
Performing Sound Flash Device Measurements:
Some Lessons from uFLIP

Matias Bjørling
University of Copenhagen

Copenhagen, Denmark
silverwolf@diku.dk

Lionel Le Folgoc
INRIA Rocquencourt
Le Chesnay, France

lionel.le_folgoc@inria.fr

Ahmed Mseddi
INRIA Rocquencourt
Le Chesnay, France

ahmed.mseddi@inria.fr

Philippe Bonnet
IT University of Copenhagen

Copenhagen, Denmark
phbo@itu.dk

Luc Bouganim
INRIA Rocquencourt
Le Chesnay, France

luc.bouganim@inria.fr

Björn Þór Jónsson
School of Computer Science

Reykjavík University
Reykjavík, Iceland

bjorn@ru.is

ABSTRACT
It is amazingly easy to get meaningless results when measur-
ing flash devices, partly because of the peculiarity of flash
memory, but primarily because their behavior is determined
by layers of complex, proprietary, and undocumented soft-
ware and hardware. In this demonstration, we share the
lessons we learnt developing the uFLIP benchmark and con-
ducting experiments with a wide range of flash devices. We
illustrate the problems that are actual obstacles to sound
performance and energy measurements, and we show how
to mitigate the effects of these problems. We also present
the uFLIP web site and its on-line visualization tool that
should help the research community investigate flash device
behavior.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—mass stor-
age (flash devices); B.8.2 [Performance and Reliability]:
Performance Analysis and Design Aids

General Terms
Measurement, Performance, Experimentation

Keywords
Flash devices, Benchmarking, Methodology, uFLIP, SSD,
Energy Measurement

1. INTRODUCTION
Many different types of flash devices are finding their way

into the memory hierarchy of data management infrastruc-
tures, from SSD to PCI-based racks (e.g., fusionIO and Ram-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

San) and energy efficient FAWNs [1]. Indeed, flash tech-
nology has great potential, promising increased throughput
with reduced energy consumption. While flash chip behav-
ior is very precisely specified, commercially available flash
devices do not behave as flash chips and are both complex
and undocumented. It is important for practitioners and
researchers alike to understand the performance character-
istics of these devices in order to a) compare the performance
of competing devices, b) understand which type of flash de-
vices are best fitted to a given usage pattern, c) adapt usage
pattern to a given type of flash device, and d) influence the
design of future flash devices by exposing their shortcomings
for handling specific usage patterns.

We have designed a benchmark, called uFLIP, to cast light
on all relevant usage patterns of current, as well as future,
flash devices [2]. uFLIP is a set of nine micro-benchmarks
based on IO patterns, or sequences of IOs, which are de-
fined by 1) the time at which the IO is submitted, 2) the
IO size, 3) the IO location (logical block address, or LBA),
and 4) the IO mode, which is either read or write. Each
micro-benchmark is a set of experiments designed around a
single varying parameter, that affects either time, size, or
location. In [2], we measured and summarized the response
time for individual IOs. More recently, we have devised a
mechanism for measuring the energy consumption of flash
devices, shown in Figure 1. While energy consumption can-
not be traced to individual IOs, we can associate energy
consumption figures to IO patterns, which helps us under-
stand further the behavior of the devices.

As it turns out, it is very easy to get meaningless results
when running an experiment because a) the initial state
is not well defined or stable, b) an experiment is not long
enough to capture the performance variations of the device
under study (as response time is not uniform), or c) consec-
utive runs interfere with each other.

Our goals with this demo are to point out the methodol-
ogy challenges that exist when measuring the performance
or energy consumption of a flash devices, and to illustrate
the approaches developed in uFLIP to tackle these chal-
lenges. We also aim at broadening the uFLIP user base.
It is in the interest of the community that many devices get
benchmarked on different servers. We have thus made the
benchmark software available for both Windows and Linux,

Figure 1: Energy Measurement Setup.

and made it easy to share and analyze benchmark results
by developing an on-line visualization tool available on the
uFLIP web site (http://www.uflip.org/).

2. FLASH DEVICES
The flash devices that now emerge as a replacement for

mechanical disks are complex devices composed of flash chip(s),
controller hardware, and proprietary software that together
provide a block device interface via a standard interconnect
(e.g., USB, IDE, SATA, PCI). While flash chips are very
precisely specified—they have interesting properties (e.g.,
read/program/erase operations, no updates in-place, ran-
dom reads are equivalent to sequential reads)—commercially
available flash devices are not. The only certainty is that
they do not behave as flash chips. They provide a block in-
terface, where data is read and written in fixed sized blocks,
and they integrate layers of software that manage block map-
ping, wear-leveling and error correction.

In all flash devices, the core data structures of the block
manager are two maps between blocks, represented by their
logical block addresses (LBAs), and flash pages. A direct
map from LBAs to flash pages is stored on flash and in RAM
to speed up reads, and an inverse map is stored on flash to
re-build the direct map during recovery. There is a trade-off
between the improved read performance due to the direct
map and degraded write performance due to the update of
the inverse map (updates of bookkeeping information for a
page may cause an erase of an entire block). The software
layer responsible for managing these maps both in RAM
(inside the micro-controller that runs the block manager)
and on flash is called flash translation layer (FTL). Using
the direct map, the FTL introduces a level of indirection
that allows trading expensive writes-in-place (with the erase
they incur) for cheaper writes onto free flash pages.

Each update on a free flash page, however, leaves an ob-
solete flash page (that contains the before image). Over
time such obsolete flash pages accumulate, and must subse-
quently be reclaimed synchronously or asynchronously. As
a result, we must assume that the cost of writes is not ho-
mogeneous in time (regardless of the actual reclamation pol-
icy). Some block writes will result in flash page writes with
a minimum bookkeeping overhead, while other block writes
will trigger some form of page reclamation and associated
erase(s). Assuming a flash device contains enough RAM

and autonomous power, the FTL may be able to cache and
destage both data and bookkeeping information.

Since the physical layout of data on flash devices is stored
and manipulated via the direct map data structure, which
manages the devices at some fixed granularity, there is no
direct correspondence between an arbitrary IO request to
the flash device and its translation to a physical request
to a flash chip. Instead, the physical request is based in
a complex manner on the current state of the direct map,
which in turn is based on the entire history of previous IO
requests (see [3] for further illustration of this point).

While the principles of the flash translation layer described
above are well known, the design decisions and the associ-
ated performance trade-offs are typically not documented:
Flash devices are black-boxes.

3. THE uFLIP METHODOLOGY
There are three characteristics of flash devices that make

benchmarking particularly hard. In the following, we dis-
cuss each characteristic and our methodology to mitigate its
effect.

A. The State of the Device Impacts Performance.

In order to obtain repeatable results, we should run the
micro-benchmarks from a well-defined initial state, which
is independent of the complete IO history. Forcing a flash
device into a well-defined and stable state, however, is not a
trivial problem. Explicitly resetting a device to its factory
settings is only possible for high-end PCI-based products
(and it destroys all data on the device). For all other de-
vices, the device state is only controlled by the history of
submitted IOs. The problem is thus twofold: a) what se-
quence of IOs should be submitted before a benchmark to
enforce a well-defined state, and b) how to submit IOs dur-
ing the benchmark to retain a stable state.1

In uFLIP, we make the following assumption: Writing
the whole flash device completely yields a well-defined state.
The rationale is that following a complete write of the whole
flash device, both the direct and indirect maps managed by
the FTL are filled and well-defined. In [2], we prepared each
device by performing random IOs of random size (ranging
from 0.5KB to the flash block size, 128KB) on the whole
device. The advantage of this method is that it is quite sta-
ble, as only sequential writes disturb the state significantly.
In order to limit the impact of sequential writes during the
benchmark, we directed them to distinct target spaces when
running the micro-benchmarks. The downside is that this
method is slow. In [3], the authors relied on sequential writes
to enforce a well-known state, which is much faster than
random writes. However, stability is lower because random
writes, badly aligned IOs, or IOs of different sizes impact
a sequential state much more significantly than a random
state. Studying in detail the impact of the initial state on
performance is still a topic for future work.

B. Response Time is Not Uniform.

We propose a two-phase model to capture response time
variations within a micro-benchmark run. In the first phase,
which we call start-up phase, response time is cheap. Such a

1Note that tractability becomes a key issue as it may take
hours (or days) to enforce a well-defined state (depending on
the capacity and performance of the device). For that rea-
son, enforcing a well-defined state between micro-benchmark
runs is not an option.

Figure 2: Performance of the Same Sequence of IOs

on the Same Flash Device in two Different States.

start-up phase can occur when expensive operations are de-
layed, e.g., due to buffering or lazy garbage collection. In the
second phase, which we call running phase, response time
is typically oscillating between two or more values (e.g., be-
cause pages are reclaimed or garbage collection is activated).

For each experiment, we define two parameters to account
for the size of the start-up phase (IOIgnore) and the size of
the running phase (IOCount, which includes the start-up
phase). First, we run four baseline patterns (SR, RR, SW
and RW) with a very large number of submitted IOs. By
plotting the IO costs, we can then identify the two phases for
each pattern and derive upper bounds across the patterns
for IOIgnore and IOCount. Note that the value of IOCount
has a direct impact on both the time it takes to run an
experiment and on state stability.

C. Asynchronous Activity May Cause Interference.

Consecutive benchmark runs should not interfere with each
other. Consider a device that implements an asynchronous
page reclamation policy. Its effects should be captured in
the running phase defined above. We must make sure, how-
ever, that the effect of the page reclamation triggered by a
given run has no impact on subsequent, unrelated runs. For
each experiment, we therefore define a third parameter to
account for the pause that should be introduced in between
runs to avoid interferences (Pause).

To evaluate the Pause parameter, we rely on the following
experiment. We submit sequential reads, followed by a batch
of random writes, and sequential reads again. We count the
number of sequential reads in the second batch which are
affected by the random writes. We then use this value to
compute a lower bound on the pause between consecutive
runs. Note that, when benchmarking a device with unknown
properties, this is only an educated guess and therefore we
propose to significantly overestimate the length of the pause.

Figure 2 illustrates the three parameters for two different
states of the same device.

4. DEMONSTRATION SCENARIO
We will bring the energy measurement setup shown in Fig-

ure 1, which consists of a measurement server, along with

a number of flash devices, and a measurement client to vi-
sualize the energy readings. Additionally, we will use the
uFLIP web-site (a local copy, to avoid network problems)
to visualize performance results. We plan to organize our
demonstration around the following topics:

Motivation: Using a poster, we will discuss the charac-
teristics and potential of flash chips and flash devices.

Bad Measurements: We will show uFLIP results, where
the size of the start-up and running phases or the interfer-
ences are not accounted for (one or more of the three param-
eters is too small). We will show that results are unstable
and difficult to analyze/understand. Note that enforcing
random state takes too long for a live demonstration.

Setting Parameters: We will run experiments to deter-
mine the value of the IOIgnore, IOCount and Pause param-
eters for a given device (possibly provided by an attendee).

Good Measurements: We will compare uFLIP results
obtained with the appropriate parameter settings to the pre-
vious results obtained without them.

Energy Measurements: We will illustrate how we mea-
sure energy consumption and discuss the additional difficul-
ties from a methodological point of view. More specifically,
we will show why it is difficult to determine the boundaries
of the running phase from an energy consumption viewpoint.

uFLIP Results: Using the web interface for navigating
uFLIP results we will comment our main findings. While
all flash devices used in [2] showed a consistent behavior
(poor random writes, unless if they are focused on a ten
megabytes target, good performance for sequential writes,
even if they are done concurrently in up to ten partitions,
no parallelism), newer devices such as Fusion IO, or Intel
X25 show very different behaviors (see appendix B). Inter-
estingly, for this new class of devices, random writes are
sometimes faster than sequential writes and submitting IOs
in parallel is beneficial.

5. CONCLUSION
This demonstration, with its strong focus on methodolog-

ical issues, is based on the lessons learned benchmarking
flash devices with uFLIP. uFLIP was designed without mak-
ing any assumption on the device behavior and usage and
this design allows to benchmark successfully highly different
class of devices, from USB keys to PCI-based racks, follow-
ing the same methodology. We believe that these lessons
are relevant to any researcher or practitioner that intends to
measure the performance of an algorithm or a system that
relies on flash devices, or to integrate energy consumption
as a metric in an experimental framework.

6. REFERENCES
[1] D. G. Andersen, J. Franklin, M. Kaminsky,

A. Phanishayee, L. Tan, and V. Vasudevan. Fawn: a
fast array of wimpy nodes. In SOSP, pages 1–14, 2009.

[2] L. Bouganim, B. T. Jónsson, and P. Bonnet. uflip:
Understanding flash io patterns. In CIDR, 2009.

[3] R. Johnson, M. Athanassoulis, R. Stoica, and
A. Ailamaki. A new look at the roles of spinning and
blocking. In DaMoN, pages 21–26, 2009.

[4] D. Tsirogiannis, S. Harizopoulos, and M. Shah.
Analyzing the energy efficiency of a database server. In
SIGMOD, 2010.

Figure 3: Diagram of the current shunt insertion

used for high resolution measurement of the SSD

energy consumption.

APPENDIX

A. ENERGY MEASUREMENT SETUP
Energy efficiency is emerging as a key metric for data man-

agement systems as power and cooling dominate the cost of
ownership. Recent work has focused on server power break-
down resulting in key insights about the balance between
idle and active modes, as well as CPU, hard disks and flash-
based SSDs[4]. Those breakdown results were obtained with
a clamp meter, i.e., a device that is used to directly mea-
sure the current flowing through a conductor (e.g., a wire).
Such a method is appropriate for first-order reasoning about
power (how many watts are consumed by a flash device or a
hard disk in idle mode?). We are however interested in de-
tailed time-based energy profiles for each run in the uFLIP
benchmark. We need to achieve high-resolution measure-
ments both in time and in current amplitude.

We rely on a current shunt insertion, where we measure
the voltage drop across the shunt, which is proportional to
the current flowing through the flash device. We use an os-
cilloscope equipped with a data logger to sample the voltage
drop. The diagram in Figure 3 illustrates our set-up. The
current shunt is installed on the high-side of an independent
power source to guarantee stable voltage (the flash device
is connected to the server via the data lines of the SATA
connector).

We use a 1 W resistor (±5% error) as a shunt, and we
sample voltage drop at 100 MHz, i.e., at the order of ten
microsecond, which allows us to oversample the flash SSD
IOs that are performed in tens of µs. This does not give us
the energy consumption of each IO, but we are working at
the appropriate resolution to reason about the impact of IO
patterns on energy consumption.

B. uFLIP RESULTS
It is tempting to reduce flash devices to a single charac-

teristic, e.g., random are slow while the other operations
are fast. Our benchmark shows that such a simplification is
just wrong. We need to be very careful when choosing the
assumptions that underlie the design of systems relying on
flash devices. There are significant differences in terms of
performance characteristics across flash devices, and across
states for a given device.

We illustrate this point with measurements that we con-
ducted on FusionIO’s ioDrive device2. Figure 4 shows through-
put (IOs per second) for four basic patterns (RR: random

2http://www.fusionio.com/

Figure 4: Baseline Patterns micro-benchmark on

FusionIO’s ioDrive

Figure 5: Degree of Parallelism micro-benchmark

on FusionIO’s ioDrive

read, SR: sequential read, RW: random writes, SW: sequen-
tial writes) at a granularity of 4K. We configure the flash
device with either Maximum Capacity (MC) Max Write
Performance (MW) configuration, and we format it either
with low-level format (LLF: an erase command is sent to
each flash page to get back to factory settings, i.e., no dirty
block/page) or random format (RF: the entire device is writ-
ten over randomly with blocks of different sizes).

The graph shows that, on FusionIO’s ioDrive, the assump-
tion that random writes are slower than other IO operations
does not hold. In fact, with Max Capacity/Random Format,
random writes are the fastest operations. More generally,
there is nothing homogeneous about the performance of this
device. The performance profile with factory settings (LLF)
is similar with Max Capacity and Max Write, while it differs
significantly (specially sequential writes exhibit different be-
haviour) in the worst case scenario of the random format
(RF). This means that the performance profile of this de-
vice changes in time as its state evolves. Further work is
needed to capture the evolution of flash device state and
reason about their performance characteristics.

The parallelism micro-benchmark, in Figure 5, reveals a
ten-fold improvement in response time for the Max Capacity
regime when the degree of parallelism is increased from 1 to
16, while Maximum Write exhibits a 50% decrease when the
degree of parallelism is increased from 1 to 4. This is ob-
viously an idiosyncracy of the ioDrive implementation, but
this is our point: We should be careful when designing al-
gorithms and systems to define the class of device that we
target. Not all flash devices will match a given set of as-
sumptions. We refer interested readers to [2] for a descrip-
tion of the benchmark results, and to the uFLIP web site
for consulting the results obtained with more than twenty
devices.

