
Meeting Ecologists’ Requirements with Adaptive Data Acquisition

Marcus Chang
IT University of Copenhagen

mchang@itu.dk

Philippe Bonnet
IT University of Copenhagen

phbo@itu.dk

Abstract
Ecologists instrument ecosystems to collect time series

representing the evolution in time and space of relevant abi-
otic and biotic factors. Sensor networks promise to im-
prove on existing data acquisition systems by interconnect-
ing stand-alone measurement systems into virtual instru-
ments. Such ecological sensor networks, however, will only
fulfill their potential if they meet the scientists requirements.
In an ideal world, an ecologist expresses requirements in
terms of a target dataset, which the sensor network then actu-
ally collects and stores. In fact, failures occur and interesting
events happen, making uniform systematic ecosystem sam-
pling neither possible nor desirable. Today, these anomalous
situations are handled as exceptions treated by technicians
that receive an alert at deployment time. In this paper, we de-
tail how ecological sensor networks can maximize the utility
of the collected datasets in a changing environment. More
specifically, we present the design of a controller that con-
tinuously maintains its state based on the data obtained from
the sensor network (as well as external systems), and con-
figures motes with parameters that satisfy a constraint opti-
mization problem derived from the current state, the system
requirements, and the scientist requirements. We describe
our implementation, discuss its scalability, and discuss its
performance in the context of two case studies.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-

Communication Networks—Distributed Systems

General Terms
Design

Keywords
Autonomous System, Constraint Optimization Problem,

Planning, Scientific Data, Wireless Sensor Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is premitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee.

1 Introduction
For years, ecologists have deployed in-situ sensing infras-

tructures to observe and monitor the biotic and abiotic factors
in a given ecosystem. They primarily rely on fixed data log-
gers to collect and store data from a wide variety of sensors.
They have been promised that low power wireless sensor net-
works would be able to provide them with sampling at un-
precedented scale and resolution [10]. However, the MEMS
revolution has not yet delivered a radical change of the op-
tical, biological, and chemical sensors that are pervasive in
ecological monitoring. Scientists cannot afford high density
deployment of the current generation of sensors, which are
still bulky, energy hungry, and expensive. Still, low power
wireless networks can have a significant impact on ecolog-
ical monitoring by transforming stand-alone devices into a
networked system that is monitored and controlled to meet
the scientist’s requirements. In this paper, we study how eco-
logical sensor networks can be steered to improve the utility
of the collected datasets.

Ecologists rely on in-situ sensing to collect datasets of
the form (t,x,y,z) → (v1,v2, ...,vn), where the independent
variables represent time (t) and space (x,y,z), and the depen-
dent variables correspond to the modalities of the sensors
deployed. These raw measurements are the foundation of
the scientific workflow. They are tagged with metadata, and
transformed into derived data products via calibration, veri-
fication, or extrapolation processes. The derived data prod-
ucts are then used for modeling purposes. The derivation
processes and the models are applied in the lab, as a post-
processing phase, based on the primary data collected in the
field. If an offline verification process exposes a sensor fail-
ure then the collected data is useless. If a model gives ev-
idence of interesting events, then the collected data might
not be dense enough (in space, time or modality) to allow
a deep analysis of the phenomenon. In this paper, we pro-
pose to move portions of the existing offline scientific pro-
cesses online, within the ecological sensor networks in order
to improve the quality of the collected data. Specifically, we
propose that anomalous situations should be recognized and
handled online, while data is collected, so that the sensor
network can adapt and maintain high utility.

Consider a scientist that monitors a lake. She is interested
in measuring conductivity and temperature at five different
depths, at a sampling rate of one measurement per hour, for
a month. This is her initial requirement based on the dataset

she wishes to collect. However, if we go further and con-
sider potential anomalous situations, we obtain a much more
complete picture:

• Failures: She can tolerate that measurements are taken
up to once every six hours; however below that thresh-
old, measurements are useless. Also, she requires that
both conductivity and temperature are measured to-
gether; if either measurement is missing the other is
useless. She indicates a valid range for conductivity
and temperature measurements; measurements outside
these ranges should be considered errors. Conductivity
errors might be compensated by either repeating a mea-
surement within a few seconds, and if that fails reset-
ting the conductivity sensor. Temperature errors might
be compensated by looking up the temperature at an ad-
jacent depth. In addition, a sensor should not be consid-
ered damaged if its measurements drift in time; regular
manual samples are taken periodically to compensate
for such errors.

• Interesting events: The scientist indicates that she is
interested in thermoclines (rapid changes in the tem-
perature within a limited depth range) - so if possible,
measurements should be taken at additional depths if
a thermocline is detected (given a simple temperature
variation threshold for detecting thermoclines). Also, in
case of a storm (signaled by the RSS feed of a close-by
weather station), the sampling rate should be increased
to twelve measurement per hour for the two depths that
are closest to the surface of the lake. The scientists
notes, however, that if energy is limited the baseline
measurements should have higher priority.

The core of the problem is that ecological data acquisition
has been based on the premise of systematic ecosystem sam-
pling: it is assumed that the ecosystem is sampled with given
modalities at predefined intervals in time and space. This is
neither possible (because of failures), nor desirable (because
interesting events might not be captured by the baseline set-
tings).

The solution promoted in commercial data acquisition
systems to tackle failures and anomalous situations consists
in involving human supervision. Considering the lake mon-
itoring example above, an ecological data acquisition solu-
tion would consist of a buoy equipped with CTD sensors
(conductivity, temperature, depth) deployed at five differ-
ent depths, and a data logger sampling the sensors and stor-
ing the measurements at a predefined rate. This data logger
would also be equipped with long-range wireless communi-
cation and act as a server for telemetry and tele-command,
possibly alerting a technician in case of problems and ac-
cepting commands and configuration operations.

This design, which is the state-of-the-art in ecological
data acquisition, is however flawed in several respects:

1. Contingency planning is weak. In case the data logger
detects an anomalous situation, it raises an alert and it
is up to the technician to handle it. This is a best effort
approach, where response to anomalies is unspecified
and variable. In our experience, the resources available
for monitoring purposes do not allow 24/7 supervision.

Because, long-range communication and technician su-
pervision are expensive, the data logger is programmed
to send alerts in limited cases. The system is not config-
ured to compensate for errors or to react to interesting
events.

2. No graceful degradation. When energy supplies are
low, data acquisition continues at the predefined sam-
pling rate at the risk of thrashing. More generally, the
assumption is that the system has a single regime, and
that human intervention is needed to keep this regime
operational in case of failure.

3. The system is stand-alone. Co-located data loggers are
not interconnected, thus possibly missing opportunities
for increased redundancy, and detection of interesting
events.

In contrast, we propose that ecological sensor networks
should rely on adaptive ecosystem sampling, where the pro-
cedure for selecting samples is autonomously revised based
on the values of observed variables [27]. More specifi-
cally, we propose an ecological sensor network controller
that checks the measurements it collects and adapts how the
next measurements should be obtained (in time, space and
modality) to maximize their utility for the scientists [26].

Our goal with this work is to limit human intervention to
the initial requirements, and let an autonomous data acqui-
sition system handle anomalies. Obviously, when possible
and affordable, human intervention should be used to main-
tain the optimal regime1. Our point, here, is that the system
should maintain high utility and degrade gracefully when the
optimal regime is no longer sustainable. Now, the questions
are: (1) How can scientists represent the utility of measure-
ments? (2) How can such a controller operate to maintain
high utility at reasonable cost in a changing environment?
We address these questions in this paper. Our contribution is
the following:

1. We capture the scientist requirements in terms of data
collection modes. For each data collection mode, the
scientist describes a range of acceptable parameters.
Utility is represented as a ranked preference of these
data collection modes.

2. We describe ADAE, a controller that continuously
maintains its state based on the data obtained from the
sensor network (as well as external sources), and con-
figures motes with parameters that satisfy a constraint
optimization problem derived from the current state.
ADAE is based on a three-tier architecture, originally
developed for autonomous systems. We detail the de-
sign and implementation of the ADAE system, and dis-
cuss how it scales.

3. We describe experimental results based on a simulation
based on the Life Under Your Feet dataset [22], as well
as an actual deployment for lake monitoring.

1This work is part of the MANA project whose goal is to deploy
an autonomous sensor-based data acquisition system for lake mon-
itoring in North-East Greenland [5]. This project is funded by the
Danish Strategic Research Council.

Figure 1. Comparison of the utility-based controllers of Lance, Glacsweb, and ADAE.

2 Related Work
In this section, we position ADAE with respect to existing

sensor network-based data acquisition systems, we discuss
the previous use of adaptive sampling in sensor networks,
and we review existing work on autonomous systems con-
trollers.

2.1 Data Acquisition with Sensor Networks
Cougar [3] and TinyDB [20] introduced a distributed

query processing paradigm for sensor network data acqui-
sition. The goal was to ensure a flexible tasking of motes via
a relational query interface. The assumption was that (a) the
relational model was appropriate to capture sensor data, (b)
that users would submit queries to task motes, and (c) that
in-network processing was necessary in the context of a sen-
sor network. The relational query interface is too high-level
for ecologists that do not wish to query the sensors but aim at
systematically collecting primary datasets for their scientific
processes (see [21] for a thorough discussion of the limita-
tions of these approaches).

BBQ [16] and MauveDB [8] introduced the notion of
model-based querying as an abstraction for data acquisition.
The system maintains a statistical model of the data, and in-
stead of blindly collecting time series, only collects the data
that are needed to improve the precision of the model. For in-
stance, correlations across modality are leveraged to reduce
the cost of data collection as expensive measurements are re-
placed by cheaper ones. Users obtain probabilistic, approx-
imate answers to their queries. Such approaches are not rel-
evant for ecologists since they are the ones discovering new
models and thus need primary datasets as a foundation for
their scientific processes.

PRESTO [17] further develops the idea of model-based
querying. The PRESTO gateway constructs a seasonal
ARIMA model of the time series collected at a given sensor.
In order to maintain these models, PRESTO combines the
pull approach from MauveDB (data is collected as needed to
improve precision), with a push approach, where each sensor
uses the model parameters defined by the gateway to predict
future values and sends data to gateway in case an anomaly is
detected (i.e., there is a significant difference between a pred-
ication and the actual measurement). The gateway refines
the sensor model as it receives new measurements to reflect
changes in the sensed data. We share with PRESTO this

focus on anomaly detection and on adaptation to a chang-
ing environment. PRESTO returns approximate answers that
match the confidence interval specified by users. The ratio-
nale behind the design of PRESTO is to improve energy ef-
ficiency, not to maximize utility for users.

Lance [30] introduced utility-based controllers in the con-
text of sensor network data acquisition. This system focuses
on the collection of high-bandwith signals, where not all the
data acquired by the motes can be transmitted to the base
station. Lance controls bandwidth usage by splitting the
data acquired at each mote into a sequence of data pack-
ets, and making sure that only the most relevant data pack-
ets are transferred back to the base station. The selection is
performed by the base station based on summaries sent by
motes and on a trade-off between cost and utility based on
a policy provided by the user. We share with Lance a focus
on optimizing the utility of the collected data. The funda-
mental difference is that in Lance the optimization problem
concerns the deletion of data collected in a predefined way,
while in ADAE the optimization problem concerns the se-
lection of the data collection parameters (e.g., sampling rate,
sensor placement, modality). Those two problems are or-
thogonal. In terms of architecture, Lance focuses on flexible
policy modules, while ADAE relies on the three-tier archi-
tecture – both aspects are complementary.

2.2 Adaptive Sampling in Sensor Networks
In statistics, adaptive sampling designs are those in which

the selection procedure may depend sequentially on ob-
served values of the variable of interest [27]. In the context
of sensor networks, adaptive sampling has mainly been intro-
duced to (a) maintain high resolution while covering large re-
gions of space using mobile sensors, e.g., light sampling with
Networked Infomechanical Systems (NIMS) [4], or to (b) re-
duce approximation errors with additional samples taken by
mobile sensors, e.g., weather forecasting with autonomous
UAVs [7]. Compared to these approaches, we do not seek
to improve resolution with a reduced number of sensors, but
to maintain utility of measurements in a changing environ-
ment. Our challenge is to take a decision on when, where
or how to sample whenever the environment changes, rather
than gradually improve the resolution of a given model.

In Glacsweb [28], adaptive sampling was actually intro-
duced to maintain high utility in a changing environment.

Each mote relies on observed values to forecast future values
using a Bayesian linear model, and decides on when to ob-
tain the next sample based on the estimated information gain
of these future values. Basically, the next sample is taken at
the point in time at which the estimated information gain of
the predicted value is higher than a given threshold. While
inspired by the same principles, our work differs from Glac-
sweb on two fundamental aspects. First, ADAE does not
attempt to predict future values - observed values are used to
detect anomalies, which trigger changes in the controller’s
model of the environment. Second, ADAEs controller man-
ages how each mote should adapt to changes in the environ-
ment and obtain their next measurements in time, space, and
modality to satisfy the scientist requirements given the sys-
tem constraints - as opposed to focusing on when a given
mote should take its next sample. Figure 1 summarizes the
differences between Lance, Glacsweb and ADAE.
2.3 Autonomous Systems

Autonomous systems constitute a popular research topic
in the areas of AI and robotics. The most interesting devel-
opments have been achieved in the area of autonomous con-
trollers, with contributions ranging from the seminal work on
Deep Space 1 [9] to the Mars Rover [1]. An architecture for
autonomous systems has emerged [2] based on the following
three tier architecture: the bottom tier is the functional layer
that is the interface with sensors and actuators, the middle
tier executes the planned actions and check their effects, and
the top tier implements the planning and scheduling func-
tionalities. As we discuss in Section 4.3, we adopt a sim-
ilar architecture for the ADAE system. Note that NASA
has now made publicly available the platforms they devel-
oped for their autonomous systems, e.g., Apex [12] and Eu-
ropa [11]. We did not use these systems because they did
not support the type of solver we envisaged for our planner,
and because implementation constraints did not allow us to
deploy these systems on our target gateway.2

Interestingly, it has been proposed to use an autonomous
system to control adaptive sampling experiments in aquatic
environments. Stealy et al. discussed this idea in the
context of the NIMS-AQ system [29]. The authors intro-
duce A-IDEA, a three-tier architecture with the goal of au-
tonomously sampling an unknown phenomenon - instead of
relying on a well-understood model of the phenomenon, the
system constructs such a model iteratively with the acquisi-
tion of new samples. While the NIMS-AQ system is imple-
mented and deployed to achieve high resolution at low cost
over an extended region of space (e.g., over a lake or the
cross-section of a river), we are not aware that A-IDEA has
actually been designed or implemented. ADAE is a signifi-
cant step in the direction sketched for A-IDEA.

3 The Ecologists’ Requirements
We aim at designing a system that autonomously adapts

data acquisition to meet the ecologists’ requirements. In this
section, we focus on how to represent these requirements.
Note that our goal is not to define a rigid template for soft-
ware engineering purposes, but to put a stick in the ground

2Apex relies on multi-threaded Lisp, which was not available on
the Linux-based platform we used for our deployment.

regarding the scientists expectation of an ecological sensor
network.

Ecologists rely on in-situ sensing to collect primary
datasets. In the case of manual sampling, they define a pro-
tocol that ensure the relevance, quality, and consistency of
the collected data. In case of automatic sampling, they have
to express requirements to the monitoring system. These re-
quirements are based on the description of the target time
series typically characterized by a fixed sampling rate, a pe-
riod of time during measurements should be obtained, the
placement of sensors, as well as their modalities and accu-
racy.

The traditional requirement is that given a dataset descrip-
tion, all data must be stored, i.e., the whole dataset must
be collected [22]. The problem with this requirement is
twofold. First, it defines an ideal goal. In case of failure,
the monitoring system will not be able to deliver the tar-
get data set. A consequence is that system designers tend
to assume that yield (what percentage of the target dataset is
actually collected) is an appropriate metric for system per-
formance. For ecologists however, the relevance of a dataset
is not proportional to its yield. In our experience, they iden-
tify portions of the collected data set that they can use for
modeling purposes, and portions that are useless - typically
because the dataset is locally too sparse (in time, space or
modality). Second, the requirement of uniform, systematic
dataset collection does not account for interesting events.
Such events are arguably the most interesting elements of
a dataset. Their analysis might require denser sampling in
time, space or modality for a limited period of time.

To overcome these limitations, our goal is to represent
(a) an envelope of relevant datasets for the ecologists in the
context of a given deployment - as opposed to a single dataset
specification, and (b) the scientists preferences within that
envelope - i.e., a form of utility function.

We propose to capture the ecologists’ requirements as a
ranked list of data collection modes (e.g., baseline, degraded,
failure, event detection). Some of the modes are exclusive
(e.g., baseline and degraded), while others can be active si-
multaneously (e.g., baseline and failure or event detection).
We present example of data collection modes, summarized
in Table 1 and Table 2, in the context of the two case studies
discussed in Section 6 and Section 7. For each data collec-
tion mode, the ecologists define:

1. A description of the conditions that must be satisfied
to activate or deactivate each mode. A condition is
specified using a rule (e.g., humidity inside a mote is
greater than 50%), a model (e.g., Echo State Network
for anomaly detection with a training set specified by
the scientist [6]), or a timing constraint (e.g., within five
minutes or for five hours).

2. A target dataset, i.e., its time component (lifetime and
sampling rate), its space component (sensor location),
and its dependent variables (modality and accuracy).
Note that, for data collection modes associated to fail-
ures, the target dataset specifies relevant redundancy in
time, space or modality.

3. A sparseness threshold for each dataset, i.e., the number

(or distribution) of usable measurements per chunk of
time and space. This sparseness threshold ensures that
the collected dataset can be used for modeling purposes.

The ranking of the collection modes defines an ordinal
utility function. Despite our insistence, none of the scientists
we are collaborating with could find a non-trivial cardinal
utility in the context of their activity. In addition to these
data collection modes, the ecologists define a target lifetime
for data collection.

We derived this form of requirements from our collabora-
tion with ecologist. When asked about their requirements all
scientists initially defined a single ideal target dataset. When
faced with the fact that failures might occur, they came up
with a form of sparseness threshold, and the definition of
one or several degraded modes. They expressed interesting
events characterized by simple conditions (external events or
simple thresholds on the sensed data).

4 The ADAE System
ADAE is an autonomous gateway-based controller that

tasks motes to keep on maximizing utility in a changing en-
vironment. Before we describe its design, architecture, and
implementation, we address the following question: What
actions can ADAE take in order to control the sensor net-
work?

4.1 Sensor Network Model
We model an ecological sensor network as a cluster of

motes connected to a gateway. We adopt a classical two-
tier model [17, 30], where motes are slaves, tasked by the
gateway-based controller to sample, store and transmit data.
We do not consider any form of in-network aggregation or
storage (beyond local computation or storage on the mote
that produces data). We further assume a best effort delivery
between mote and gateway (e.g., CTP [13]) that allows the
gateway to collect routing statistics. Finally, we assume that
each mote is appropriately duty cycled (based on the sam-
pling rate and offload rate), and that it is accessible (using a
form of low-power listening [25]).

We also assume that the sample, store, and transmit tasks,
at the core of any data acquisition system, are accomplished
by a program deployed on all motes, and that this program
can be configured with parameters to modify the sampling or
transmission policy. We make this assumption because it al-
lows for a straightforward integration of legacy systems (in-
cluding the current generation of commercial motes). Lever-
aging rich mote APIs or mote reprogramming (via tasklet
distribution [14] or full image reprogramming [15]) is an is-
sue for future work.

We introduce virtual sensors to abstract the underlying
sensor network.3 Each virtual sensor represents a modality
of a given mote (we describe virtual sensors in more detail
below). Virtual sensors export a single API function, that de-
fines the space of possible controller actions (note that such
actions must be mapped to the API exported by the actual
motes). It is up to the underlying sensor network to execute
these actions on the motes.

3Our notion of virtual sensor is inspired by Franklin et al. [21]

4.2 Principles of Operation
Our controller needs to address two problems:

1. What is the controller state and how to update it? While
important for our implementation, the details of the
state representation have no significant impact on the
system and we will not discuss them here. We refer
interested readers to [19].

2. How to pick appropriate actions given the current state?
Because the controller operates in a changing environ-

ment, it needs to proceed online, i.e., select some actions
at one point in time and evaluate their impact regularly, pos-
sibly selecting new actions in response to a change in the en-
vironment. We call epoch, noted ∆, the period of time after
which a given action is reevaluated (note that our cost model
and utility function are defined for limited time frames). A
default epoch size is given as a system parameter. Note that
an epoch might be shorter than the default, in case a data col-
lection mode predicate requires it (e.g., the actions following
a failure might be valid/relevant only for a short period of
time). We impose a constraint that the period correspond-
ing to the transmit rate is lower than (or equal to) the epoch
∆ (stricter constraints, e.g., synchronous requests, might be
introduced to enforce latency requirements).

For each epoch, virtual sensors have a fixed configuration
(i.e., fixed location, fixed sampling rate). The actions gener-
ated, for a given epoch, are thus a collection of at most one
API call per virtual sensor. The planning problem is thus re-
duced to a constraint optimization problem (COP), where the
controller must find values of the state variables that satisfy
all the constraints, maximize expected utility, and minimize
cost: (V , R , C , U), where V represent variables (e.g., lo-
cation or sampling rate), R are the restrictions on these vari-
ables (either given by the system model, the cost model or the
user requirements), C are the constraints (i.e., physical limi-
tations, or energy constraints) and U is the expected utility.
The size of the search space grows exponentially with the
number of virtual sensors O(p range ·2N), where N is the
number of virtual sensors and p range is the average size of
the variable domains

4.3 System Architecture
In order to organize the complexity of the controller, we

structure its components using the classical three-layer ar-
chitecture developed for AI planning [2]:

• Functional Layer, which provides abstractions for the
underlying sensor network, the sensor tasks, and the
storage subsystem. Its interface is generic, but its im-
plementation is deployment-specific.

• Executive Layer, which checks the collected data, call
the decision layer if a new plan is needed, and transmits
the plans from the decision layer to the functional layer.
Both its interface and implementation are generic.

• Decision Layer, which produces a new plan based on
the data it gets from the executive layer. The decision
layer is composed of a generic solver.

The flow of information in the individual components in
this three-layer architecture is illustrated in Figure 2. The
deployment-specific detection modules, target datasets, and

Figure 2. Architectural overview of ADAE.

the model derived from the ecologists requirements are at-
tached to the core ADAE structure through a plugin inter-
face. Automatizing this mapping and thus allowing ecolo-
gists to configure and inspect the controller via a high-level
interface is a topic for future work.

Data generated from the sensor network (both measure-
ments and network status) is collected by SensorData. This
data is stored in a local database, and passed along to the up-
per layers of the controller. We use virtual sensors to present
a uniform abstraction to the upper layers of the controller.
One issue, though, is to map the data received from actual
motes into data associated with virtual sensors. This map-
ping is straightforward for stationary sensors since there is
a direct one-to-one mapping between virtual sensors and the
modality of a mote at a given location. Mobile sensors, on
the other hand, have a one-to-many mapping, were each dis-
tinct location of a mobile sensor corresponds to a different
virtual sensor. The data associated to virtual sensors is then
passed on to PredicateGenerator. Information from exter-
nal sources, such as weather forecasts and time and date spe-
cific events are collected by ExternalData. This data is also
passed on to PredicateGenerator.

In PredicateGenerator, anomaly detection algorithms
are used to transform the time series, network status, and
external data into predicates. In terms of architecture, one or
several detection modules are attached to each virtual sen-
sor4. For example, the range of each measurement value can
be checked and if some are found to be out-of-bounds the
OutOfBounds predicate is set. The conditions described by
the ecologist are also checked at this point with each condi-
tion generating its own predicate.

These predicates are passed on to COPGenerator where
they are used to represent the current state of the system. The
role of this component is twofolds. First, it maintains the
state of the virtual sensors. Second, it constructs a COP that
reflects this state, and incorporates the constraints as well as
utility function from the set of data collection modes cor-
responding to the active predicates. Note that we generate

4Note that the complexity of a detection module can range from
a simple rule to a learning-based classifier. Also, the detection mod-
ules might be embedded as a watchdog on the motes as suggested
by Chang et al. [6]

a single COP for the entire network in order to account for
networking costs.

This COP is then passed on to COPSolver which tries
to find a sensor configuration that satisfies all the constraints
of the COP and at the same optimizes the expected utility
and minimize cost. In ADAE, we model our COP using the
MiniZinc [23] constraint programming language which al-
lows us to define our COPs at a high level of abstraction.
This gives us the flexibility to switch between different en-
gines depending on performance and platform availability.
The solving of the COP is accomplished in two-steps. First,
the COP formulated in MiniZinc is translated to the FlatZinc
language, a lower level constraint programming language.
Second, a generic solver with a FlatZinc parser is used to
solve the COP. The downside of using a generic language
such as MiniZinc is the added overhead from the intermedi-
ate step and the missed opportunity to leverage solver spe-
cific performance enhancements, i.e., specific API calls.

The resulting plan is passed on to PlanInterpreter where
a configuration is generated for each mote and using Sen-
sorConfigurator each mote in the network is reconfigured.
Similar to the mapping process in SensorData, the configu-
rations for the virtual sensor abstraction are transformed into
commands and configurations specific to the physical sen-
sor network. Virtual sensors corresponding to sensors with
fixed locations are mapped directly, while for virtual sensors
representing mobile sensors, the robot carrying the sensor is
instructed to follow a path connecting the virtual sensors. A
cache of all the current configurations are kept and motes are
only reconfigured if there are any changes.

4.4 Implementation
We implemented the ADAE controller using the stan-

dard C++ library in order to ensure portability. The COPs
are translated using the MiniZinc-to-FlatZinc 0.9 transla-
tor [23] and subsequently solved using the Gecode/FlatZinc5

1.3 solver, since it offers a controlled search process and
good performances on a wide range of platforms (including
the target gateway for our deployment). The C++ code and
the MiniZinc models used for the experiments and in the case
studies are publicly available [18].

5Generic Constraint Development Environment. http://www.
gecode.org/

In the two case studies presented in Section 6 and Sec-
tion 7, we will show that ADAE is capable of controlling
very diverse systems. Such a flexibility results from our deci-
sions to abstract the sensor network as a collection of virtual
sensors (at the functional layer), and to provide a framework
for defining deployment specific models of the environment,
of the system constraints, and of the scientist requirements
(at the executive layer).

The complexity of these deployment-specific components
is highly variable. For instance, the interface of the buoy con-
trol system from Section 7 was a legacy system, designed ex-
clusively for a web-based GUI and was never intended as a
programmatic interface. In order to implement a driver suit-
able to ADAE’s sensor network abstraction layer, we had to
implement our own API by parsing HTML tagged web pages
and generate human readable forms filled with redundant in-
formation in order to interact with the buoy. Also, since the
original target had been human interaction we experienced
several timing issues with the buoy control interface because
the system had not been designed to handle rapid sequences
of requests from an application, leading to corrupt data and
other byzantine behavior. The anomaly detection plugins are
also deployment specific. However, because datasets are rep-
resented as generic ADAE structures (exposed at the func-
tional layer interface) and target datasets are represented us-
ing virtual sensors (also exposed at the functional layer in-
terface), these plugins are reusable across deployments. We
refer the reader to [18] for a description of the three layers
API and of the ADAE data structures.

Constructing a valid and complete MiniZinc model for a
given application is not trivial. Specially, finding the correct
relationship between utility, energy, and time requires some
trial and error. For example, in an early version of the model
for Life Under Your Feet, the optimal solution turned out to
be not to sample at all, since the utility gain was not high
enough to offset the energy loss inflicted. At this point, a
key limitation lies in the current state of the MiniZinc solver,
which does not support floats (as exhibited in the rounding
error in Figure 10), only supports 20 bit integers, and suffers
a significant performance drop for large domains. The result
is that model specifications have to be scaled and refactored
in order to fit these artificial constraints. These problems are
annoying but not fundamental as they will disappear with the
expected evolutions of the MiniZinc solver.

5 Evaluation
Before we go further, we need to check two of the as-

sumptions underlying our system design. First, we should
check that it is possible to rely on a generic solver for the type
of constraints optimization problems ADAE is generating.
Second, we should check that we can deal with optimization
problems of reasonable sizes, or more conservatively prob-
lems of large sizes with hundreds of virtual sensors. The
results of the experiments presented in this section were ob-
tained on an Intel Core 2 T7600 2.33 GHz processsor. A
MiniZinc code example can be seen in Figure 3.

5.1 State Space vs. Search Space
We claimed in Section 4.2 that the size of the state space

grows exponentially with the number of virtual sensors. This

is supported by Figure 4, which indeed shows an exponential
growth in runtime when the number of virtual sensors in the
COP increases.

Because we are considering constraint optimization prob-
lems, we expect the resource constraints (i.e. time and en-
ergy) to have a significant dual impact on the search space.
On one hand, tight resource constraints will limit the search
space by rendering certain states inaccessible, and thus re-
duce the runtime. On the other hand, loose resource con-
straints will make even the high utility states accessible, giv-
ing the full benefit of the optimization directed search. We
thus expect the search space to be largest when the resource
constraints are neither restrictive enough to render a signifi-
cant portion of the state space inaccessible, nor loose enough
to make the states with the highest utility available. Of
course, this observation only holds if the cost/benefit rela-
tion between time/energy and utility is positive, i.e., states
with higher utility requires more resources than states with
lower utility. With a negative relation, tight resource con-
straints would lead to the benefits of both a small state space
and an optimization directed search, while a loose constraint
would have neither. For the remainder of this section we
choose a positive relation since this seems most applicable,
i.e., higher cost yields higher utility.

In Figure 5 we show the runtime for three different COPs,
with varying energy constraints (set as a percentage of the
maximum energy required for the most resource demanding
state). As expected, there is a significant difference in run-
time when the constraints are varied. Specifically, there is
a difference of three orders of magnitude between the COPs
with no energy constraints (100%) and the ones with exactly
half available (50%). This confirms our initial analysis that
the search space is largest when neither the constraints nor
the optimizations can be used to minimize the search space
significantly.
5.2 Constraining Runtime

In the previous experiments, the runtimes we measured
have all been for exhaustive searches. However, with an ex-
ponential state space we have no guarantees that the search
space will be traversed in a timely manner. An aggressively
duty cycled gateway, that should be able to operate on batter-
ies for a long period of time, or a short replanning epoch to
reduce latency, both limits the time available for COP solv-
ing. Although our goal is the optimal solution, any assign-
ment that satisfies our COP should satisfy the ecologist’s re-
quirements. Hence, any solution will be tolerable although
one with higher utility is obviously preferred. Thus, we ex-
plore the quality of the intermediate solutions (if any) that
the solver discovers during each search when subject to a
hard upper bound on the runtime.

For the remainder of this evaluation, we choose a simple
4-hop binary routing tree topology, with the motes spread
evenly among its leaves. First we consider a system of 120
virtual sensors, spread evenly among 30 motes. We plot the
relation between energy constraint and optimal solution for
four cut-off runtimes in Figure 6. The energy is varied be-
tween the lowest to highest state and the efficiency is mea-
sured as the percentage of the optimal solution. Surprisingly,
the efficiency is above 88 % for even the shortest runtime of

1 var EnergyDomain: M1EnergyUsage =
2 sum([M1SensorCostArray[s] * bool2int(M1SensorSelectedArray[s]) | s in M1SensorDomain])
3 + sum([M1TransmitCostArray[s] * bool2int(M1SensorSelectedArray[s]) | s in M1SensorDomain])
4 + sum([M2TransmitCostArray[s] * bool2int(M2SensorSelectedArray[s]) | s in M2SensorDomain])
5 ...
6 + sum([MNTransmitCostArray[s] * bool2int(MNSensorSelectedArray[s]) | s in MNSensorDomain])

Figure 3. MiniZinc code example showing the energy consumption for mote M1. Line 1 defines the M1Energy variable.
Line 2 calculates the sensing cost and Line 3 the transmission cost for the selected sensors. Line 4-6 calculates the
forwarding cost induced by the children motes M2 to MN.

15 20 25 30

0.1

1

10

100

1000

No. of virtual sensors

R
un

tim
e

/ s
ec

on
ds

Figure 4. State space grows exponentially with the num-
ber of virtual sensors in the COP. Note the logarithmic
scale.

0 20 40 60 80 100
0

20

40

60

80

100

120

% of max. energy

R
un

tim
e

/ s
ec

on
ds

24 Virtual Sensors
25 Virtual Sensors
26 Virtual Sensors

Figure 5. Search space is shaped by the resource con-
straints.

0 20 40 60 80 100

20

40

60

80

100

% of max. energy

E
ffi

ci
en

cy
 /

%

1s 10s 20s 30s

Figure 6. Restricting runtime for the COP with 30 motes
and 120 virtual sensors.

0 20 40 60 80 100

20

40

60

80

100

% of max. energy

E
ffi

ci
en

cy
 /

%

1s 10s 20s 30s

Figure 7. Restricting runtime for the COP with 100 motes
and 400 virtual sensors.

1 s while almost half of all the solutions found are the opti-
mal one.

We then increase the state space by considering 400 vir-
tual sensors attached to 100 motes. The results can be seen
in Figure 7. Overall the increased state space decreases the
efficiency for all cut-off times and not surprisingly the 1 s
cut-off suffers the most. Looking closer, although the state
space has increased by a factor of 2280 the 20-30 s cut-off
times are still able to achieve 80-100 % efficiency.

This result shows that for environmental monitoring
where changes happen on the order of minutes, our con-

troller is efficient enough to instrument the sensor network in
a timely manner. Especially, since any solution that satisfies
the COP also satisfies the needs of the ecologist, regardless
of the achieved utility.

5.3 Discussion
These experiments were designed to explore the feasibil-

ity and the scalability of our approach based on constraint
optimization. We found that even with a generic solver and
an exponential search space, the first solutions found are
quite often close to the optimal solutions. This last result
is encouraging since it suggests that we can plan for even

large networks by enforcing an upper bound on the search
and still be confident that the result will be close to optimal.
At the same time, it enables several contingency strategies.
For instance, if no solution can be found within the given
time limit, another search can be initiated but with a higher
time limit, or relaxation techniques can be used to simplify
the problem by removing datasets from the model one at the
time, stopping with the baseline dataset. These simpler prob-
lems will thus have a higher chance of success.

6 Case Study: Life Under Your Feet
In this case study we use a simulation based approach to

explore the various contingency plans ADAE can use in or-
der to reach lifetime and sparseness requirements in the event
of measurement faults and hardware failures. Our focus is
to illustrate how ADAE adapts to a changing environment
where sensors malfunction and motes loose power. By rely-
ing on a simulated sensor network instead of an actual de-
ployment or testbed, we are able to control the injection of
faults and hardware failures, and since ADAE, as a sensor
network controller, is already dependent on an underlying
sensor network this trade-off between actual deployment and
experimental control seems reasonable.

We use the Life Under Your Feet (LUYF) [22] soil moni-
toring sensor network as a template for our simulation. Each
mote in this network is measuring both temperature and
moisture at two different soil depths. Measurements are sam-
pled, stored, and forwarded to a gateway, which stores the
data and collects network statistics. We use real-life data for
our simulation, by feeding measurements collected with the
LUYF sensor network into ADAE. This is done by creating a
simulated sensor network to take the place of the SensorData
component described in Section 4.3 (and shown in Figure 2).
However, since the measurements we playback were sam-
pled once every hour, whenever we require measurements
outside this interval we apply a linear interpolation between
known data points.

Since one of the main ideas behind ADAE is to offer a
framework in which one can apply a broad variety of detec-
tion algorithms through plugins, we simulate sensor faults
(noisy measurements, spikes, stuck readings, etc.) as miss-
ing data, since this is ultimately the result of any fault detec-
tion algorithm.

In order to meet the lifetime requirement, we use the To-
ken Bucket6 model for power management. The idea is to
divide the remaining energy into equal sized allowances to
be used in each planning interval. If the allowance is not
completely used up, the remaining energy is saved up in
each mote’s virtual bucket. In each planning interval, ADAE
can then dispose of both the energy allowance and the en-
ergy bucket. These allowances ensures that energy is avail-
able throughout the lifetime of the sensor network, while the
buckets allow a more dynamic energy usage with periods of
higher activity.
6.1 Problem Statement

The contingency plans ADAE relies on in order to reach
lifetime and sparseness requirements, in the event of mea-

6http://en.wikipedia.org/wiki/Token bucket

surement faults and hardware failures, are based on redun-
dancy:

• Space. Spatial redundancy, either in the form of backup
motes or motes located close enough to have corre-
lated measurements, can be used to move measure-
ments form one mote to another.

• Time. In case the amount of samples (e.g., for statis-
tical reasons) are more important than the actual tim-
ing of the samples, temporal redundancy can be ex-
ploited by increasing the sampling in order to reach a
certain sparseness requirement. Conversely, although
higher sampling frequency is often preferred, reducing
the sampling frequency to the minimum acceptable can
be used to extend the lifetime of the mote.

• Modality. Similar to the spatial redundancy, in the
presence of backup or highly correlated sensors, mea-
surements can be moved from one modality to the other
in order to leverage this redundancy.

These three methods are orthogonal in the sense that
ADAE can combine redundancy from different methods to
satisfy the ecologist’s requirements. Of course, instead
of defining a single backup sensor/mote, a group of sen-
sors/motes can be specified as well, either as a union where
all backups are activated or as load balancing, where ADAE
chooses the optimal candidate (based on available energy
and sampling/transmission cost).

For example, in the event of power loss, caused by dam-
age to the mote’s power supply or fluctuating power con-
sumption from sensors and actuators, the sparseness and
lifetime requirement could be compromised. Spatial redun-
dancy could then be used to move the measuring to a differ-
ent mote, temporal redundancy by entering a degraded mode
with lower sampling frequency, and redundancy in modality
by switching to a less expensive, but still correlated sensor.

Another example is missing measurements, ranging from
a single dropped sample to a complete failure of a sensor or
mote. In the former case, temporarily increasing the sam-
pling rate might be adequate, while the latter will require
switching to another sensor (and mote). In the results sub-
section, we limit our attention to three experiments, chosen
to explore the different redundancy methods and show the
versatility of ADAE.

6.2 Requirements
Below we present a way to formulate the ecologist’s re-

quirements to the LUYF sensor network, which are also
summarized in Table 1:

• Baseline. By default all four senors should be sampled
once per hour. Although this is the preferred operat-
ing mode, we do not impose a sparseness requirement
on the sampling frequency in order to allow for contin-
gency planning.

• Degraded. If the Baseline requirement cannot be ful-
filled (due to power shortage), the sampling frequency
can be reduced to one sample every six hour.

• Modality. If one of the sensors on a mote has faulty
measurements, the remaining three sensors should in-

Name Priority Condition Target Interval Replan
Baseline 1 Always All motes, sensors 1 hour 6 hours
Degraded 2 If not enough power for Baseline All motes, sensors 6 hours 6 hours
Modality 3 If measurements are missing Remaining local sensors 30 min. 6 hours

Space 3 If measurements are missing One of two nearest motes 30 min. 6 hours
Table 1. Data collection modes for Life Under Your Feet simulation.

0 12 24 36 48
20
22

° C

0 12 24 36 48
20
22

° C

0 12 24 36 48
0.2

0.25
0.3

%
 h

um
.

0 12 24 36 48
0.2

0.25
0.3

Hours

%
 h

um
.

Figure 8. Redundancy in modality. Failure in one sen-
sor causes an increase in sampling frequency on the other
three sensors.

0 12 24 36 48

20

22

° C

Mote 1

0 12 24 36 48

20

22

° C

Mote 2

0 12 24 36 48

20

22

° C

hours

Mote 3

Figure 9. Spatial redundancy. Failure on one mote causes
an increase in sampling frequency on the two neighboring
motes.

crease their sampling frequency to twice per hour.

• Space. If a mote has faulty measurements, either one
of the two closest motes, should double their sampling
frequency to two samples per hour.

Since the Baseline and the Degraded requirements state
the preferred operating mode, they receive the highest and
second-highest priority, respectively. The last two contin-
gency requirements, Modality and Space, both receive the
same lowest priority.

Based on the Degraded mode requirement, we set the
replanning interval to six hours,7 and for this simple case
study we set the lifetime requirement to one month. These
data collection modes are then implemented as plugins to the
Predicate- and COP-generator modules in ADAE.

6.3 COP Model Generation
The Baseline mode always request all the sensors on all

motes to be sampled once every hour. For the Degraded
mode, we do not explicitly define a low-on-power region
in which the Degraded mode is active. Instead, we use a
modified copy of the Baseline mode, where the sampling fre-
quency has been lowered to once every six hours and with the
priority set to a lower level. Because of the different priori-
ties, only the Baseline mode will be activated whenever there
is enough energy, and when there is not enough energy, the
Degraded mode automatically gets highest priority. Both the
Modality and Space mode compares timestamps and counts
the number of measurements in order to detect missing ones.
When these are detected the sampling frequencies on either

7In a real-life deployment, the replanning interval should also
leave time for the actual planning process and network transmission
and latency.

the local sensors or the sensors on the nearest motes are re-
quested to be increased to two measurements per hour.

The sensors on each mote are modeled with individual
energy cost and sampling frequency, and transmission cost
is set to be proportional to the amount of data transmitted.
For each mote, the total amount of energy used in each plan-
ning interval is constrained by the allocated energy from the
bucket model.

Although time constraint is part of the model, i.e., the
sampling frequency is constrained by the actual sampling
time of each sensor, sampling fixed sensors such as temper-
ature and moisture sensors can be done on the order of mil-
liseconds, which is negligible compared to the desired sam-
pling frequency of every 30 to 60 minutes.

6.4 Results
In the first experiment we look at how a sensor failure is

handled by the Modality mode. Figure 8 shows two days
worth of measurements from four sensors connected to the
same mote. In the first 16 hours, all sensors are sampled once
every hour exactly as stated by the Baseline mode. A catas-
trophic failure then occurs on the top temperature sensor and
no more measurements are collected from it. This is detected
by ADAE which activates the Modality mode, resulting in
the remaining three sensors increasing their sampling rate as
stated by the collection mode. Note that in this instance the
reaction to the missing measurements happen immediately.
However, the reaction time is of course directly related to the
replanning interval, with higher replanning intervals leading
to slower reactions.

In the second experiment we look at the performance of
the Space mode. Similar to the previous example, Figure 9
shows temperature measurements taken over two days, but

this time from three different motes. In the first 16 hours
we see the same regular sampling from the Baseline mode.
However, when the failure occurs and the Space mode is acti-
vated we see that: (1) because the Space mode only requires
one of the nearest motes to react only Mote 2 increases its
sampling frequency. (2) because Mote 2 has now used more
energy than Mote 3, in the next planning interval ADAE op-
timizes the energy usage by balancing the load over to the
mote with most energy available. This load balancing results
in the alternating sampling frequencies observed. Note that
ADAE supports redundancy across motes because the plan-
ning layer operates over the whole network, as opposed to
Glacsweb where the timing of each measurement is deter-
mined on the motes.

In the final experiment we show how the Degraded mode
ensures that even in the case of catastrophic energy loss
at least a limited amount of measurements can be sampled
throughout the rest of the required lifetime. In Figure 10 we
show, from top to bottom, the temperature, moisture, battery,
and bucket readings for the entire 30 day period dictated by
the lifetime requirement. The battery level is chosen to be the
exact amount needed in order to fulfill the lifetime require-
ment, when operating in the Baseline mode, while the bucket
is initialized with an extra allowance. On Day 12 we remove
80% of the energy supply, leaving just enough energy for the
mote to actually fulfill the lifetime requirement (if the De-
graded mode is activated in time that is). The tightened en-
ergy constraint forces ADAE to activate the Degraded mode
which causes the sampling frequency to drop significantly,
as can be seen in the top of the figure.

However, even in this Degraded mode, the diurnal tem-
perature pattern and two rain events are clearly distinguish-
able in the remaining measurements. Had the mote contin-
ued in the Baseline mode, the battery would have been de-
pleted after three days, and the last two rain events would not
have been observed. This reinforces our claim that sparse-
ness, rather than yield, should be used as a metric to charac-
terize the collected datasets, since both datasets mentioned
would have had the same yield.

Interestingly, on Day 26 the energy allowance increases
slightly (because of rounding errors), leading to a small en-
ergy buildup in the bucket, which results in small periodic in-
creases in the moisture sampling frequency. Had the energy
loss been intermittent, and sufficient power had returned, the
Baseline mode would have been activated by ADAE again
and operation would have resumed as if the failure had not
occurred.

7 Case Study: Lake Monitoring
In the previous case study we showed ADAE’s fault cor-

rection capabilities. In this one, we will explore how the
same adaptability can be used to improve the flexibility of a
mobile water monitoring system [24].

Unlike typical wireless sensor networks built from low
power motes with inexpensive sensors attached, this water
monitoring system consists of a $20,000 high-quality data
logger which has been network enabled. Being able to con-
trol legacy systems is interesting because these are instru-
ments the ecologists know they can trust.

The system, designed by Peter Staehr from
U.Copenhagen, consists of a single buoy, shown in
Figure 11, equipped with a water monitor capable of
measuring conductivity, temperature, dissolved oxygen,
pH, and fluorescence. These properties are important in
estimating the primary production and respiration in the lake
ecosystem.

The water monitor is attached to the buoy with a 10 m
long cable and an electric motor is used to adjust the vertical
location of the water monitor, thus enabling measurements at
different depths. Taking the water monitor’s physical move-
ment into account, and leaving enough time for the stabi-
lization of the water, the system is capable of measuring 15
different depths every half-an-hour.

The buoy is powered by solar panel and is equipped with
battery for night time operation and a Real-Time Control
Unit (RTCU) instruments the motor and water monitor. Col-
lected data is directly transmitted from the buoy to a back-
end database over the Internet through a GSM modem. This
connection is also used to transmit new configurations to
the buoy, which is used by the RTCU to control the depth
and sampling rate of the water monitor. In case of network
outage, the RTCU reverts to being a data logger and stores
all measurements locally until network service has been re-
stored, at which point the data is offloaded.

The past two years (except during winther where the sys-
tem has been brought down for maintenance), the system has
been taking water samples twice an hour at ten predefined
depths.

7.1 Problem Statement
Because of surface heating during summer and the lake’s

dynamics, two distinct temperature regions, characterized by
a sharp boundary, can be formed at the top and bottom. This
stratification is interesting for the ecologist because the bio-
logical activity is particularly high at this boundary.

Understanding this layering with measurements clustered
around the boundary would be of significant scientific value.
However, since the formation of this stratification and its lo-
cation is neither predictable nor static over time it is not pos-
sible to specify the exact measurement depths a priori. Be-
cause of this, the previous season’s measurements have all
been done at ten fixed depth, spread out evenly to 9 m depth.

Hence, the problems we seek to solve are (1) to detect
and track the location of this temperature boundary and (2)
instruct the buoy to collect extra samples in this region, be-
sides the ten fixed samples.

7.2 Requirements
Formally, the ecologist’s requirements we seek to fulfill

are the following:

• Baseline. As the monitoring program’s cornerstone,
the water column should be measured at ten uniformly
distributed depths, twice an hour (i.e., the same sam-
pling strategy previously deployed). These measure-
ments will provide the ecologist with a long-term base-
line of the lake’s dynamics, and therefore should be
given the highest priority. This also means that there is

0 5 10 12 15 20 25 30
15
20
25
30

° C

0 5 10 12 15 20 25 30
0.1
0.2
0.3

%
 R

el
. h

um
.

0 5 10 12 15 20 25 30
0

500
1000
1500

B
at

te
ry

0 5 10 12 15 20 25 30
0

10
20

B
uc

ke
t

Days

Figure 10. Redundancy in time. On Day 12 a catastrophic
failure depletes 80% of the remaining battery. The De-
graded mode ensures the lifetime requirement is satisfied.

Figure 11. Peter Staehr’s buoy deployed in lake.

Name Priority Condition Target Interval Replan
Baseline 1 Always Depths: {0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 30 min. 30 min.

Stratification 2 If ∆t
∆z > 0.5◦C/m 0-5 normal distributed depths centered around max : ∆t

∆z 30 min. 30 min.

Table 2. Data collection modes for lake monitoring.

a sparseness requirement on both the amount of depths
measured and on the measuring frequency.

• Stratification. If the temperature difference between
each measuring depth is above 0.5◦C/m, extra measure-
ments should be taken in this region. Since the exact po-
sition of the layering is of most importance to the ecol-
ogist, the majority of the extra measurements should be
concentrated on the depth with the highest temperature
gradient and the remaining ones distributed farther from
the center. With the buoy being able to measure at 15
different depth every half-an-hour, the objective is to
measure at five additional depths. However, although
these extra measurements are significant to the ecolo-
gist, they are not as important as the baseline, and are
therefore given a lower priority. Individually, measure-
ments closer to the highest temperature gradient receive
higher priority than those farther from the center. Fur-
thermore, there is no sparseness requirement attached,
since any extra measurements are considered useful.

Although the solar panel and battery on the buoy are both
capable of generating and storing enough power for continu-
ous operation, in the event of failure, e.g., one of the battery
cells suffer physical damage or the solar panel is covered by
debris, energy management becomes an important factor. As
seen in the previous case study, this is exactly what ADAE
is intended for. Unfortunately, the manufacturer of the buoy
was neither able to provide us with any power consumption
estimates nor provide us with live energy production and re-
serve estimates. Hence, the purpose of this deployment is to
increase the quality of collected data, by adapting the sam-
pling strategy, rather than to conserve energy and meet life-
time requirements.

We convert the ecologist’s two requirements presented
above into the data collection modes shown in Table 2. The
replanning interval is set to 30 minutes since we have to
adapt to the stratification layer as soon as possible.
7.3 COP Model Generation

The data collection modes are implemented as plugins to
the Predicate- and COP-generator modules in ADAE, where
the Baseline plugin always requests ten measurements at
the predefined depths, at the specified interval, and with the
stated replanning interval. On the other hand, the Stratifi-
cation plugin calculates the temperature gradient from the
most recently collected dataset, and marks the region satis-
fying the given condition. Five depths are then chosen by
mapping a normal distribution to the marked region with the
mean centered around the middle and standard deviation at
the border of the region. The five depths are then selected
with one at the mean, and one at each 20% and each 40%
cumulative quantile of the mean. The third and final plugin
uses the requests from the two other plugins as parameters to
generate target datasets that are injected into the COP.

The constraints under which this COP must be solved,
are defined by the physical limitations of the system. Be-
cause the actual performance of the electric motor can vary
due to the environment and network congestion can delay
the time between the actual sampling and until ADAE can
process the data, there is a time window of variable size in
which measurements can be performed while still satisfying
the frequency sparseness requirement. To model this time
constraint we first use a timer to measure the excess time
used by the previous iteration, in order to estimate the avail-
able time in this iteration.

Second, we model the time constraint of the movable wa-
ter sensor based on both the number of measurements and

the maximum depth considered. At each depth the sensor
must wait 90 seconds before sampling can commence in or-
der for the water to stabilize from the movement. With the
average speed of the electric motor known, we can estimate
the time needed to reach the maximum depth. By combining
these time estimations we have a time constraint for the COP
model.

This time constraint will mainly impact the Stratification
mode, since the remaining time will determine how many
extra measurements can be inserted while still fulfilling the
frequency sparseness requirement.

We do not enforce a bandwidth constraint, since the size
of the generated data is negligible compared to the band-
width of the GSM modem, thus such a constraint would
never be applied. Also, without the relevant power produc-
tion and consumption figures, as mentioned above, we do not
impose energy constraints in the COP model either.

7.4 Results
We implemented the model above in ADAE and used it

to control the deployed buoy remotely through the back-end
server. We used a low-power ARM based single board com-
puter to serve as our controller.8

In Figure 12 we see a measurement series from the buoy
showing the temperature at different depths. In the region
from four to six meters depth we see a significant tempera-
ture gradient, clearly illustrating the need for adaptive sam-
pling. The presence and location of the stratification mea-
surements shows that ADAE is not only capable of detec-
tion the stratification layer but also placing the measurements
across the entire region as requested. Note that here, adaptive
sampling determines both the location, timing and modality
of a measurement (and not just the timing as in Glacsweb).

In Figure 13 we see the corresponding dissolved oxygen
concentrations taken from the same measurement series. The
relation between the stratification layer and dissolved oxy-
gen, and thereby biological activity, is clearly seen by the
sharp drop in oxygen concentration at exactly the stratifica-
tion layer. In fact, with these extra stratification measure-
ments it is possible to estimate a more precise depth of the
actual stratification layer and thereby calculate a more pre-
cise estimate of the primary production.

8 Conclusion
Sensor networks promise to radically improve the data ac-

quisition systems that ecologists can deploy for in-situ in-
strumentation. There is however a risk of mismatch between
the assumption by ecologists that the sensor network delivers
exactly the time series that has been specified, and on the as-
sumption by computer scientists that the goal is to collect as
much data as possible (using yield as a performance metric).
We argue that it is necessary to take failures and interesting
events into account when specifying the ecologists’ require-
ments. We proposed data collection modes as a means to
represent an envelope of target datasets (e.g., higher sam-
pling rate, or higher accuracy, or different combination of
modalities for a given period).

8Technologic Systems TS-7260. http://www.embeddedarm.
com/

Based on the insight that uniform and systematic ecosys-
tem sampling is neither possible, nor desirable, we proposed
ADAE, a utility-based controller, that adaptively configure
motes in a changing environment. ADAE is based on the
assumption that motes export a simple configuration API in
order to easily interface with legacy systems. We described a
three-tier architecture to organize the complexity of commu-
nicating with motes, representing the sensor network state
and the user requirements, generating constraint optimiza-
tion problems (COPs) to determine the configuration param-
eters, and solving these COPs. We showed that a COP solver
scales to realistic multi-hop sensor networks, and we illus-
trated the benefits of ADAE in a lake monitoring system de-
ployed last summer.

We are currently in the process of preparing new deploy-
ments. These are needed to explore the limitations of data
collection modes, as well as ADAE. In particular, we are in-
vestigating how to handle a very dynamic environment, and
how to handle failures in a long-term autonomous deploy-
ment.

9 References
[1] M. Ai-Chang, J. Bresina, and L. e. a. Charest. MAP-

GEN: mixed-initiative planning and scheduling for the
Mars Exploration Rover mission. Intelligent Systems,
IEEE, 2004.

[2] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. In-
grand. An Architecture for Autonomy. International
Journal of Robotics Research, 1998.

[3] P. Bonnet, P.Seshadri, and J. Gehrke. Towards Sensor
Database Systems. In Mobile Data Management, 2001.

[4] P. Borgstrom, A. Singh, B. Jordan, G. Sukhatme,
M. Batalin, and W. Kaiser. Energy based path plan-
ning for a novel cabled robotic system. In IEEE IROS,
2008.

[5] M. Chang and P. Bonnet. Monitoring in a High-Arctic
Environment: Some Lessons from MANA. IEEE Per-
vasive Computing, 2010.

[6] M. Chang, A. Terzis, and P. Bonnet. Mote-Based On-
line Anomaly Detection Using Echo State Networks.
In DCOSS, 2009.

[7] H.-L. Choi and J. P. How. A Multi-UAV Targeting Al-
gorithm for Ensemble Forecast Improvement. AIAA
Guidance, Navigation and Control Conference and Ex-
hibit, 2007.

[8] A. Deshpande and S. Madden. MauveDB: supporting
model-based user views in database systems. In ACM
SIGMOD, 2006.

[9] R. Doyle, D. Bernard, E. Riedel, N. Rouquette, J. Wy-
att, M. Lowry, and P. Nayak. Autonomy and Software
Technology on NASA’s Deep Space One. IEEE Intel-
ligent Systems, 1999.

[10] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. In-
strumenting the World with Wireless Sensor Networks.
In International Conference on Acoustics, Speech, and
Signal Processing, 2001.

Figure 12. Temperatures measured at different depths.
Baseline (o) and Stratification (x).

Figure 13. Dissolved oxygen concentrations measured at
different depths. Baseline (o) and Stratification (x).

[11] J. Frank and A. Jónsson. Constraint-Based Attribute
and Interval Planning. Constraints, 2003.

[12] M. Freed and R. Remington. Managing decision re-
sources in plan execution. In IJCAI’97: Proceedings
of the 15th international joint conference on Artifical
intelligence, 1997.

[13] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection Tree Protocol. In ACM SenSys,
2009.

[14] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek,
M. Vieira, D. Estrin, R. Govindan, and E. Kohler. The
TENET Architecture for Tiered Sensor Networks. In
ACM SenSys 2006.

[15] J. W. Hui and D. Culler. The Dynamic Behavior of
a Data Dissemination Protocol for Network Program-
ming at Scale. In ACM SenSys, 2004.

[16] G. H. K. Lam, H. Va Leong, and S. C. F. Chan. BBQ:
group-based querying in a ubiquitous environment. In
ACM SAC ’06, 2006.

[17] M. Li, D. Ganesan, and P. Shenoy. PRESTO:
feedback-driven data management in sensor networks.
IEEE/ACM Trans. Netw., 2009.

[18] M. Chang. Adae - autonomous data acquisition engine.
http://code.google.com/p/adae/.

[19] M. Chang. From Automatic to Adaptive Data Acquisi-
tion - Towards Scientific Sensornets. PhD Thesis, Uni-
versity of Copenhagen, 2010.

[20] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: an acquisitional query processing
system for sensor networks. 2005.

[21] S. M.Franklin, J.Hellerstein. Thinking Big About Tiny
Databases. Data Engineering Bulletin, 2007.

[22] R. Musăloiu-E., A. Terzis, K. Szlavecz, A. Szalay,
J. Cogan, and J. Gray. Life Under your Feet: A WSN

for Soil Ecology. In EmNets Workshop, May 2006.

[23] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J.
Duck, and G. Tack. MiniZinc: Towards a Standard
CP Modelling Language. In 13th International Con-
ference on Principles and Practice of Constraint Pro-
gramming, 2007.

[24] Peter A. Staehr and Rikke M. Closter. Measurement
of whole system metabolism using automatic profiling
sensors. In GLEON 6, 2008.

[25] J. Polastre, J. Hill, and D. Culler. Versatile Low Power
Media Access for Wireless Sensor Networks. In ACM
SenSys, 2004.

[26] S. Russell and P. Norvig. Artificial Intelligence A Mod-
ern Approach, 2nd Ed. Prentice Hall, 2003.

[27] G. S. S. Thompson. Adaptive Sampling. Wiley Inter-
science, 1996.

[28] A. U.-B. A. Sensing and M. hop Communication Pro-
tocol for Wireless Sensor Networks. Paritosh, P. and
Dassh, R.K. and Jennings, N.R. ACM Transactions on
Sensor Networks, 2010.

[29] M. Stealey, A. Singh, B. J. M.A. Batalin, and W. Kaiser.
NIMS-AQ: A novel system for autonomous sensing of
aquatic environments. In IEEE International Confer-
ence on Robotics and Automation, 2008.

[30] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh.
Lance: optimizing high-resolution signal collection in
wireless sensor networks. In ACM SenSys, 2008.

