
Flash Device Support for Database Management

Philippe Bonnet
IT University of Copenhagen

Rued Langaard Vej 7
Copenhagen, Denmark

phbo@itu.dk

Luc Bouganim
INRIA Paris-Rocquencourt

Domaine de Voluceau
Le Chesnay, France

Luc.Bouganim@inria.fr

ABSTRACT
While disks have offered a stable behavior for decades -thus
guaranteeing the timelessness of many database design deci-
sions, flash devices keep on mutating. Their behavior varies
across models, across firmware updates and possibly in time
for the same model. Many researchers have proposed to
adapt database algorithms for existing flash devices; others
have tried to capture the performance characteristics of flash
devices. However, today, we neither have a reference DBMS
design nor a performance model for flash devices: database
researchers are running after flash memory technology. In
this paper, we take the reverse approach and we define how
flash devices should support database management. We ad-
vocate that flash devices should provide DBMS with more
control over IO behavior without sacrificing correctness or
robustness, exposing the full potential of the underlying flash
chips in terms of performance. We suggest two approaches:
(a) keep the narrow block device interface, or (b) provide
a rich interface that allows a DBMS to explicitly control
IO behavior. We believe that these approaches are natural
evolutions of the current generation of flash devices, whose
complexity and opacity is ill-suited for database manage-
ment. We describe the design space for the two proposed
approaches, discuss how they would benefit many existing
techniques proposed by the database research community,
and identify a set of new research issues.

1. INTRODUCTION
For some time now, flash devices have been poised to re-

place disks as secondary storage [12]. Today, many different
types of flash devices are finding their way into the mem-
ory hierarchy of database management systems (DBMS),
from SSD to PCI-based racks (e.g., fusionIO and RamSan)
and energy efficient FAWNs [5]1. However, despite signif-
icant efforts [2, 9, 8, 17, 21, 29, 31, 20, 32], a reference
design for database management with flash devices has yet
to emerge. Flash devices have so far been a moving target
for the database community.

1We do not consider in this paper architectures providing
direct access to the flash chips, e.g., embedded flash [4]

Indeed, flash devices do not exhibit consistent character-
istics. They embed a complex software called Flash Trans-
lation Layer (FTL) in order to hide flash chip constraints
(erase-before-write, limited number of erase-write cycles, se-
quential page-writes within a flash block). A FTL provides
address translation, wear leveling and strives to hide the
impact of updates and random writes based on observed
update frequencies, access patterns, temporal locality, etc.
Their performance characteristics and energy profiles vary
across devices [9, 8]. For instance, random writes are faster
than reads on FusionIO’s ioDrive [7] while random writes
are much slower than the other operations on the Samsung
model [9]. For some devices, performance varies in time
based on the history of IOs, e.g., the performance of the
Intel X25-M varies by an order of magnitude depending on
whether the device is filled with random writes or not. What
is the value of a DBMS design based on a storage subsys-
tem whose behavior is not well understood and keeps on
mutating?

By contrast, successive generations of disks have complied
with two simple axioms: (1) locality in the logical address
space is preserved in the physical address space; (2) sequen-
tial access is much faster than random access. As long as
hard disks remained the sole medium for secondary storage,
the block device interface proved to be a very robust abstrac-
tion that allowed the operating system to hide the complex-
ity of IO management without sacrificing performance. The
block device interface is a simple memory abstraction based
on read and write primitives and a flat logical address space
(i.e., an array of sectors). Since the advent of Unix [30], the
stability of the interface and the stability of disks character-
istics have guaranteed the timelessness of major database
system design decisions, i.e., pages are the unit of IO with
an identical representation of data on-disk and in-memory;
random accesses are avoided (e.g., query processing algo-
rithms) while sequential accesses are favored (e.g., extent-
based allocation, clustering).

We must address the tension that exists between the de-
sign goals of flash devices and DBMS. Flash device design-
ers, especially SSD and PCI-based racks designers, aim at
hiding the constraints of flash chips to compete with hard
disks providers. They also compete with each other, tweak-
ing their FTL to improve overall performance, and masking
their design decision to protect their advantage. Database
designers, on the other hand, have full control over the IOs
they issue. What they need is a clear and stable distinction
between efficient and inefficient IO patterns, so that they
can adapt their allocation strategies, data representation or



query processing algorithms to the characteristics of the un-
derlying storage devices. They might even be able to trade
increased complexity for improved performance and stable
behavior across devices.

So the problem is the following: How can flash devices pro-
vide DBMS with guarantees over IO behavior? Interestingly,
flash chips already provide a clear, stable distinction between
efficient patterns (page reads, sequential page-writes within
a block), and inefficient patterns (in-place updates). Our
key insight is that flash devices should expose this distinc-
tion instead of aggressively mitigating the impact of ineffi-
cient patterns at the expense of the efficient ones (e.g., trad-
ing reduced read performance to obtain improved random
writes). We see two approaches:

1. Narrow Interface Device: The most immediate ap-
proach is to keep the existing block device interface.
Since flash devices have no knowledge of the manipu-
lated data, we should (a) let the DBMS optimize its
accesses and, (b) avoid uncontrolled FTL optimiza-
tions. This approach is similar, in spirit, to the way
DBMSs interact with virtual memory [30]. Plagiariz-
ing Stonebraker, this consists in replacing a “not quite
right” service provided by the flash device with a com-
parable, application specific, service within the DBMS.
The key questions here are: What abstractions should
the FTL provide? How to handle the increased com-
plexity at the DBMS level?

2. Rich Interface Device An alternative approach would
be to rely on a rich interface to let DBMS and flash
device collaborate on how to optimize performances.
Indeed, there is an emerging consensus that the block
interface is too narrow [28, 22, 23, 25, 26]. Coping
with the block interface forces flash devices to per-
form complex tasks (i.e., wear leveling, space reclama-
tion, garbage collection) independently from the ap-
plication, possibly against its best interest. The key
questions here are: What information should be passed
from the DBMS to the flash device so that it can op-
timize its performance2? What kind of optimizations
can be defined on flash devices? How should we design
DBMSs to leverage a rich flash device interface?

We see Narrow and Rich devices as natural evolutions of
the current generation of flash devices whose complexity and
opacity is ill-suited for database management. Such an evo-
lution is particularly important for database machines de-
signers (e.g., Oracle’s Exadata or Neteeza’s TwinFin) that
have to specify well-suited flash components for their sys-
tems. More generally, we understand that SSD manufac-
turers will only move if the gain is clear for their business.
We see here an opportunity for the database community to
influence the evolution of flash devices for the benefits of
commodity database systems.

In this paper, we define the guarantees that a FTL should
provide to a DBMS, we detail Narrow and Rich flash devices
and we explore how they will impact database management.
Throughout the paper, we illustrate how ideas expressed
in the literature would benefit from these new classes of
devices. We also describe new research challenges.
2Note that we focus on IO performance; we do not consider
integrating high-level database abstractions within storage
devices, e.g., active disks [24]. Whether a rich interface nat-
urally leads to active disks is a topic for future work.

2. FLASH DEVICES
At their core, flash devices rely on NAND flash chips that

store data in independent arrays of memory cells. Each cell
accommodates 1, 2, or 3 bits of information (SLC, MLC,
TLC). Each array is a flash block, and rows of memory cells
are flash pages3.

The Good. A single flash chip can offer great perfor-
mance (e.g., 40 MB/s Reads, 10 MB/s write) with low en-
ergy consumption [8]. Thus, tens of flash chips wired in
parallel can deliver hundreds of thousands IOs per second.
At the chip level, random operations are as fast as sequen-
tial ones. Recent flash chips can interleave operations and
include multiple independent planes, thus processing oper-
ations concurrently [3]. A flash device is composed of a
collection of flash chips, wired in parallel to a controller.
The controller includes some cache (e.g. 16-32MB), poten-
tially safe with respect to power failure [3]—e.g., cache can
be RAM with capacitors or other NVM (eg. PCM). From
this perspective, the potential of flash device is impressive.

The Bad. Unfortunately, flash chips have severe con-
straints: (C1) Write granularity. Writes must be performed
at a page granularity4. (C2) Erase before write. A costly
erase operation must be performed before overwriting a flash
page. Even worse, erase operations are only performed at
the granularity of a flash block (typically 64 flash pages).
(C3) Sequential writes within a block. Writes must be per-
formed sequentially within a flash block in order to min-
imize write errors resulting from the electrical side effects
of writing a series of cells5. (C4) Limited lifetime. SLC,
MLC and TLC flash chips can support respectively up to
106, 105, 5×104 erase operations per flash block. The trend
is that flash chips store more bits per cell (e.g., TLC) with
a smaller process geometry (e.g., 25 nm), larger page size,
larger number of page by blocks and smaller lifetime. None
of these evolutions challenge the nature of C1-C4.

And the FTL. The controller embeds the so-called Flash
Translation Layer (FTL) in order to hide the aforementioned
constraints. Typically, the FTL implements out-of-place up-
dates to handle C2 using some reserved flash blocks called log
blocks. Each update leaves, however, an obsolete flash page
(that contains the before image). Over time such obsolete
flash pages accumulate, and must be reclaimed by a garbage
collector. A mapping between the logical address space ex-
posed by the FTL and the physical flash space is necessary
to handle writes smaller than a flash page (C1), updates
(C2), random writes (C3), and to support wear leveling tech-
niques (C4), which distribute erase operations across flash
blocks and mask bad blocks. This mapping is implemented
based on a mapping table located in the controller cache, on
flash or both [13]. Page mapping, with a mapping entry for
each flash page generates large maps that do not fit in the
controller cache for large capacity devices. Block mapping
reduces drastically the mapping table to one entry per flash
block [15]—the challenge is then to minimize the overhead
for finding a page within a block. Also, block mapping does

3Flash pages may further be broken up into flash sub-pages
4While the write granularity is the page (4KB-8KB)
for MLC NAND (no sub-pages), the read one can be
smaller [31]. Actually, read granularity depends on the ECC
sector size (512B - 1KB).
5Electric side effects may generate write errors effectively
managed with error correction codes (ECC) at the hardware
level.



not support random writes and updates efficiently. More re-
cently, many Hybrid mapping techniques [19, 18, 13, 15] have
been proposed that combine block mapping as a baseline and
page mapping for log blocks. Besides mapping, existing FTL
algorithms also differ on their wear leveling algorithms [10],
as well as their log blocks management and garbage collec-
tion methods (block associative [16], fully associative [19],
using detected patterns [18] or temporal locality [15]).

3. TUNNELING DBMS IO
Our overall problem is to resolve the tension that exists

between FTL and DBMS design goals. From the point of
view of a DBMS designer, the trivial solution is to take the
FTL out of the equation and let a DBMS directly access flash
chips. Obviously, the first step that DBMS designers would
take is to introduce modularity to hide the complexity of
dealing with flash chips, in effect re-introducing some form
of FTL. So, the interesting question is not how to bypass
the FTL, but what kind of FTL can DBMS designers rely
on?

3.1 Minimal FTL
To tackle this issue, we define the minimal level of ser-

vice that a FTL should provide—because a DBMS cannot.
The idea is that a minimal FTL would give maximal control
and maximal stability to the DBMS. Let us look back at
the constraints imposed by flash chips. First, a DBMS can
trivially issue IOs at the granularity of a flash page (C1).
This would require the FTL to advertise how flash pages
should be aligned at the logical level. Second, a DBMS
could rely on the Trim command6 to tell a flash device to
erase a flash block before it is written (C2). This would
require the FTL to expose an abstraction of flash blocks
at its interface. Third, a DBMS could write flash pages in
sequence within flash blocks (C3). This would require the
FTL to advertise how flash blocks are aligned, and how flash
pages are mapped into flash blocks. Fourth, a DBMS cannot
implement wear-leveling (C4). It must be provided by the
FTL. Indeed, wear-leveling is absolutely necessary to guar-
antee the lifetime of a device. Flash device manufacturers
will never release a product that can wear-out after some
minutes of focused and intensive write/erase cycles.

One can thus imagine building flash devices with an FTL
that implements wear leveling and provides abstractions for
flash pages (a logical page) and flash blocks (a logical block).
Such a FTL would rely on a block level map which is com-
pact enough to be efficiently kept in the flash device safe
cache (e.g., 16MB cache for 1 TB of 256 KB flash blocks)7

With such a FTL, the DBMS would have to handle con-
straints C1-C3 —i.e., the DBMS could not submit IOs for
in-place updates or random writes. On the other hand, the
FTL would guarantee that the IOs that respect these con-
straints would be tunneled to the underlying flash chips as
directly as possible (see Figure 1).

Would flash device manufacturers be interested in provid-
ing such FTLs? Probably not. Could DBMS designer al-
ways circumvent random writes on flash devices? Maybe in

6The Trim command has been introduced in the ATA inter-
face standard [28] to communicate to a flash device that a
range of LBAs are no longer used by an application
7Otherwise, the block mapping has to be partially written
on flash (as was the case in early block mapping FTLs [11]).

Figure 1: Bimodal FTL that combines near-optimal
performance for IO as long as the DBMS respects
constraints C1-C3, and best effort performance for
other IO patterns where the FTL must enforce these
constraints.

some cases, but definitely not for general-purpose databases.
So our problem is to define a bimodal FTL which achieves
optimal performance as long as the DBMS manages con-
straints C1-C3 (minimal FTL), while providing best effort
performance for all other IO patterns8. Interference between
these two modes of operations should be minimized.

3.2 Bimodal FTLs
While flash device designers have focused on efficiently

enforcing the flash chip constraints for updates or random
writes, there has not been much work on characterizing op-
timal performance for a flash device. More precisely, what
is the most optimal mapping that a FTL can achieve? We
have seen that a FTL must at least implement a form of
block mapping to support wear-leveling. A mapping is thus
optimal if (a) the block look-up is performed in the con-
troller cache, and (b) the offset of the page within the block
is derived from the logical address (i.e., consecutive logical
addresses are written sequentially within a block). In the fol-
lowing, a flash block for which mapping is optimal is called
an optimal block.

A bimodal FTL must provide optimal mapping for those
logical blocks for which the DBMS guarantees that writes
are performed sequentially (C2) at the granularity of a flash
page (C1), while any update is preceded by a Trim command
(C2). The other logical blocks—on which all IO patterns are
allowed—are mapped to one or more physical flash blocks,
depending on the algorithms used by the FTL to manage
constraints C1-C3. The design of the FTL optimizations for
non-optimal blocks is not in the scope of this paper. State
of the art techniques can be used [16, 18, 19, 15, 13] as long
as they do not directly interfere with optimal blocks. We
argue the feasibility of this approach in Sections 4 and 5.

Obviously sequential writes will result in an optimal map-
ping. Interestingly, semi-random writes9, i.e., random write

8A bimodal FTL must implement a form of wear-leveling
and garbage collection. This requires some work, and as a
result, a DBMS can never obtain an IO throughput strictly
equal to the throughput of the underlying flash chips even
when the FTL guarantees optimal mapping.
9The notion of semi-random writes was introduced in [21];
in our approach, it is the number of logical blocks that limits
the degree of parallelism in the semi-random writes.



IOs which are mapped sequentially on different logical blocks
will also result in an optimal mapping. Sequential reads and
random reads benefit equally from an optimal mapping. An
interesting side effect is that an optimal block never needs to
be garbage collected; while for non-optimal blocks, the goal
of the garbage collector must be to tend towards optimal
mapping.

3.3 Impact on DBMS design
Bimodal flash devices provide a stable and optimal basis

for DBMS design. Even if more work is needed to investigate
the actual impact of our approach, we can already make
some preliminary observations10.

Existing work focused on making database writes sequen-
tial (e.g., Append and Pack [29], ReSSD [20], NIPU [32]) is
today restricted to repairing the bad random write perfor-
mance of low-end SSDs. Such a technique would be required
to leverage the optimal performance of sequential writes in
case of a bimodal FTL. Also, techniques designed for flash
chips (e.g., Lazy adaptive trees [2], or Page-differential Log-
ging [17]), which are not today adequate in the context of
SSDs, could naturally be applied to bimodal FTLs since
they would generate only optimal blocks. Other techniques
based on hashing or sorting (e.g., online maintenance of very
large random samples [21]) can today only be applied to
those SSDS that support (a limited form of) semi-random
writes. Such techniques as well as hash-join or sort-merge
would clearly benefit from the performance of semi-random
writes on a bimodal FTL as long as bukets are aligned on
block boundaries. Finally, the FlashScan and FlashJoin al-
gorithms proposed in [31], that aggressively make use of ran-
dom read IOs of small granularities are today rather well
supported in current SSDs, even if random reads are slower
than sequential reads on many SSDs. A bimodal FTL could
ensure optimal performance with random reads as perfor-
mant as sequential reads.

While it is impossible to develop a performance model
of existing SSDs (because of their opacity and complexity),
it is possible to envisage both analytic models and simula-
tion models of bimodal flash devices, in order to explore the
DBMS design space.

4. NARROW BIMODAL FLASH DEVICES
Is it possible to implement a bimodal FTL without violat-

ing the constraints of a block device interface, i.e., fixed size
IOs, flat name space of logical addresses, interface reduced to
read/write/trim commands? In this section we focus on how
to guarantee optimal mapping when a DBMS enforces the
flash chip constraints, since many existing techniques can be
used to mitigate the effects of updates or random writes for
non-optimal blocks. More specifically, the issues are (a) How
to represent logical blocks and pages with a block device in-
terface and (b) How to detect whether a DBMS enforces the
flash chip constraints?

We propose an obvious implicit and immutable scheme
for associating logical addresses to logical blocks and pages.

10We have identified the impact of bimodal FTL on a large
set of existing techniques proposed in the literature based
on the assumptions they make. If this paper gets accepted,
we will conduct a detailed discussion, probably in a separate
section at the end of the paper.

The flash device must expose two constants11: Logical Block
Size or LBS and Logical Page Size or LPS. LBS (resp.
LPS) correspond to the size, in bytes of a flash block (resp.
a flash page)12. For a logical address A, the logical block
number LBN and logical page number LPN are obtained
using the following trivial formulas: LBN = A/LBS and
LPN = (A − LBN × LBS)/LPS, where / is the integer
division.

While page size IOs are submitted sequentially within a
logical block (starting from page 0), flash pages are written
in the order the IOs are submitted. This way, the layout of
flash pages within a flash block is optimal, and each read
(either sequential or random) can be trivially mapped to an
offset within a flash block. This is detected by maintaining
in the safe cache, for each flash block, the physical position of
the last write within the block. A bit indicates whether the
mapping is optimal or not (initially, free blocks are optimal).
We thus maintain in the controller cache a mapping with 4
bytes per block (22 bits for physical block id + 6-8 bits for
current position within block (64-256 pages per blocks) + 1
bit flag for the optimal mapping).

An optimal block might become non-optimal if the sub-
mitted IOs are no longer sequential (e.g., updates, unaligned
IOs (across page and block boundaries), random IOs). Con-
versely, classical garbage collector algorithms [19, 15], trig-
gered in case of updates or random writes, will tend to con-
vert non-optimal blocks into optimal ones.

The obvious question is whether any of the currently avail-
able flash devices implement such a FTL. We have devised
a set of tests to check whether a device can provide opti-
mal mapping (with safe cache) or near optimal one (no safe
cache). None of the devices tested (including FusionIO, Intel
and Samsung devices) were found to neither provide optimal
nor near optimal mapping13.

While a significant improvement with respect to today’s
devices, the narrow approach is not perfect: (i) Wear-leveling
and garbage collection are performed without any knowl-
edge of the stored data, (ii) The utilization of the controller
cache is not optimized; (iii) A lot of complexity related to
flash chips is managed at the DBMS level. In the next Sec-
tion, we introduce the Rich approach that addresses these
shortcomings.

5. RICH BIMODAL FLASH DEVICES
Extension of the block device interface have already been

proposed in the context of flash devices [28, 23, 22] to man-
age complexity, control trade-offs and optimize embedded
resources. While, Shu et al. [28] introduce the Data Man-
agement Set in the ATA protocol— connecting host and
peripherals— that allows an application to communicate in-
formation about its I/O access behaviors to the underlying
flash device, Rasjimwale et al [23] propose to use expressive
interface such as object-based storage, and Prabhakaran et
al. [22] focus on providing atomic writes. In the following,
we describe how rich interfaces could be used to optimize

11Such constants can be retrieved by the DBMS using specific
command like GetDriveGeometry

12Parallelism within the flash device might lead to define
LBS (resp. LPS) as a multiple of the flash block size (resp.
the flash page size.

13If this paper gets accepted, we will integrate our test and
some results obtained on a range of SSDs in the final, longer
version of the paper



the minimal FTL mode–most optimizations have already
been presented in the literature–, and we quickly discuss
non-optimal blocks. We deliberately avoid discussions of
implementation or syntax issues, which are left for future
works.

5.1 Optimal Blocks
From optimal blocks to optimal chunk: Since the

block device interface does not provide any means to explic-
itly declare a set of optimal blocks (called hereafter chunk),
these have to be detected by the FTL. More importantly,
this detection leads to the management of a large number
of small blocks, having an impact on the volume of meta-
data (mapping, statistics, and detection data) that must be
stored into the safe cache. Explicit declaration of larger
chunks may thus bring significant savings in terms of safe
buffer. For instance, a single 100 MB optimal chunk, ex-
plicitly declared to the flash device, e.g., for the log file of a
DBMS, may bring a two order of magnitude reduction of the
metadata wrt the implicit detection of 400 optimal blocks.
While a rich interface has no direct impact on the perfor-
mance of optimal blocks (the mapping is already optimal),
it allows for improved caching (see below).

Providing metadata: In a block device, wear leveling
and garbage collection proceed blindly, without knowledge of
the access patterns on the managed data. Choosing highly
erased blocks to store data with low erase frequency and
conversely will avoid useless blocks movements to balance
erase counts. A similar strategy, based on detection, has
been proposed in [10] in the context of a block device in-
terface. Note that minimizing blocks movements increase
performance and lifetime of the device.

Caching data: DBMS and FTL could collaborate to
avoid producing non-optimal blocks for append data struc-
tures (e.g., log records, tables in append mode). The FTL
can avoid update operations (and thus degrading an optimal
block to non-optimal) if the last written flash page can be
kept inside the safe buffer and only written to flash when it
is full.

Transmitting and caching payload: A rich flash de-
vice no longer has to be restricted to a flat, regular address
space based on logical block addresses. We can consider
write IOs which only transmit useful data, called hereafter
the payload, i.e., fragments of pages as opposed to pages
(note that we do not consider here that the flash device
manages a representation of the database page layout). The
main advantage of using payload instead of pages is that
write operations can be buffered efficiently. (e.g., n inserted
tuples in a database table will lead to buffer the aggregate
size of the tuples plus some offsets-to recompose the pages-,
compared with n IO sectors with a narrow interface!). In-
deed, the safe buffer is not polluted with data that already
exists in the flash memory. Note that even if the safe cache
is full, it may be more interesting to temporarily flush the
payload part of the cache in a dedicated flash area (as a
swap file) rather than flushing on their destination, in order
to keep the destination blocks optimal. Write payload shares
some ideas with the Page-Differential Logging approach [17].

Reading payload: Payload optimization is also very in-
teresting for read operation since it avoids transmitting use-
less data from the chip to the controller and then to the
host (typically, reading a 4KB page costs around 150 µs
from which 125 µs are transmission costs through the serial

interface from the chip to the controller). FlashScan [31]
already mentioned in section 3.3 could benefit further from
read payload, reading only subpages (i.e., corresponding to
the ECC granularity).

Nameless writes: Nameless writes were introduced in [6]:
the DBMS does not provide any destination address but let
the FTL decides on the placement of the data and returns
a handle for future reference. Nameless writes thus gener-
ates optimal blocks but are somehow easier to manage at
the DBMS level, typically for temporary data.

Reorganization for free: A further improvement would
consist in letting the FTL expose some aspects of the wear-
leveling process to the DBMS to support additional opti-
mizations. The wear leveling process sometimes has to move
static data to balance the erase count across the whole de-
vice. In this case, the FTL reads a whole block that it
rewrites on another physical location, thus bringing an op-
portunity to reorganize the block for free. The FTL could
involve the DBMS in this process using a call-back mecha-
nism in the way that external pagers interact with the op-
erating systems [1]. Indeed, to allow using optimal blocks,
DBMSs will probably resort to log-based approaches [2, 17]
which might greatly benefit from such cleaning (almost) for
free.

5.2 Non-optimal Blocks
While this paper focus on optimal blocks, we may men-

tion that the extension mentioned above also apply to other
blocks. Actually, there is a greater potential for minimizing
the important overheads generated by the management of
non-optimal block: mapping cost (metadata management),
garbage collection costs (with statistics like R/W frequency,
expected pattern, etc.) and wear leveling costs (update fre-
quency). For instance:

Hot-random-chunks and cold-random-chunks: The
FTL can use different techniques for mapping different chunks
as long as the DBMS can tell the FTL about its access pat-
terns for a given chunk. The FTL can manage hot random
chunks (i.e., frequent writes, scattered on the whole chunk)
with a page mapping cached in the safe buffer, while map-
ping can be performed at a larger granularity and on flash
for cold random chunks. These strategies share the basic
principles proposed in [13, 14], but are based on information
delivered by the DBMS (and not detected by the FTL).

6. CONCLUSION
We argued that flash devices should provide guarantees

to a DBMS so that it can devise stable and efficient IO
management mechanisms. Based on the characteristics of
flash chips, we defined a bimodal FTL that distinguishes
between a minimal mode where sequential writes, sequen-
tial reads and random reads are optimal while updates and
random writes are forbidden, and a mode where updates
and random writes are supported at the cost of sub-optimal
IO performance. Interestingly, the guarantees of a minimal
mode have been taken for granted in many articles from the
database research literature. Our point with this paper is
that these guarantees are not a law of nature, we must guide
the evolution of flash devices so that they are enforced.

We described the design space for bimodal flash devices in
the context of a block device interface, and in the context of a
richer interface. Which one is most appropriate for a DBMS
is an open issue. An important point is that providing op-



timal mapping guarantees does not hinder competition be-
tween flash device manufacturers. On the contrary, they
can compete to (a) bring down the cost of optimal IO pat-
terns (e.g., using parallelism), and (b) bring down the cost
of non-optimal patterns without jeopardizing DBMS design.
Future work includes designing and building a bimodal FTL
in collaboration with a flash device manufacturer.

We can also derive a future work roadmap for database
designers: (1) Define a performance model for bimodal flash
devices in order to explore the DBMS design space. The ref-
erence here is the work of John Wilkes et al. on hard disks
models [27]; (2) Explore the DBMS design space on top of
narrow bimodal flash devices. The first challenge here is to
compare and integrate the many ideas already proposed in
the literature to establish a baseline. The interesting prob-
lem is then to optimize this baseline design; and (3) Explore
the design space for the collaboration of DBMS and rich
bimodal flash devices.

Finally, future work includes studying how operating sys-
tems as well as many data-intensive applications would ben-
efit from flash devices with optimal mapping guarantees
(e.g., warehouse scale distributed systems, game engines,
IO-conscious algorithms).

7. REFERENCES
[1] M. J. Accetta, R. V. Baron, W. J. Bolosky, D. B.

Golub, R. F. Rashid, A. Tevanian, and M. Young.
Mach: A New Kernel Foundation For UNIX
Development. In USENIX Summer, 1986.

[2] D. Agrawal, D. Ganesan, R. K. Sitaraman, Y. Diao,
and S. Singh. Lazy-Adaptive Tree: An Optimized
Index Structure for Flash Devices. PVLDB, 2(1), 2009.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for
SSD performance. In USENIX ATC, 2008.

[4] T. Allard, N. Anciaux, L. Bouganim, Y. Guo, L. L.
Folgoc, B. Nguyen, P. Pucheral, I. Ray, I. Ray, and
S. Yin. Secure Personal Data Servers: a Vision Paper.
PVLDB, 3(1), 2010.

[5] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan. FAWN: a
Fast Array of Wimpy Nodes. In ACM SOSP, 2009.

[6] A. C. Arpaci-dusseau, R. H. Arpaci-dusseau, and
V. Prabhakaran. Removing The Costs Of Indirection
in Flash-based SSDs with Nameless Writes. In
USENIX HotStorage, 2010.

[7] M. Bjørling, L. L. Folgoc, A. Mseddi, P. Bonnet,
L. Bouganim, and B. Jónsson. Performing sound flash
device measurements: some lessons from uFLIP. In
SIGMOD Conference, 2010.

[8] M. Bjørling, P. Bonnet, L. Bouganim, and B. Jónsson.
Understanding the Energy Consumption of Flash
Devices with uFLIP. IEEE Data Eng. Bull., to
appear, 2010.

[9] L. Bouganim, B. Jónsson, and P. Bonnet. uFLIP:
Understanding Flash IO Patterns. In CIDR, 2009.

[10] L.-P. Chang and C.-D. Du. Design and
implementation of an efficient wear-leveling algorithm
for solid-state-disk microcontrollers. ACM Trans. Des.
Autom. Electron. Syst., 15(1), 2009.

[11] E. Gal and S. Toledo. Algorithms and data structures
for flash memories. ACM Comput. Surv., 37(2), 2005.

[12] J. Gray. Tape is dead, disk is tape, flash is disk.
http://research.microsoft.com/en-us/um/people/
gray/talks/Flash_is_Good.ppt.

[13] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash
translation layer employing demand-based selective
caching of page-level address mappings. In ASPLOS,
2009.

[14] J. Hu, H. Jiang, L. Tian, and L. Xu. PUD-LRU: An
Erase-Efficient Write Buffer Management Algorithm
for Flash Memory SSD. MASCOTS, 2010.

[15] D. Jung, J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee.
Superblock FTL: A superblock-based flash translation
layer with a hybrid address translation scheme. ACM
Trans. Embed. Comput. Syst., 9(4):1–41, 2010.

[16] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. A
space-efficient flash translation layer for
CompactFlash systems. Consumer Electronics, IEEE
Transactions on, 48(2), may. 2002.

[17] Y.-R. Kim, K.-Y. Whang, and I.-Y. Song.
Page-differential logging: an efficient and
DBMS-independent approach for storing data into
flash memory In SIGMOD Conference, 2010.

[18] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST:
locality-aware sector translation for NAND flash
memory-based storage systems. SIGOPS Oper. Syst.
Rev., 42(6), 2008.

[19] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A log buffer-based flash
translation layer using fully-associative sector
translation. ACM Trans. Embed. Comput. Syst., 6(3),
2007.

[20] Y. Lee, J. Kim and S. Maeng. ReSSD: a software layer
for resuscitating SSDs from poor small random write
performance. In SAC, 2010.

[21] S. Nath and P. B. Gibbons. Online maintenance of
very large random samples on flash storage. VLDB J.,
19(1), 2010.

[22] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou.
Transactional Flash. In OSDI, 2008.

[23] A. Rajimwale, V. Prabhakaran, and J. D. Davis.
Block management in solid-state devices. In USENIX
ATC, 2009.

[24] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle.
Active disks for large-scale data processing. Computer,
34(6), 2001.

[25] S. W. Schlosser and G. R. Ganger. MEMS-based
Storage Devices and Standard Disk Interfaces: A
Square Peg in a Round Hole? In USENIX FAST,
2004.

[26] S. W. Schlosser, J. Schindler, A. Ailamaki, and G. R.
Ganger. Exposing and Exploiting Internal Parallelism
in MEMS-based Storage. CMU Technical Report
CMU-CS-03-125, 2003.

[27] E. A. M. Shriver, A. Merchant, and J. Wilkes. An
Analytic Behavior Model for Disk Drives With
Readahead Caches and Request Reordering. In
SIGMETRICS, 1998.

[28] F. Shu and N. Obr. Data set management commands
proposal for ATA8- ACS2. http://www.t13.org/,
2007.

[29] R. Stoica, M. Athanassoulis, R. Johnson, and
A. Ailamaki. Evaluating and repairing write
performance on flash devices. In DaMoN, 2009.

[30] M. Stonebraker. Operating system support for
database management. Commun. ACM, 24(7), 1981.

[31] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L.
Wiener, and G. Graefe. Query processing techniques
for solid state drives. In SIGMOD Conference, 2009.

[32] Y. Wang, K. Goda and M. Kitsuregawa. Evaluating
Non-In-Place Update Techniques for Flash-Based
Transaction Processing Systems. In DEXA, 2009.


