that would not influence the
output (e.g., we might only be interested in a particular sales
figure if it exceeds some threshold).

In data warehouses it is common to perform extensive pre-
computation of answer sets and summaries of simple queries,
so that these can be combined to answer more complex
queries quickly (see e.g. [26, 29]). At PODS 2011 Wei and
Yi [31] showed that a number of different summaries of sets
fulfilling a range condition can be efficiently extracted from
augmented B-tree indexes. The number of I/Os for creating
a summary of all data in a given range is close to the number
of I/Os needed for reading a precomputed summary of the
same size. That is, the efficiency is determined by the size of
each summary, which motivates the question of how small
a summary can be. Though Wei and Yi do not consider
this explicitly, it is easy to see that (at least when efficient
updates of data is not needed) their ideas apply to the kind
of summaries, based on min-wise hashing, that we consider
in the upper bounds of this paper.



1.1 Brief history
Motivated by document similarity problems encountered

in AltaVista, Broder [5] pioneered algorithms for estimating
set intersection sizes based on independently pre-computed
“summaries” of sets. More specifically he presented a sum-
mary technnique called“min-wise hashing”where, given sum-
maries kmin(A) and kmin(B) of sets A and B, it is possible to
compute a low-variance, (asymptotically) unbiased estima-
tor of the Jaccard similarity J(A,B) = |A∩B|/|A∪B|. As-
suming that |A| and |B| are known, an estimate of J(A,B)
with small relative error can be used to compute a good es-
timate of |A ∩ B|, and vice versa. In fact, we state many
of our results in terms of the ratio between the size of the
intersection and the largest set, which is Θ(J).

Li and König [20] presented “b-bit min-wise hashing”, a
refinement of Broder’s approach that reduces the summary
representation size by storing a vector of b-bit hash values
of elements from kmin(X). Even though the resulting hash
collisions introduce noise in the estimator, this can be com-
pensated for by a small increase in the size of kmin(X), yield-
ing a significantly smaller summary with the same variance.
Specifically, with b = 1 and using s bits of space, the variance
is 2(1−J)/s.1 In order to get an estimation error of at most
εJ with probability (say) 1/2, by Chebychev’s inequality it
suffices that (1 − J)/s < (εJ)2, i.e., s > (1 − J)/(εJ)2. It
is not hard to show that the estimator is well-concentrated,
and this bound is tight up to constant factors. Increasing
the value of b (while keeping the space usage fixed) does not
improve the variance.

1.2 Our contribution
First, we show that the variance of any estimator for Jac-

card similarity based on summaries of s bits must be Ω(1/s)
for fixed J between 0 and 1. More specifically, there exists
a distribution of input sets such that with constant proba-
bility any such estimator makes an error of Ω(

√
1/s) with

constant probability. This means that b-bit min-wise hash-
ing cannot be substantially improved when it comes to esti-
mating intersection size (or Jaccard similarity) of two sets,
except perhaps when J is asymptotically close to 0 or 1.

Second, we show that it is possible to improve exist-
ing estimators for the intersection size of m = ω(1) pre-
processed sets. In fact, we show that estimators (such as
b-bit min-wise hashing) that are based on many permuta-
tions are inherently less precise than their one-permutation
counterpart when considering the intersection of many sets.
We then show that a suitable approximate encoding of one-
permutation min-wise hashing summaries is always compet-
itive with b-bit min-wise hashing, while reducing the space
required for accurately estimating the intersection size of
many sets.

2. PREVIOUS WORK
Problem definition. Let S1, S2, . . . be sets of size ni = |Si|
where all Si ⊆ [u] and the largest set is nmax = maxni. A
query is a subset I ⊆ N of the set indices and the output
to the query is the intersection size |∩i∈ISi|. For ease of

1The variance bound stated in [20] is more complex, since it
deals with min-wise hashing based on permutations, which
introduces correlations. By replacing this with full indepen-
dence one arrives at the stated variance.

notation we assume that the query is I = {1, . . . ,m} and
intersection size to estimate is then t = |S1 ∩ . . . ∩ Sm|.

In this paper we consider estimators for the intersection
size t. As previously noted we focus on the setting where the
sets S1, S2, . . . , Sm are available for individual pre-processing.
Storing only a small summary of each set, which requires not
even approximate knowledge of t, we provide an estimator
for the intersection size t. Note that in this model, we allow
ourselves only to pre-process the sets independently of each
other, i.e., intersection sizes or other information that rely
on more than the set currently being pre-processed cannot
be stored. See [13] for work on (exact) set intersection in
the model where information about all sets can be used in
the pre-processing phase.

For the applications, we seek to obtain bounds that are pa-
rameterized on the size of the summary required of each set
as a function of largest set nmax, the intersection size t, and
the relative error ε. Further, let s denote the space in bits
stored per set and k the number of permutations or number
values taken from one permutation for k-permutation and
one-permutation min-wise hashing respectively.

2.1 Lower bounds
Several well-known problems in communication complex-

ity imply lower bounds for special cases of the set intersec-
tion problem:

In the Index problem Alice is given a subset of {1, . . . , n},
and Bob is given a set of size 1. The task is to determine
whether the intersection size is 0 or 1. It is known that
even for randomized protocols with error probability 1/3,
the one-way communication complexity of this problem is
Ω(n) bits (see [19]). Informally, this shows that the cost of
estimating set intersection grows with the ratio between the
intersection size t and the size nmax of the largest set.

In the GapAnd problem Alice and Bob are both given sub-
sets of {1, . . . , n}, and the task is to determine if the inter-
section size is below n/4 −

√
n or above n/4 +

√
n (if it

is in-between, any result is okay). This is a variant of the
well-studied GapHamming problem, for which the random-
ized one-way communication complexity is Ω(n) bits [16, 32].
In fact, the randomized two-way communication complexity
for this problem is also Ω(n) bits [8], though in our applica-
tion of first preprocessing the sets in order to then answer
queries, we will only need the result for one-way communi-
cation. Informally, this lower bound means that the cost of
estimating set intersection is inversely proportional with the
square of the relative error.

Informally, our lower bound shows that these results gen-
eralize and compose, such that the lower bound is the prod-
uct of the cost due to Index and the cost due to GapAnd,
each with constant error probability. That is, our lower
bound will be Ω(nmaxε

−2/t), which we can use to bound
the variance of any estimator for Jaccard similarity. The
intuitive idea behind the lower bound is to compose the two
problems such that each “bit” of GapAnd is encoded as the
result of an Index problem. Unlike typical arguments in in-
formation complexity, see, e.g., the PODS 2010 tutorial by
Jayram [17], we instead measure the information a proto-
col reveals about intermediate bits in Claim 13, rather than
about the inputs themselves. See the beginning of Section 3
for a more detailed intuition.

We note that using the output bits of multiple instances
of one problem as the input bits to another problem was also



Method Required space (bits) Time

Inclusion-exclusion s ≥ ε−2 (mn/t)2 + logn 2m

Subsampling s ≥ ε−2(n/t) logm log2 n sm
b-bit min-wise hashing∗ s ≥ ε−2(mn/t) sm
New upper bound s ≤ ε−2(n/t) log(m) log(n/εt) sm
General lower bound s ≥ ε−2(n/t) -

Table 1: Comparison of estimators of intersection size t for relative error ε and constant error probability, with m sets
of maximum size n. Bounds on the summary size s ignore constant factors. The subsampling bound assumes that no
knowledge of t is available, and thus logn levels of subsampling are needed. ∗The bound for b-bit min-wise hashing
assumes that the number of hash functions needed in the analysis of min-wise summaries is optimal, see appendix A.

used in [33], though not for our choice of problems, which are
specific to and arguably very useful for one-way communica-
tion given the widespread usage of Index and GapAnd prob-
lems in proving encoding size or “sketching” lower bounds.
We note that our problems may become trivial for 2-way
communication, if e.g., one set has size nmax while the other
set has size 1, while the lower bounds for the problems con-
sidered in [33] are qualitatively different, remaining hard
even for 2-way communication.

2.2 Min-wise hashing techniques
Min-wise hashing was first considered by Broder [5] as a

technique for estimating the similarity of web pages. For
completeness, below we define min-wise independence along
with the standard algorithm to compute an unbiased esti-
mator for resemblance.

Definition 1 ([6, Eq. 4]). Let Sn be the set of all per-
mutations on [n]. Then a family F ⊆ Sn is min-wise in-
dependent if for any set X ⊆ [n] and any x ∈ X, when
permutation π ∈ F is chosen at random we have

Pr [minπ(X) = x] = 1/|X| .

In particular, for two sets X,Y ⊆ [n] and a randomly chosen
permutation π ∈ F we have

Pr (minπ(X) = minπ(Y )) = J =
|X ∩ Y |
|X ∪ Y | .

This can be used to compute an estimate of the Jaccard
similarity. Specifically, given k independent min-wise per-
mutations π1, . . . , πk then

Ĵ =
1

k

k∑
i=1

[minπi(X) = minπi(Y )]

is an unbiased estimator of J (where [α] is Iverson Notation

for the event α) with variance Var(Ĵ) = J (1− J) /k.
In both theory and practice it is often easier to use a hash

function with a large range (e.g. size u3) instead of a ran-
dom permutation. The idea is that the probability of a colli-
sion among the elements of a given set should be negligible,
meaning that with high probability the order of the hash
values induces a random permutation on the set. We will
thus use the (slightly misleading) term “one-permutation”
to describe methods using a single hash value on each set
element.

Min-wise summaries. For a given set X the k-permutation
min-wise summary of size k is the vector

(minπ1(X), . . . ,minπk(X)).

The one-permutation min-wise summary (sometimes called
bottom-k sketch) of size k for a permutation π is the set
kmin(X) = {π(x) |x ∈ X,π(x) < τ}, where τ is the k + 1’th
largest permutation rank (hash value) of the elements in
X. That is, intuitively k-permutation summaries store the
single smallest value independently for each of k permuta-
tions, while one-permutation summaries store the k small-
est values for one permutation. It is not hard to show that
|kmin(X ∪ Y ) ∩ kmin(X) ∩ kmin(Y )|/k is a good estimator
for J , where kmin(X ∪ Y ) can be computed from kmin(X)
and kmin(Y ). For k-permutation min-wise summaries, if
π1, . . . , πk are independent min-wise permutations then

1

k

k∑
1

|minπi(X) ∩minπi(Y )|

is analogously an estimator for J .

2.3 Previous results on set intersection
For m sets S1, . . . Sm let the generalized Jaccard similarity

be J = |∩iSi|/|∪iSi|. If we multiply an estimate of the gen-
eralized Jaccard similarity of several sets and an estimate of
the size of the union of the sets, we obtain an estimate of the
intersection size. Using existing summaries for distinct ele-
ment estimation (also based on hashing, e.g. [18, 15]) we get
that previous work on (generalized) Jaccard similarity im-
plies results on intersection estimation [6, 7, 5, 9]. Recently,
b-bit variations of min-wise hashing were proposed [22] but
so far it is not clear how they can be used to estimate Jac-
card similarity of more than three sets [21]. See Section 5.2
for further discussion.

The problem of computing aggregate functions (such as
set intersection) over sets when hash functions are used to
sample set elements has been widely studied [10, 12, 11].
In the general case of arbitrary aggregate functions, Cohen
and Kaplan [11] characterizes for a given aggregate function
f if an unbiased estimator for f with finite variance can be
achieved using one- or k-permutation summaries. For the
specific case of set intersection, RC (Rank Conditioning)
estimators [10, 12] have been shown to provide an unbiased
estimator based on both one- and k-permutation summaries
and these can be extended to work with limited precision,
analogous to b-bit min-wise hashing. Further, experimen-
tal work show that estimators based on one-permutation
summaries outperform those based on k-permutation sum-
maries [10] on the data sets used.

In contrast, this paper provides an explicit worst-case
analysis of the space requirement needed to achieve ε er-
ror with error probability at most δ for set intersection us-



ing one-permutation summaries, where signatures (5.2) are
used to shave off a logarithmic factor for the upper bound,
making the bound close to being tight.

Table 1 shows the performance of different algorithms
along with our estimator based on one-permutation min-
wise hashing. The methods are compared by time/space
used to achieve an (ε, δ)-estimate of the intersection size t
of m sets of maximum size n for constant δ.

Definition 2. Let z ∈ R and let ẑ be a random variable.
We say that ẑ is an (ε, δ)-estimate of z if Pr [|ẑ − z| ≥ εz] ≤
δ. We use ε-estimate as shorthand for (ε, 1/3)-estimate.

The Jaccard estimator computed using k-permutation min-
wise hashing, as described in Section 2.2, can trivially be
used to estimate intersection when cardinality estimate of
the union of the sets is given (by simply multiplying by the
union estimate). However, there are instances of sets where
J can be as low as t/(t + m(n − t)) for a “sunflower”, i.e.,
m sets of n elements that are disjoint except for the t inter-
section elements. Following from Chernoff bounds, such an
instance requires to store 1

Jε2
elements to get an ε-estimation

of J with constant probability. See Appendix A for a dis-
cussion of the bound for “b-bit min-wise hashing” in Table 1.

In contrast, the one-permutation approach described in
this paper stores s ≥ n

t
logm log u

ε2
bits for m sets of maxi-

mum size n, while maintaining estimation time sm. Recent
work investigated a different way of doing min-wise hashing
using just one permutation [23], but this method seems to
have the same problem as k-permutation min-wise hashing
for the purpose of m-way set intersection. Intersection esti-
mation can also be done by applying inclusion-exclusion to
union size estimates of all subset unions of the m sets. To
achieve error εt then by Chernoff bounds for sampling with-

out replacement we need sample size s >
(∑

i ni/(εt)
)2

. As
there are 2m − 1 estimates to do for m sets this yields time
2ms. Bloom filters [3] also support set intersection opera-
tions, and cardinality estimation, but to work well need the
assumption that the sets have similar size. Therefore we will
not discuss them further.

3. OUR RESULTS
We show a lower bound for the size of a summary for two-

way set intersection by a reduction from one-way commu-
nication complexity. More specifically, any summary that
allows a (1 + ε)-approximation of the intersection size im-
plies a one-way communication protocol for a problem we
call GapAndIndex, which we think of as the composition of
the Index and GapAnd communication problems. Namely,
Alice has r = Θ(1/ε2) d-bit strings x1, . . . , xr, while Bob
has r indices i1, . . . , ir ∈ [d], together with bits b1, . . . , br.
Bob’s goal is to decide if the input falls into one of the fol-
lowing cases, for a constant C > 0:

a For at least r
4

+Cεr of the j ∈ [r], we have xjij ∧bj = 1.

b For at most r
4
−Cεr of the j ∈ [r], we have xjij ∧bj = 1.

If neither case occurs, Bob’s output may be arbitrary (i.e.,
this is a promise problem).

A straightforward reduction shows that if you have an
algorithm that can (1 + ε)-approximate the set intersection
size |A∩B| for sets A and B, then you can solve GapAndIndex

with the parameter d roughly equal to |A|/t and |B| ≤ 4t.
Let the randomized communication complexity R1−way

1/3 (f)

of problem f be the minimal communication cost (maximum
message transcript) of any protcol computing f with error
probability at most 1/3.

The crux of our lower bound argument is to show:

Theorem 3. For r = Θ(1/ε2), d = nmax/t,

R1−way
1/3 (GapAndIndex) = Ω(dr).

In terms of the parameters of the original set intersection
problem, the space lower bound is proportional to the ratio
d between the largest set size and the intersection size mul-
tiplied by ε−2. Since d = Θ(1/J) this is Ω(ε−2/J), which
is a lower bound on the space needed for a 1 ± ε approx-
imation of J . If we consider the problem of estimating J
with additive error ≤ εadd with probability 2/3, observe
that in this case ε = Θ(εadd/J), so the lower bound be-
comes Ω(J/ε2

add). Conversely, for fixed J > 0 and space
usage s we get εadd = Ω(1/

√
s) with probability 1/3 so the

variance is Ω(1/s).

Our second result is a simple estimator for set intersection
of an arbitrary number of sets, based on one-permutation
min-wise hashing. The intuition behind our result is that
when using k-permutation min-wise hashing, the probabil-
ity of sampling intersection elements relies on the size of
the union, while in contrast our one-permutation approach
depends on the maximum set size, hence we save almost a
factor of the number of input sets in terms of space. We
show the following:

Theorem 4. Let sets S1, . . . , Sm ⊆ [u] be given and let
nmax = maxi |Si|, t = |S1 ∩ . . . ∩ Sm| and k be the summary

size |kmin(Si)|. For 0 < ε < 1/4, 0 < δ < 1/
√
k, consider

the estimator

X =

∣∣∣⋂i∈[m] kmin(Si)
∣∣∣nmax

k
.

With probability at least 1− δ
√
k:

t ∈

{
[X/(1 + ε);X/(1− ε)] if X > 3nmax log(2m/δ)/kε2

[0; 4nmax log(2m/δ)/kε2] otherwise

That is, we either get an (ε, δ)-estimate or an upper bound

on t. Whenever k ≥ 4nmax log(2m/δ)

ε2t
we are in the first case

with high probability. We note that the lower and upper
bounds presented are parameterized on the estimand t, i.e.,
the bounds depend on the size of what we are estimating.
This means that the error bound ε will depend of t, so the
relative error is smaller for larger t.

Theorem 4 follows from two main arguments: First we
show that if the summary of each set is constructed by se-
lecting elements independently using a hash function then
we get a good estimate with high probability. As our sum-
maries are of fixed size, there is a dependence between the
variables denoting whether an element is picked for a sum-
mary or not. The main technical hurdle is then to bound
the error introduced by the dependence.

We then extend the use of signatures, which are well-
known to reduce space for k-permutation min-wise hashing,
to one-permutation min-wise hashing as used in our esti-
mator. This reduces the number of bits s by a logarithmic
factor. Section 5.2 discusses this further.



4. LOWER BOUND

4.1 Preliminaries
We summarize terms and definitions from communication

complexity that are used in the lower bound proof.
Communication model. We consider two-player one-

way communication protocols: Alice is given input x, Bob
is given input y and they need to compute function f(x, y).
Each player has his/her own private randomness, as well as
a shared uniformly distributed public coin W of some finite
length. Since the protocol is 1-way, the transcript of pro-
tocol Π consists of Alice’s single message to Bob, together
with Bob’s output bits. For a protocol Π, the maximum
transcript length in bits over all inputs is called the commu-
nication cost of Π. The communication complexity Rδ(f) of
function f is the minimal communication cost of a protocol
that computes f with probability at least 1− δ.

Mutual information. For random variables X and Y
with support X and Y and let p(x, y), p(x), p(y) be the joint
and marginal distributions respectively. The entropy and
conditional entropy are defined as:

H(X) = −
∑
x∈X

p(x) log p(x)

H(X | Y ) =
∑

x∈X ,y∈Y

p(x, y) log
p(y)

p(x, y)

The mutual information is given as:

I(X;Y ) = H(X)−H(X | Y ) =
∑

x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

We make use of the following rule:

Fact 5. (Chain Rule) For discrete random variables
X,Y, Z it holds that I(X,Y ;Z) = I(X;Z) + I(X;Y | Z).

For a protocol Π that uses public random coins W and has
transcript Π(X,Y, Z) for random variables X,Y, Z ∼ µ, the
conditional information cost of Π with respect to distribu-
tion µ is I(X,Y, Z; Π(X,Y, Z) |W). For function f we have
that the conditional information complexity CICµδ (f) is the
minimal conditional information cost of any δ-error protocol
Π with respect to distribution µ.

Fano’s inequality. We make use of Fano’s equality which
intuitively relates the error probabiliy of a function between
random variables to the conditional entropy between them.

Definition 6. Given domains X and Y and random vari-
ables X,Y on these domains with distribution µ, we say a
function g : Y → X has error δg if

PrX,Y∼µ[g(Y ) = X] ≥ 1− δg.

Fact 7. Let X and Y be a random variables chosen from
domains X and Y respectively according to distribution µ.
There is a deterministic function g : Y → X with error δg,
where δg ≤ 1− 1

2H(X | Y ) .

Fact 8. (Fano’s inequality.) Let X and Y be a random
variables chosen from domains X and Y respectively ac-
cording to distribution µ. For any reconstruction function
g : Y → X with error δg,

Hb(δg) + δg log(|X | − 1) ≥ H(X | Y ).

4.2 A Communication Problem and its Appli-
cation to Set Intersection

Let r = Θ(1/ε2), and d = nmax/t. We consider a two-
party one-way communication problem:

Definition 9. In the GapAndIndex problem, Alice has bit
vectors x1, . . . , xr ∈ {0, 1}d while Bob has indices i1, . . . , ir ∈
[d], where [d] = {1, 2, . . . , d}, together with bits b1, . . . , br ∈
{0, 1}. Let x = (x1, . . . , xr), i = (i1, . . . , ir), and b =
(b1, . . . , br) and C > 0 be a fixed constant. The output of
GapAndIndex(x, i,b) is:

1 if

r∑
j=1

(xj
ij
∧ bj) ≥ r

4
+ Cεr

0 if

r∑
j=1

(xj
ij
∧ bj) ≤ r

4
− Cεr.

This is a promise problem, and if neither case occurs, the
output can be arbitrary.

If the input (x, i,b) is in either of the two cases we say the
input satifies the promise.

We say a one-way randomized protocol Π for GapAndIndex
is δ-error if

∀x, i,b satisfying the promise :

Pr[Π(x, i,b) = GapAndIndex(x, i,b)] ≥ 1− δ,

where the probability is over the public and private random-
ness of Π.

Let κ be the set of randomized one-way δ-error protocols
Π. We note that κ is finite for any problem with finite input,
as we can always have one player send his/her entire input
to the other player.

Then,

R1−way
δ (GapAndIndex) = min

Π∈κ
max
x,i,b,

randomness of Π

|Π(x, i,b)|,

where |Π(x, i,b)| denotes the length of the transcript with
these inputs. Since the protocol is 1-way, we can write this
length as |M(x)|+1, where M(x) is Alice’s message function
in the protocol Π given her input x, and we add 1 for Bob’s
output bit. Here, implicitly M also depends on the private
randomness of Alice, as well as the public coin W.

Let µ be the uniform distribution on x ∈ ({0, 1}d)r. We
use the capital letter X to denote random x distributed ac-
cording to µ. We introduce a distribution on inputs solely
for measuring the following notion of information cost of the
protocol; we still require that the protocol is correct on ev-
ery input satisfying the promise with probability 1− δ over
its public and private randomness (for a sufficiently small
constant δ > 0).

For a uniformly distributed public coin W, let

CICµ,1−wayδ (GapAndIndex) = min
Π∈κ

I(M(X); X |W),

where for random variables Y,Z and W , I(Y ;Z | W ) =
H(Y | W ) − H(Y | Z,W ) is the conditional mutual infor-
mation. Recall that the conditional entropy H(Y | W ) =∑
wH(Y | W = w) · Pr[W = w], where w ranges over all



values in the support of W . For any protocol Π,

max
x,i,b
|Π(x, i,b)| = max

x
|M(x)|+ 1

> max
x
|M(x)|

≥ H(M(X) |W)

≥ I(M(X); X |W),

which implies that

R1−way
δ (GapAndIndex) ≥ CICµ,1−wayδ (GapAndIndex).

We now consider the application to set intersection. Let
r = 10/ε2 and d be the desired ratio between the intersection
size t and the largest set. The idea is to give Alice a subset
of elements from [dr], where the characteristic vector of her
subset is x1, . . . , xr. Also, for each j ∈ [r], Bob is given the
element d·(j−1)+ij if and only if bj = 1. If Alice and Bob’s
sets are constructed in this way then the intersection is either
of size at most r/4−Cεr, or of size at least r/4+Cεr. Hence,
a 1-way protocol for approximating the intersection size up
to a relative (1 + Θ(ε))-factor can be used to distinguish
these two cases and therefore solve the GapAndIndex promise
problem.

To get intersection size t without changing the problem,
we duplicate each item 4t/r times, which means that the
problem becomes distinguishing intersection size at most
t(1−Θ(ε)) and at least t(1+Θ(ε)). By rescaling ε by a con-
stant factor, a 1-way protocol for (1 + ε)-approximating the
intersection of Alice and Bob’s sets with constant probability
can be used to solve GapAndIndex with constant probability.
Hence, its space complexity is≥ CICµ,1−way1/3 (GapAndIndex).

This holds for any distribution µ for measuring information,
though we shall use our choice of µ above.

4.3 The GapAnd Problem
For bit vectors z, z′ of the same length, let AND(z, z′) be

the vector z′′ in which z′′i = zi ∧ z′i. For a vector z, let
wt(z) denote its Hamming weight, i.e., the number of its
coordinates equal to 1.

Definition 10. In the GapAnd problem, Alice and Bob
have z, z′ ∈ {0, 1}r, respectively. We define GapAnd to be:

1 if wt(AND(z, z′)) ≥ r

4
+ Cεr

0 if wt(AND(z, z′)) ≤ r

4
− Cεr.

This is a promise problem, and if neither case occurs, the
output can be arbitrary.

4.4 The Index Problem
Consider the following Index problem.

Definition 11. In the Index problem, Alice has an in-
put Y ∈ {0, 1}d and Bob has an input K ∈ [d], where Y
and K are independent and uniformly distributed over their
respective domains. We define Index to be:

1 if YK = 1

0 if YK = 0

Suppose W is the public coin and κ is the set of randomized
one-way δ-error protocols Π. Let γ denote this distribution

on the inputs. Say a 1-way protocol Π for Index with private
randomness R and public randomness W is δ-error if

Pr(Y,K)∼γ,R,W[Π(Y,K,R,W) = YK ] ≥ 1− δ.

Let M(Y) be the message function associated with the 1-
way protocol Π (which is a randomized function of R and
W). Let

CICγ,1−wayδ (Index) = min
Π∈κ

I(M(Y); Y |W).

Fact 12. For δ ≤ 1
2
− Ω(1), CICγ,1−wayδ (Index) = Ω(d).

Proof. We note that this fact is folklore, but existing
references, e.g., Theorem 5.5 of [1] only explicitly state the
bound for deterministic protocols, whereas we want such
a bound for protocols with both private randomness and
public randomness W. We provide the simple proof here.

Let Π be a δ-error protocol with (randomized) message
function M . Let Y = (Y1, . . . , Yd). By the chain rule,

I(M(Y); Y |W) =

d∑
i=1

I(M(Y);Yi | Y1, . . . , Yi−1,W).

By independence and the fact that conditioning cannot in-
crease entropy,

d∑
i=1

I(M(Y);Yi | Y1, . . . , Yi−1,W) ≥
d∑
i=1

I(M(Y);Yi |W).

If Π is δ-error for δ = 1/2−Ω(1), then by Markov’s inequal-
ity, for an Ω(1) fraction of i, Π(Y, i) = Yi with probability
1/2 + Ω(1). Call such an i good. Then

d∑
i=1

I(M(Y);Yi, |W) ≥ Ω(d) · min
good i

I(M(Y);Yi, |W)

= Ω(d) · min
good i

(1−H(Yi |M(Y),W)).

By Fano’s inequality (Fact 8) and using that i is good, we
have H(Yi | M(Y),W) = 1 − Ω(1). This completes the
proof.

4.5 Proof of Theorem 3
Proof. It suffices to prove the theorem for a sufficiently

small constant probability of error δ, since

R1−way
1/3 (GapAndIndex) = Θ(R1−way

δ (GapAndIndex).

Let Π be a 1-way randomized (both public and private) δ-
error protocol for GapAndIndex. For ease of presentation, we
let M = M(X) when the input X is clear from context. Note
that M also implicitly depends on Alice’s private coins as
well as a public coin W. We need to show that I(M ; X |W)
is Ω(rd), for r = Θ(ε−2).

We start with the following claim, which does not directly
look at the information Π conveys about its inputs, but
rather the information Π conveys about certain bits in its
input.

Claim 13. I(M ;X1
i1 , . . . , X

r
ir |W) = Ω(r).

Proof. We will need the following fact, which follows
from work by Braverman et al. [4].



Fact 14. ([4]) Let ρ be the uniform distribution on bits
c1, . . . , cr and d1, . . . , dr. Let C = (C1, . . . , Cr) and D =
(D1, . . . , Dr) for vectors C and D drawn from ρ.

There is a sufficiently small constant δ for which for any
private randomness protocol Π which errs with probability at
most δ on GapAnd, over inputs C and D drawn from from ρ
and the private randomness of Π and the public randomness
W, satisfies

I(Π(C,D); C,D |W) = Ω(r).

Proof. The work of Braverman et al. [4] establishes this
for the problem of deciding if

∑r
i=1(Ci ⊕ Di) ≥ r/2 +

√
r

or
∑r
i=1(Ci ⊕ Di) ≤ r/2 −

√
r, which corresponds to the

Hamming distance ∆(C,D) of vectors drawn from ρ.
If wt(C) denotes the Hamming weight of C, then we have

wt(C) + wt(D)− 2 · And(C,D) = ∆(C,D),

where And(C,D) is the number of coordinates i for which
Ci = Di = 1. Therefore, if Alice and Bob exchange wt(C)
and wt(D) using 2 log r bits, then together with a protocol Π
for GapAnd, they can solve this Hamming distance problem.
It follows that

I(Π(C,D),wt(C),wt(D); C,D |W) = Ω(r),

and so by the chain rule for mutual information one has
I(Π(C,D); C,D | W) = Ω(r) − I(wt(C),wt(D); C,D |
W,Π(C,D)) = Ω(r)−H(wt(C),wt(D)) = Ω(r)− 2 log r =
Ω(r).

First, observe that if I denotes a uniformly random value of
i, then

I(M ;X1
I1 , . . . , X

r
Ir | I,W)

= H(M | I,W)−H(M | X1
I1 , . . . , X

r
Ir , I,W)

= H(M)−H(M | X1
I1 , . . . , X

r
Ir )

= I(M ;X1
I1 , . . . , X

r
Ir |W),

where we use that M and X1
I1 , . . . , X

r
Ir are jointly indepen-

dent of I, conditioned on W.
Hence, using also the independence of I and W,

I(M ;X1
I1 , . . . , X

r
Ir |W)

= I(M ;X1
I1 , . . . , X

r
Ir | I,W)

=
∑
i

I(M ;X1
i1 , . . . , X

r
ir | I = i,W) ·Pr[I = i]

≥ 1

2
min

i
I(M ;X1

i1 , . . . , X
r
ir | I = i,W).

We claim that for each i, I(M ;X1
i1 , . . . , X

r
ir | I = i,W) =

Ω(r). To see this, define a 1-way protocol Πi for GapAnd as
follows. Alice and Bob are given inputs C and D to GapAnd,
respectively, distributed according to ρ. For each j ∈ [r],
Alice sets Xj

ij
= Cj , while Bob sets Bj = Dj . Alice then

chooses an independent uniform random bit for Xj
k for each

j and k 6= ij . The players then run the protocol Π(X, i,B),
and outputs whatever Π outputs.

By construction, Πi(C,D) = GapAnd(X, i,B), and so the
correctness probability of Πi is at least 1− δ.

Moreover, if Mi denotes the message function of Alice in
Πi, then by construction we have that for a sufficiently small

constant δ,

I(M ;X1
i1 , . . . , X

r
ir | I = i,W)

= I(Mi(X
1
i1 , . . . , X

r
ir );X1

i1 , . . . , X
r
ir |W) = Ω(r)

using Fact 14.

By Claim 13 and the chain rule, for Ω(1) fraction of j ∈ [r]
we have I(M ;Xj

Ij
| X1

I1 , . . . , X
j−1

Ij−1 ,W) = Ω(1). Call such
an index j informative. For each informative j, a value x
of the vector (X1

I1 , . . . , X
j−1

Ij−1) is informative if I(M ;Xj

Ij
|

(X1
I1 , . . . , X

j−1

Ij−1) = x,W) = Ω(1). Since

I(M ;Xj

Ij
| X1

I1 , . . . , X
j−1

Ij−1 ,W) = Ω(1),

it follows that an Ω(1) fraction of x are informative for an
informative j.

We now lower bound I(M(X); X | W). Let X<j =
(X1, . . . , Xj−1). Applying the chain rule, as well as the def-
inition of informative and the bounds on informative j and
x above,

I(M(X); X |W)

=

r∑
j=1

I(M(X);Xj | X<j ,W)

≥
r∑
j=1

I(M(X);Xj | X1
I1 , . . . , X

j−1

Ij−1 ,W)

=

r∑
j=1

∑
x

I(M(X);Xj | (X1
I1 , . . . , X

j−1

Ij−1) = x,W)

·Pr[(X1
I1 , . . . , X

j−1

Ij−1) = x]

≥
∑

inform.j,x

I(M(X);Xj | (X1
I1 , . . . , X

j−1

Ij−1) = x,W)

·Pr[(X1
I1 , . . . , X

j−1

Ij−1) = x]

≥ Ω(r) · min
inform.j,x

I(M(X);Xj | (X1
I1 , . . . , X

j−1

Ij−1) = x,W),

where the first inequality follows from the fact that Xj is
independent of X<j , together with the fact that conditioning
cannot increase entropy.

We now lower bound

min
informative j,x

I(M(X);Xj | (X1
I1 , . . . , X

j−1

Ij−1) = x,W).

To do so, we build a 1-way protocol Πj,x with j and x hard-
wired, for solving the Index problem with a uniform distribu-
tion γ on its inputs. Suppose Alice is given the random input
Y ∈ {0, 1}d, and Bob is given the random input K ∈ [d],
where Y and K are uniformly distributed over {0, 1}d and
[d], respectively. Alice and Bob create inputs for protocol Π
as follows. Namely, Alice sets Xj = Y , and uses the hard-
wiring of x to set (X1

I1 , . . . , X
j−1

Ij−1) = x. Further, Alice uses
her private randomness to fill in the remaining coordinates
of X1, . . . , Xj−1, as well as to choose Xj+1, . . . , Xr (all co-
ordinates of such vectors are independent of Bob’s inputs
and uniformly distributed, so Alice can choose such inputs
without any communication). Further, Bob sets Ij = K,

and chooses Ij
′

for j′ 6= j uniformly and independently in
[d]. Bob also chooses his input B to be independent of all
other inputs and uniformly distibuted.

Given this setting of inputs, in Πj,x Alice and Bob then
run protocol Π on these inputs, resulting in a message func-



tion M ′(Y) = M(X). Since j and x are informative, it fol-
lows that I(M(X);Xj

Ij
|(X1

I1 , . . . , X
j−1

Ij−1) = x,W) = Ω(1),

which implies that I(M ′(Y);YK | W) = Ω(1), or equiva-
lently,

H(YK |M ′(Y),W) = 1− Ω(1).

It follows from Fact 7 that Bob, given M ′(Y) and W, can
predict Yk with probability 1/2 + Ω(1), and solve Index on
the uniform distribution γ. By Fact 12, it follows that
I(M ′(Y); Y | W) = Ω(d). Notice, though, that by con-
struction of Πj,x that I(M ′(Y); Y | W) = I(M(X);Xj |
(X1

I1 , . . . , X
j−1

Ij−1) = x,W).
We conclude that I(M(X); X |W) = Ω(dr), which com-

pletes the proof.

5. UPPER BOUND
Recall that sets S1, S2, . . . ⊆ [u] of sizes n1, n2, . . . where

nmax = maxi ni are given, and we wish to obtain an (ε, δ)-
estimate of t = |S1 ∩ . . .∩Sm| using one-permutation k-min
summaries as described in Section 2.2. Theorem 4 defines
an estimator (see Figure 1 for pseudocode). In our proof of
Theorem 4 we will assume that the hash function used to
construct the summaries is random and fully independent.
In many applications it will be possible to achieve this by
simply maintaining a hash table of values during the con-
struction phase. However, Section 6 shows how to replace
the full randomness assumption with concrete hash func-
tions in case the number of different hash values is too large
to store.

For an intersection query onm sets the main insight is that
our estimator relies only on the maximum set size nmax in
contrast to the known k-permutation estimator that depends
on the size of the union, making it less accurate given the
same space (see Table 1). The space needed to store a sum-

mary that gives an (ε, δ)-estimate is O
(
nmax log(m/δ) log u

tε2

)
bits. In Section 5.2 we show that this can be reduced almost
by a factor log u by use of signatures.

5.1 Proof of Theorem 4
Recall that kmin(Si) denotes the size-k one-permutation

min-wise summary of Si and the indicator variable X̂
(i)
j de-

notes the event that item j is chosen for the size-k one-

permutation min-wise summary of Si as defined below: X̂
(i)
j =

1 if j ∈ kmin(Si) and X̂
(i)
j = 0 otherwise.

High-level proof strategy. Observe that Pr[X̂
(i)
j = 1] =

k/ni. Our algorithm uses size k summaries so for each set Si

we have
∑ni
j=1 X̂

(i)
j = k, which causes negative dependence

between the indicator variables [14], i.e., when an item is
in the summary of a set then the other items have smaller
probability of being in the that summary. The main tech-
nical hurdle is showing that even with such a dependence
one can use the intersection size between the summaries to
estimate the intersection size of the sets.

To do this we analyze the case where for each Si, the vari-

ables X
(i)
1 , X

(i)
2 , . . . , X

(i)
ni are independent random variables:

X
(i)
j =

{
1 if h(j) ≤ k/ni
0 otherwise

(1)

where h : u 7→ [0, 1] is a fully random hash function. Let the
setting with negative dependence be called the dependent

case and the case using (1) be the independent case. The in-
dependent case conditioned on the sum of the variables being
k is identically distributed as the dependent case. Therefore
the final step is to bound the additional error probability of
going from the independent case to the dependent one.
First we bound the probability of sampling k specific items
given the number of sampled items is k. Let i ∈ [m] and

S̃i = {x ∈ Si |h(x) ≤ k/ni } be a sample of Si ⊆ [u] picked
according to (1). An important consequence of picking ele-
ments to be in summaries is that of consistent sampling: If
the hash value of an element from the intersection is one of
the k smallest hash values computed, it will be guaranteed
to be sampled in all sets. The following lemma shows that
any specific outcome of a sample has equal probability given
we restrict a sample to be size k.

Lemma 15. If Si ⊆ [u] and {i1, i2, . . . , ik} is a specific
size k outcome then

Pr

[
S̃i = {i1, i2, . . . , ik}

∣∣∣∣∣
ni∑
j=1

X
(i)
j = k

]
=

1(
ni
k

)
Proof. We have:

Pr
[
S̃i = {i1, i2, . . . , ini}

]
=

(
k

ni

)ni (
1− k

ni

)ni−k
Pr

[
ni∑
j=1

X
(i)
j = k

]
=

(
ni
k

)(
k

ni

)ni (
1− k

ni

)ni−k
The final step of the lemma follows from Bayes theorem:

Pr

[
S̃i = {i1, i2, . . . , ik}

∣∣∣∣∣
ni∑
j=1

X
(i)
j = k

]

=
Pr
[
S̃i = {i1, i2, . . . , ini}

]
Pr
[∑ni

j=1 X
(i)
j = k

] =
1(
ni
k

) .

We show the lower bound on the probability of the size of
any S̃i being equal to its expectation k:

Lemma 16. For a sample S̃i of Si we have

Pr
[
|S̃i| = k

]
= Ω

(
1√
k

)
. (2)

Proof. The mean µ of |S̃i| is the most likely outcome,

i.e, Pr
[
|S̃i| = k

]
≥ Pr

[
|S̃i| = j

]
for 1 ≤ j ≤ u holds due

to E
[∑ni

j=1 X
(i)
j

]
= k and the mode of binomial distribu-

tions [24]. Next step is showing that |S̃i| is more likely

to be within 2
√
k of the mean µ = k than not, that is,

Pr
[∣∣∣∑ni

j=1 X
(i)
j − k

∣∣∣ ≥ 2
√
k
]
≤ 1

2
This follows from the Cher-

noff bounds on the sum
∑ni
j=1 X

(i)
j :

Pr

[∣∣∣∣∣
ni∑
j=1

X
(i)
j − k

∣∣∣∣∣ ≥ 2
√
k

]
≤ 2 exp

−k
(

2
√
k
k

)2

2


≤ 1

2
∀k, i > 0 .



Input: Sets S1, S2, . . . ⊆ [u]
Output: k-min summaries for all Si

1 h ←− fully independent random hash function
2 foreach Si do
3 ki ← the kth smallest h(x) for x ∈ Si
4 kmin (Si)← {x |x ∈ Si ∧ h(x) ≤ ki}

(a) Pre-processing the sets.

Input: k-min summaries and set sizes
kmin(S1), n1 = |S1|, . . . and query set M ⊆ N

Output: X: An (ε, δ)-estimation of t =
∣∣⋂

i∈M Si
∣∣

1 nmax ←− maxi∈M ni
2 X ←−

∣∣⋂
i∈M kmin(Si)

∣∣nmax/k

(b) Computing the estimator. The output is an (ε, δ)-estimator
whenever X > 3nmax log(1/δ)/kε2 (See Theorem 4).

Figure 1: Pseudocode for performing pre-processing and computing the estimator.

Let S be the elements of the size-t intersection and S̃max

be the sample of the largest set Smax. We show that if the
summary size k satisfies

k ≥ 2nmax log (2m/δ)

ε2t
(3)

then properties 1 and 2 below are satisfied.

Property 1.
∣∣∣S̃max ∩ S

∣∣∣ is an (ε, δ/2)-estimate of t k
nmax

.

Property 2. ∀i
∣∣∣S̃i ∩ S∣∣∣ ≥ t(1 − ε) k

nmax
with probability

at least 1− δ/2m.

We show that the given properties hold for sufficiently large k,
given by (3).

Lemma 17. If (3) and 0 ≤ ε, δ ≤ 1 then properties 1 and
2 hold.

Proof. We show that property 1 holds when (3) holds.

This follows from Chernoff bounds on
∑t
j=1 X

(max)
j :

γ1 = Pr

[
|S̃i ∩ S| /∈

[
t
k

nmax
(1− ε), t k

nmax
(1 + ε)

]]
< 2 exp

(
− ε2tk

3nmax

)
.

Since k ≥ 2nmax log(2m/δ)

ε2t
the error probability is γ1 ≤ δ

2
,

thus property 1 holds.
Now we are to show that the given k implies property 2
holds, i.e., the size of the intersection between any single S̃i
sample and intersection S is at least the expected size of the
intersection between the sample of the largest set, S̃max and
S. The intersection of any sample S̃i and S has expectation

µ = E
[
|S̃i ∩ S|

]
= t k

ni
. Since nmax ≥ ni, it holds that

∀it k
nmax

≤ t k
ni

and thus we bound error γ2:

γ2 = Pr

[
t∑
j=1

X
(max)
j < (1− ε)t k

nmax

]

≤ Pr

[
t∑
j=1

X
(i)
j < (1− ε)t k|Si|

]
≤ exp

(
− ε2tk

2nmax

)
.

Since k ≥ 2nmax log(2m/δ)

ε2t
the error probability is γ2 ≤ δ

2m
,

thus property 2 holds.

We will now show that the independent case provides an
estimator with the desired guarantees.

Lemma 18. If (3) holds and for 0 ≤ ε, δ ≤ 1 then
|⋂i∈[m] S̃i|nmax

k
is an (ε, δ)-estimate of t.

Proof. First we need that
∣∣∣S̃max ∩ S

∣∣∣ ≤ (1 + ε)t k
nmax

with probability ≥ 1− δ. By Lemma 17 this holds, as prop-
erty 1 holds since k satisifies (3). We now argue:∣∣∣∣∣∣

⋂
i∈[m]

S̃i

∣∣∣∣∣∣ ≥ (1− ε) t k

nmax
with probability ≥ 1− δ . (4)

Let z = (1− ε) t k
nmax

, then by Lemma 17 we have that for

each set Si its sample S̃i contains at least z items from S
with probability ≥ 1−δ/2m where these z items are sampled
from all sets as they are in S and hence (4) holds. To show
that∣∣∣∣∣∣

⋂
i∈[m]

S̃i

∣∣∣∣∣∣ ≤ (1 + ε) t
k

nmax
with probability ≥ 1− δ (5)

holds we need that
∣∣∣S̃max ∩ S

∣∣∣ ≤ (1 + ε)t k
nmax

with proba-

bility ≥ 1− δ. This follows directly from property 1 holding
since k satisifies (3) as shown in Lemma 17.

We now show that our estimator computes an (ε, δ)-estimate,
i.e., it holds that,∣∣∣⋂i∈[m] S̃i

∣∣∣nmax

k
∈ [(1− ε) t, (1 + ε) t]

with probability at least

1−
(
δ

2
+m

δ

2m

)
≥ 1− δ .

By (5) and (4) we have the relative error of at most ε as re-
quired. To bound the error probability we apply the union
bound on the error probabilities given by Lemma 17. As we
have error probability δ/2 on property 1 and error prob-
ability δ/2m on property 2, by the union bound we get
≤ (δ/2 + mδ/2m) = δ where the factor m on the second
term comes from the union bound over all m sets.

For each set Si let Bi denote the set of samples where prop-

erty 1 or 2 does not hold. We have probability Pr
[
S̃i ∈ Bi

]
of the estimator based on samples S̃i being bad. We now re-
late the independent case where a sample has expected size
k to the case where k-min summaries are used and thus we
have samples of strictly size k.

Lemma 19. If (3) holds and 0 ≤ ε, δ ≤ 1 then

Pr
[
S̃i ∈ Bi

∣∣∣|S̃i| = k
]
≤ δ
√
k .



For a specific itemset I = {i1, i2, . . . , ik} we have

Pr

[
S̃i = I

∣∣∣∣∣
ni∑
j=1

X
(i)
j = k

]
= Pr [kmin(Si) = I] =

1(
ni
k

) (6)

Proof. An upper bound of the conditional probability
can be obtained through Bayes theorem:

Pr
[
S̃i ∈ B|

∣∣∣S̃i∣∣∣ = k
]
≤

Pr
[
S̃i ∈ B

]
Pr
[
|S̃i| = k

] .

The probability of the sample being of size k was bounded
in (2) and by union bound on the error probabilities found
in Lemma 17 we get.

Pr
[
S̃i ∈ B|

∣∣∣S̃i∣∣∣ = k
]
≤

Pr
[
S̃i ∈ B

]
Pr
[
|S̃i| = k

] ≤ δ/ 1√
k

= δ
√
k .

Now we argue that (6) holds, i.e., that the conditional dis-

tribution of any sample |S̃i| = k is the same as that of
kmin(Si). This follows directly from Lemma 15 and from
Pr [kmin(Si) = I] = 1

(nik )
.

Proof. (Theorem 4.) By Lemma 18 we have that X is
an (ε, δ)-estimate of t in the independent case whenever the
expected number of elements k in our summaries satisfy (3).
Lemma 19 relates the independent case to the dependent
case with fixed summary size, showing that X is an (ε, δ

√
k)-

estimate when (3) holds. To show Theorem 4 we consider
two cases for t.

1. If t ≥ 2nmax log(2m/δ)/kε2 then (3) is satisfied, so X

is an (ε, δ
√
k)-estimate of t. Since ε < 1/4 we get that

X < 3nmax log(2m/δ)/kε2 implies

X/(1− ε) < 4nmax log(2m/δ)/kε2 .

So as long as t ∈ [X/(1+ε);X/(1−ε)], which happens

with probability 1−δ
√
k, we get a true answer regard-

less of whether the first or second answer is returned.

2. If t < 2nmax log(2m/δ)/kε2 then the probability that

X > 3nmax log(2m/δ)/kε2) is at most δ
√
k. This is

because X is dominated by an estimator X ′ derived
from X by artificially increasing the intersection size to
that required by (3). This means that with probability

1−δ
√
k the algorithm correctly reports that t is in the

interval [0; 4nmax log(2m/δ)/kε2].

5.2 Use of signatures for the upper bound
An advantage of k-permutation min-wise hashing is that

it can easily be combined with signatures to decrease space
usage, i.e., elements from u in the min-hash can be replaced
with hash values using significantly fewer bit. As shown by
Li and König [22], using b-bit signatures, where b is a small
integer, allows us to increase k by a factor log(u)/b without
increasing the space usage. With a suitable estimator that
takes the signature collisions into account, the net result
is an increase in precision for a given space usage. It is a
nontrivial matter to extend the estimator to work for the
intersection of more than two sets when b is small. The case
of three sets was investigated in [21].

It seems to be less well known that one-permutation hash-
ing allows a similar space saving. The idea is to consider sig-
natures of log(k) + b bits, and store the set of signatures for
each set kmin(X). By using an appropriate encoding of the
signature set the space usage becomes roughly k(b + log e)
bits, see e.g. [25]. There even exist methods that use word-
level parallellism to compute the set of signatures that are in
common between two such encodings [2, Lemma 3], mean-
ing that there is a speedup in comparing two summaries
that is similar to the factor saved in space usage. At least in
theory, this means that the difference between the efficiency
of k-permutation and one-permutation schemes compressed
using signatures is not so large.

We now argue that if we choose a signature hash function
h : [u]→ {0, 1}b where b ≥ log(2k2/δ), a signature collision
that affects the estimate will occur with probability at most
δ/2, independent of the number of sets considered. Recall
that k is the size of a min-hash, and consider a specific set
of min-hashes kmin(Sj), j = 1, . . . ,m. If we replace kmin(Sj)
by the set h(kmin(Sj)) of signatures there is a chance that
| ∩j h(kmin(Sj))| is different from | ∩j kmin(Sj)| because of
collision of elements in some set I with at least one element
in each min-hash. We define an i-cover as a set I where
|I| = i and ∀j : I ∩ kmin(Sj) 6= ∅, i.e., an i-cover is a set
of i elements that includes an element from every minhash.
We now argue that there is a low probability that there
exists an i-cover with i > 1 for which all elements have
the same signature under h. For now we assume that h is
fully random, which means that the probability a particular
i-cover colliding is at most

(2−b)i−1 =

(
δ

2k2

)i−1

.

For i ≤ m we have at most ki possible i-covers, so by a union
bound the probability of any colliding i-cover occuring is at
most

m∑
i=2

ki
(

δ

2k2

)i−1

≤ δ/2 .

We conclude that with probability at least 1 − δ/2 we
end up with exactly |

⋂
i kmin(Si)| signatures in the intersec-

tion, meaning that the result is the same as when storing
the elements of kmin(S1), . . . , kmin(Sm). Hence one can sim-
ply think of the sets kmin(Si), with the understanding that
they can be replaced by a representation of size roughly
k log(e2k2/δ) bits using a suitable encoding of signatures.

6. HASH FUNCTIONS OF LIMITED INDE-
PENDENCE

Until now we have assumed to have access to a fully ran-
dom hash function on the sets. In this section we show that
there are realizable hash functions of limited independence
such that our results hold. Thorup [30] recently showed that
for Jaccard similarity (and hence intersection size) estima-
tion with one-permutation min-wise summaries it suffices
to use a pairwise independent hash function. However, this
does not extend to the setting where we seek the intersection
size of many sets (see Theorem 20).

We argue that k-wise independence is sufficient for the
hash function used to construct the one-permutation min-
wise summaries and that m-wise independence is sufficient



for the hash functions used to create signatures as described
in Section 5.2.

6.1 Hash functions for one-permutation min-
wise summaries

We will argue that k-wise independent hash functions are
sufficient for the hash function used to create the summaries.

For n variables X1, . . . Xn, X =
∑n
i Xi, µ = E[X] and

δ > 0 then by [27] we have that if the variables X1, . . . Xn are
d µδ

1−µ/ne-wise independent, the Chernoff tail bounds hold.

Examining the tail bounds used in Section 5.1 we see that
if we impose the additional constraint δ ≤ 1 − k/n then
d µδ

1−µ/ne ≤ k and hence k-wise independence is sufficient for

the construction of our summaries.

6.2 Hash functions for signatures
We will now argue that m-wise independent hash func-

tions are sufficient to obtain error probability ≤ δ when be-
ing used to create signatures. This follows directly from the
fact that we consider collisions in terms of i-covers for i ≤ m
and apply a summation of m terms to bound the error prob-
ability to be ≤ δ/2. For the family of hash functions we will
use the construction of Siegel [28]. This construction gives

a RAM data structure of space O
(
u
√

lg k/ lg u+ε lg v
)

bits

when hashing from {0, . . . , u− 1} to {0, . . . , v− 1}. A func-
tion from the family can be evaluated in constant worst-case
time and it is k-wise independent with high probability. In
particular, for m = k = uO(1) we have space usage O(uε lg v)
for some constant ε > 0.

6.3 Lower bound for c-wise independent hash
functions

Motivated by recent work by Thorup [30] showing 2-wise
independent hash functions to work well for Jaccard estima-
tion we will now consider an instance where any estimator
based on the k smallest hash values of a c-wise independent
hash function will not be unbiased. In particular the ar-
gument follows from the existence of small families of hash
functions.

Theorem 20. Let [u] be the universe of elements and h :
[u] 7→ 0, . . . , p− 1 be any c-wise independent hash function
for c = O(1). There exists an instance on p2 sets S1, . . . , Sp2
with intersection size t = |∩i Si| = n−k. For any estimator
t̃ for t that guarantees a relative error bound and is based on
k size min-wise summaries constructed using h it holds that
t̂ is not unbiased.

For Theorem 20 we construct an instance on pc sets where
one of the k one-permutation min-wise summaries will hold
no elements from S with high probability.

Proof. Let h : [u] 7→ {0, . . . , p − 1} be a c-independent
hash function where c < logpm. We will consider an in-
stance on m > pc sets that has large intersection S, but
where an unbiased estimator of the intersection size |S| us-
ing the smallest k hash values is not possible with high prob-
ability.

For any h there exists a set Mz of size k where h(Mz) =
{0, . . . , k−1}, i.e., the k elements of Mz map to the k small-
est possible hash values. Let Si = Mi ∪ S for 0 ≤ i < pc be
n-sized sets where S is the intersecting elements to be speci-
fied later. We have h(Sz) = Mz∪h(S) = {0, . . . , k−1}∪h(S)

and z ∈ {0, . . . , pc}, i.e., by the existence of size pc families
of hash function there is a hash function that hashes k ele-
ments from a particular set Sz to the k smallest possible hash
values. It follows that if ∀j ∈ h(S)j ≥ k then the set of the
k smallest hash values will contain no elements from S, even
though we have size |S| = n − k. For a uniformly random

n−k-sized set S we have Pr [∀t ∈ h(S)t ≥ k] =
(

1− k
p

)n−k
which is ≈ 1 for k � n.

Hence if we consider the intersection S of all m > pc sets
Si it will hold with high probability that this instance will
have intersection size |S| = n − k but no elements from
S in the set of the k smallest hash values. Consider the
case of there being no elements from S in the set of the k
smallest hash values and let t̃ be an estimate of |S|. Any
estimate t̃ of |S| with relative bounded error that is based
on pc min-wise summaries will be unable to distinguish the
case of |S| = 0 from |S| = n− k when there are no elements
from S in the set of the k smallest hash values. Thus when
presented with such a set the estimate will always be that
t̃ = 0. Let φ be the probability of there being no elements in
from S in the set of the k smallest hash values. Then let the
outcome of the random variable X be the estimate t̃. We

have E[X] ≤ φ0 + (1− φ)n where φ =
(

1− k
p

)n−k
.

To obtain an unbiased estimator E[X] = n − k for this
instance we need (1 − φ)n ≥ n − k hence φ < k/n. By the

upper bound
(

1− k
p

)n−k
<
(
k
p

)n−k
we have that there is

a constant w s.t. n > kwn implies φ > k/n. Thus when n is
exponential in k we have that φ is large enough to make any
estimator based on the k smallest hash values biased.
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APPENDIX
A. SPACE OF K-PERMUTATION MIN-WISE

SUMMARIES ON SUNFLOWER SETS
Sunflower sets. (Section 2.3). This hard instance gives

the upper bound for k-permutation min-wise hashing of Ta-
ble 1. For m sets S1 . . . Sm each of size n, let t = | ∩i Si| be
the intersection size of all sets. Then a sunflower instance
has the property ∀i6=j |Si ∩ Sj | = t, i.e., the m sets are dis-
joint except for the t intersection elements. The union size
of such an instance is | ∪i Si| = t+mn−mt = t+m(n− t)
as there are t elements in the intersection and each of the
m sets hold additional n − t elements. It follows that the
Jaccard similarity for a sunflower instance is t/(t+m(n−t)).

Lemma 21. Given m sets of size n with intersection size
t. To obtain an (ε, O(1))-estimate of t using k-permutation
min-wise hashing one needs to store O

(
mn
tε2

)
elements from

each set.

Proof. The upper bound for k-permutation min-wise hash-
ing of Table 1 is derived as follows. LetX1 . . . Xc be indepen-
dent Bernoulli trials where Pr[Xi] = J and letX =

∑c
i=1 Xi

and µ = E[X] = cJ . There exists a c for which there is con-
stant probability of the event that the outcome of X is a
relative factor ε from E[X]. This can be bounded applying
a Chernoff-Hoeffding bound on X as follows.

Pr [|X − E[X]| ≥ (1 + ε)E[X]] = Pr [|X − cJ | ≥ (1 + ε)cJ ]

= δ ≥ 2e(−cJε2)/3

Then isolating c we have c ≥ 3 log(2/δ)

Jε2
, which for δ = O(1)

is O
(

1
Jε2

)
= O

(
t+m(n−t)

tε2

)
following from the Jaccard sim-

ilarity of the sunflower instance above. For t < n/2 we have
c = O

(
mn
tε2

)
, the sample size required for k-permutation

min-wise summaries.

We conjecture that this bound is tight, by tightness of Cher-
noff bounds.
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