
CLab 1.0 User Manual

Rune M. Jensen

August 30, 2004

Abstract

This document describes version 1.0 of CLab: a C++ library for fast backtrack-free and complete

interactive product configuration using binary decision diagrams.

Contents

1 Getting Started 2

2 Quick Tour of CLab 3

3 CP Language Definition 5

4 BDD-Based Configuration 7

5 Library Reference 8

5.1 Class Expr . 8
5.2 Class CPR . 12

6 Implementation 14

6.1 Internal Representation of CPR Objects . 14
6.2 File Structure . 15

1

1 Getting Started

CLab is an open source C++/STL library for fast backtrack-free interactive product configuration. It encodes
configurations in binary and uses reduced ordered Binary Decision Diagrams (BDDs) [1] to represent and
reason about large configuration spaces. CLab utilizes the BuDDy BDD package [2] for handling BDDs.
Instead of encapsulating this package, CLab works side by side with BuDDy as an advanced support tool.
The BDDs generated by CLab can be printed, saved, and further manipulated using the numerous functions
of the BuDDy package. This makes CLab suitable for research and education without compromising its
ability to support real product configuration applications.
The implementation of CLab has been made as flat as possible to make it easy to alter the code and

implement new functions. The library has two major functions: one that builds a BDD representing the
configuration space of a declarative product model, and one that computes the set of possible ways a current
partial configuration can be extended to a valid product. The latter function is fast (polynomial) and makes
the interactive product configuration process complete and backtrack-free, since it allows the user to choose
freely between any possible continuation of the partial configuration.
CLab 1.0 has been precompiled for Linux version 2.4. It may run under earlier and later Linux versions

as well, and it should be fairly simple to port to other operating systems. To install, download the file
CLab10.tar.gz from www.itu.dk/people/rmj/clab/. To unzip and untar the files execute the commands:

$ gunzip CLab10.tar.gz

$ tar xvf CLab10.tar

This creates the following directory structure:

CLab10

|-- src : CLab C/C++ source files

|-- doc : User manual

|-- examples : CLab application examples

‘-- buddy20 : Extended BuDDy 2.0 package

|-- doc : Buddy reference manual

|-- examples : Selfcontained BuDDy examples

‘-- src : BuDDy C source files

To test the precompiled libraries for CLab and BuDDy go to CLab10/examples/shirt and compile the
source files by running make:

$ make

This should produce the executable shirt. The effect of running shirt should be:

$./shirt

<var>: <valid assignments>

color: Black

print: MIB

size: Small

If you are unable to compile the example, or if the output is incorrect, you need to compile the source files
of CLab and BuDDy manually. To compile CLab you need Flex and Yacc to be installed on your Linux
system. Most systems have this by default. First, compile BuDDy. Go to CLab10/buddy20/src and do:

2

$ make clean

$ make

Second, compile CLab. Go to CLab10/src and do:

$ make clean

$ make

2 Quick Tour of CLab

This guided tour of CLab describes the shirt example in CLab10/examples/shirt that covers the main
features of the library. The file containing the example code is CLab10/examples/shirt/shirt.cc:

1 //

2 // File : shirt.cc

3 // Desc. : Test file for CLab

4 // Author: Rune M. Jensen

5 // Date : 7/19/04

6 //

7

8 #include <string>

9 #include <iostream>

10 #include <clab.hpp>

11 #include <bdd.h>

12 using namespace std;

13

14 int main() {

15

16 CPR shirt("shirt.cp");

17

18 bdd solutionSpace = shirt.compileRules(cm_dynamic);

19

20 bdd constraint = shirt.compile(Expr("size") == Expr("Small"));

21

22 solutionSpace &= constraint;

23

24 map< string, set<string> > va = shirt.validAssignments(solutionSpace);

25

26 cout << "<var>: <valid assignments>\n";

27 for (map< string, set<string> >::iterator mit = va.begin(); mit != va.end(); ++mit)

28 {

29 cout << mit->first << ":";

30 for (set<string>::iterator sit = mit->second.begin(); sit != mit->second.end(); ++sit)

31 cout << " " << *sit;

32 cout << endl;

33 }

34 return 0;

35 }

This is an ordinary C++/STL source file that includes the header files of CLab (clab.hpp) and BuDDy
(bdd.h). In line 16 a Configuration Problem Representation (CPR) object is constructed from the file
shirt.cp containing a configuration problem description in the CP language (see Section 3). This file
defines a simple T-shirt configuration problem:

3

1 //

2 // File: shirt.cp

3 // Desc: CP file example.

4 // Shirt configuration problem

5 // Auth: Rune M. Jensen

6 // Date: 7/19/04

7 //

8

9 type

10 shirtColor {Black,White,Red,Blue};

11 shirtSize {Small,Medium,Large};

12 shirtPrint {MIB,STW};

13

14 variable

15 shirtColor color;

16 shirtSize size;

17 shirtPrint print;

18

19 rule

20 (print == MIB) >> (color == Black);

21 (print == STW) >> (size != Small);

A configuration problem consists of a set of variables with finite domains denoting the free parameters of
the product and a set of rules defining the legal product configurations. For the T-shirt example there
are three variables color, size, and print defining the color, size, and what to print on the T-shirt. The
color variable is of type shirtColor. This is an enumeration type with elements {Black,White,Red,Blue}.
Similarly the domains of size and print are {Small,Medium,Large} and {MIB,STW}. MIB and STW stand
for “Men in Black” and “Save The Whales”. The two rules in line 20 and 21 reflect the different requirements
for these prints. Expressions on variables are ordinary conditional expressions of C, except that the pipe
operator >> denotes logical implication (see Section 3 for details). The first rule says that the MIB-print
must be on a black T-shirt (as one would expect for this movie commercial). The second rule says that the
STW-print must be on a large or medium sized T-shirt (due to a large picture of a whale). In addition to
enumeration types, it is possible to define range types. These are finite consecutive subsets of the integers.
The only build-in type is Boolean.
The construction the CPR object in line 16 of shirt.cc involves parsing the shirt.cp file, type checking

the rules and making a binary representation of each variable. In line 18 the two rules of the shirt problem
are compiled into a BDD called solutionSpace that represents the set of legal configurations. This BDD is a
Boolean function that given an assignment to the variables is true if and only if this assignment corresponds
to a legal configuration.
In line 20 another BDD called constraint is constructed. This BDD represents all assignments that

satisfy the expression size == Small. This constraint is assumed to have been chosen by a user in an
interactive configuration session. To support further choices of the user, the solution space must be reduced to
only contain assignments where size equals Small. This is done in line 22 by carrying out a BDD conjunction
operation. The conjunction corresponds to making the intersection of the set of assignments represented by
the solutionSpace and constraint BDD. See Section 4 for details on BDD-based configuration. Notice
that this BDD operation is implemented by the BuDDy package and completely independent of CLab.
Finally the set of valid assignments for each variable in the restricted solution space is printed. The call

to validAssignments in line 24 returns a map from variable names to sets of valid assignments for those
variables. Surprisingly, there is just a single valid configuration left, since only an MIB T-shirt can be small
according to rule 2, and due to rule 1, this T-shirt must be black:

$./shirt

<var>: <valid assignments>

color: Black

print: MIB

size: Small

4

If several configurations were possible in the T-shirt example, a restriction of the users choice to only valid
assignments would ensure that the current configuration would be extended to some partial configuration
of a total valid configuration. Hence interactive product configuration based on single variable assignments
and the validAssignments function is backtrack-free. The user never has to redo a choice to ensure a valid
configuration is reached. It is also complete, since the user in each iteration can pick any of the remaining
valid configurations. The shirt.cc file is using the following make file:

1 # ==

2 # File: Makefile

3 # Desc: Makefile for shirt

4 # Auth: Rune M. Jensen

5 # Date: 7/19/04

6 # ==

7

8 CFLAGS = -W -Wtraditional -Wmissing-prototypes -Wall

9

10 LIBDIR1 = ../../buddy20/src

11 INCDIR1 = ../../buddy20/src

12

13 LIBDIR2 = ../../src

14 INCDIR2 = ../../src

15

16 OBJ = shirt.o

17

18 CCFILES = shirt.cc

19

20 # --

21 # Code generation

22 # --

23

24 .SUFFIXES: .cc

25

26 .cc.o:

27 g++ -I$(INCDIR1) -I$(INCDIR2) -g -c $<

28

29 # --

30 # The primary targets.

31 # --

32

33 shirt: $(OBJ)

34 g++ -g $(CFLAGS) -o shirt $(OBJ) -L$(LIBDIR1) -L$(LIBDIR2) -lclab -lfl -lm -lbdd

35 chmod u+x shirt

36

37 clean:

38 rm -f *.o core *~

39 rm -f shirt

There is nothing special about this make file except that it defines library and include directories for CLab
and BuDDy. A peculiarity, however, is that the -lbdd argument must be placed last in Line 34 to avoid
linker dependency errors to the BuDDy library.

3 CP Language Definition

The CP language has two basic types: range and enumeration. A range is a consecutive and finite sequence
of integers. An enumeration is a finite set of strings. The Boolean type is the range from 0 to 1. Range and
enumeration types can be defined by the user. A CP description consists of a type declaration, a variable

declaration, and a rule declaration. The type declaration is optional if no range or enumeration types are
defined:

cp ::= [type {typedecl}] variable {vardecl} rule {ruledecl}

5

typedecl ::= id [integer . . integer] ;

| id { idlst } ;

vardecl ::= vartype idlst ;

vartype ::= bool

| id

idlst ::= id {, idlst}

ruledecl ::= exp ;

An identifier is a sequence of numbers, letters and the character “ ” that does not begin with a number.
An integer is a sequence of digits possibly preceded by a minus sign. The symbols // start a comment that
extends until the end of the line. The syntax of expressions is given below:

exp ::= integer
| id
| - exp
| ! exp
| (exp)

| exp op exp

op ::= * | / | % | + | - | == | ! = | < | > | <= | >= | && | || | >>

The semantics, associativity, and precedence of arithmetic, logical, and relational operators are defined
as in C/C++. Hence, !, /, %, ==, ! =, &&, and || denote logical negation, division, modulus, equality,
inequality, conjunction, and disjunction, respectively. The only exception is the pipe operator >> that
denotes implication. The precedence and associativity is shown in Table 1. Notice that the convention of
following C/C++ precedence causes the pipe operator to have higher precedence than is usual for logical
implication. For this reason, the assignments in the two expressions in line 20 and 21 of shirt.cp are
parenthesized.

Operators Associativity
! - right to left
* / % left to right
+ - left to right
>> left to right
< <= > >= left to right
== != left to right
&& left to right
|| left to right

Table 1: Precedence and associativity of operators.

The semantics of an expression is the set of variable assignments that satisfy the expression. For example
assume that the type of variable x and y is the range [-4..2]. The set of assignments to x and y that
satisfies the expression x + 2 == y is then {〈−4,−2〉, 〈−3,−1〉, 〈−2, 0〉, 〈−1, 1〉, 〈0, 2〉}. An assignment for
which there exists an undefined operator in the expression is assumed not to satisfy the expression. Thus,
the set of assignments to x and y that satisfies x / y == 2 is {〈−4,−2〉, 〈−2,−1〉, 〈2, 1〉}.
Conversion between Booleans and integers is also defined as in C/C++. True and false is converted to

1 and 0, and any non-zero arithmetic expression is converted to true. Due to these conversion rules, it is
natural to represent the Boolean constants true and false with the integers 1 and 0.

6

4 BDD-Based Configuration

CLab uses BDDs to represent and reason about large configuration spaces. A BDD is a rooted directed
acyclic graph representing a Boolean function on a set of linearly ordered Boolean variables. It has one
or two terminal nodes labeled 1 or 0 and a set of variable nodes. Each variable node is associated with a
Boolean variable and has two outgoing edges low and high. Given an assignment of the variables, the value
of the Boolean function is determined by a path starting at the root node and recursively following the high
edge, if the associated variable is true, and the low edge, if the associated variable is false. The function
value is true, if the label of the reached terminal node is 1; otherwise it is false. The graph is ordered such
that all paths respect the ordering of the variables.
A BDD is reduced such that no pair of distinct nodes u and v are associated with the same variable and

low and high successors (Fig. 1a), and no variable node u has identical low and high successors (Fig. 1b). Due

u v u
x x x

(a) (b)

Figure 1: (a) nodes associated to the same variable with equal low and high successors will be converted to a
single node. (b) nodes causing redundant tests on a variable are eliminated. High and low edges are drawn
with solid and dashed lines, respectively

to these reductions, the number of nodes in a BDD for many functions encountered in practice is often much
smaller than the number of truth assignments of the function. Another advantage is that the reductions make
BDDs canonical [1]. Large space savings can be obtained by representing a collection of BDDs in a single
multi-rooted graph where the sub-graphs of the BDDs are shared. Due to the canonicity, two BDDs are
identical if and only if they have the same root. Consequently, when using this representation, equivalence
checking between two BDDs can be done in constant time. In addition, BDDs are easy to manipulate. Any
Boolean operation on two BDDs can be carried out in time proportional to the product of their size. The size
of a BDD can depend critically on the variable ordering. To find an optimal ordering is a co-NP-complete
problem in itself [1], but a good heuristic for choosing an ordering is to locate dependent variables close to
each other in the ordering.
To use BDDs for configuration it is necessary to encode the set of valid configurations as a Boolean func-

tion. The arguments to this function is a Boolean representation of the configuration variables. The value
of the function should be true only if the argument variables are assigned values that yield a legal configura-
tion. It is simple to define a Boolean encoding of the configuration variables. Assume that variable domains
contain successive integers starting from 0. For example we encode the enumeration {small ,medium, large}
as [0..2] and the range [−4..2] as [0..6]. Let li = dlg |Di|e denote the number of bits required to encode a
value in domain Di of variable i. Every value v ∈ Di can be represented in binary as a vector of Boolean
values ~v = (vli−1, · · · , v1, v0) ∈ Bli . Analogously, every variable xi can be encoded by a vector of Boolean

variables ~b = (bli−1, · · · , b1, b0). Now, an assignment expression xi = v can be represented as a Boolean
function given by the expression bli−1 = vli−1 ∧ · · · ∧ b1 = v1 ∧ b0 = v0 . For the T-shirt example we have,
D2 = {small ,medium, large} and l2 = dlg 3e = 2, so we can encode small ∈ D2 as 00 (b1 = 0, b0 = 0)) ,
medium as 01 and large as 10.
The translation to a Boolean domain is not surjective. There may exist assignments to the Boolean vari-

ables yielding invalid values. For example, the combination 11 does not encode a valid value in D2. Therefore
we introduce a domain constraint that forbids these unwanted combinations FD =

∧n

i=1
(
∨

v∈Di
xi = v). Us-

7

ing the Boolean encoding of variables, rule i can be translated to a Boolean function ri that is true for
every assignment satisfying the rule. Recall that this also involves discarding assignments for which some
operation is undefined. A Boolean function S representing all valid assignments is given by

S = FD ∧
n
∧

i=1

ri

When CLab compiles the rules of a CP description, it first builds a BDD for the domain constraint and for
each rule and then conjoins these BDDs together to get a BDD representing S.
The BDD of the solution space of the T-shirt example described in Section 2 is shown in Figure 2.

The variables color, size, and print are encoded using the Boolean vectors (x1
1, x

0
1), (x

1
2, x

0
2), and (x

0
3).

Each path in the BDD may encode one or more assignments. The leftmost path encodes two assignments
〈x1

1 = 0, x
0
1 = 0, x

1
2 = 0, x

0
2 = 1, x

0
3 =?〉. That is color = 00 = Black, size = 01 = Medium, and print = 0/1

= MIB/STW. Both of these assignments satisfy the rules of this problem and are thus valid configurations.

x1
1

x0
1

x1
2 x1

2

x0
2 x0

2
x0

2
x0

2

x0
3

x0
3

1 0

Figure 2: BDD of the solution space of the T-shirt example. Variable x
j
i denotes bit bj of the Boolean

encoding of product variable xi.

5 Library Reference

CLab implements an expression class Expr and a Configuration Problem Representation class CPR.

5.1 Class Expr

The Expr class is a concrete type for building CP expressions within C++. Since CP expressions strictly
follow the semantics, precedence, and associativity of C/C++ conditional expressions, the expressions of the
Expr class are identical to CP expressions written within a CP description file. One must, however, take
care to deal correctly with the automatic type conversion of C++. For instance, the following line of C++
code compiles successfully:

Expr e = "size" == "Small";

8

The result, however, will not be as expected. The compiler will resolve the overloading of the == operator
by comparing the reference to two constant char pointers and return 0. Hence, e is an integer expression of
0 and not an equality test on variable size and enumeration element Small. To solve this problem leafs in
the expression tree should be type casted:

Expr e = Expr("size") == Expr("Small");

In some cases, it may be fine to ignore incorrect casting:

Expr e = 2 + 3 + Expr("x");

The above example also compiles without problems, but e holds the expression 5+x and not 2+3+x. The
reason is that the left associativity of plus makes the type casting proceed from left to right. The first plus
is therefore resolved to plus on integers and returns 5. The next plus, however, is due to the type casting of
x resolved to plus on expressions on the Expr class. This causes an automatic cast of the left 5 to an integer
expression. Expressions of class Expr are independent of any CP description. Expressions can therefore
be written before any CPR object is defined. Expressions are only type checked when compiled by a CPR
object.

Public Members:

Expr::Expr();

Default constructor.

Expr::Expr(const Expr& e);

Copy constructor.

Expr::Expr(int v);

Converts an integer to an integer expression.

Expr::Expr(std::string s);

Converts a string to an id expression.

Expr::Expr(char* s);

9

Converts a char string to an id expression.

Expr& Expr::operator=(const Expr& e);

Copy assignment operator.

Expr::~Expr();

Destructor.

std::string Expr::write()

Returns a string representation of the expression.

Nonmember Functions

Expr operator-(const Expr& e);

Returns the arithmetic negation of e.

Expr operator!(const Expr& e);

Returns the logical negation of e.

Expr operator>>(const Expr& l, const Expr& r);

Returns l implies r.

Expr operator||(const Expr& l, const Expr& r);

Returns l disjoined r.

10

Expr operator&&(const Expr& l, const Expr& r);

Returns l conjoined r.

Expr operator<=(const Expr& l, const Expr& r);

Returns l less than or equal to r.

Expr operator>=(const Expr& l, const Expr& r);

Returns l greater than or equal to r.

Expr operator<(const Expr& l, const Expr& r);

Returns l less than r.

Expr operator>(const Expr& l, const Expr& r);

Returns l greater than r.

Expr operator!=(const Expr& l, const Expr& r);

Returns l not equal r.

Expr operator==(const Expr& l, const Expr& r);

Returns l equal r.

Expr operator-(const Expr& l, const Expr& r);

Returns l minus r.

11

Expr operator+(const Expr& l, const Expr& r);

Returns l plus r.

Expr operator%(const Expr& l, const Expr& r);

Returns l modulus r.

Expr operator/(const Expr& l, const Expr& r);

Returns l divided by r.

Expr operator*(const Expr& l, const Expr& r);

Returns l times r.

5.2 Class CPR

The Configuration Problem Representation class (CPR) is the main class of CLab. A CPR object is constructed
from a file containing a CP description. It is then possible to compile a BDD representing the set of valid
configurations (the solution space) for the configuration problem and compile BDDs representing sets of
variable assignments satisfying expressions of the Expr class. An important operation is to compute the
set of valid assignments of each variable of a BDD representing a possibly reduced solution set of the CPR
object. This operation returns a map from variable names to sets of assignments of that variable for which
there exists some solution with the variable assigned to that value. For debugging purposes, it is possible
to write a file with a readable content of a BDD representing a set of variable assignments of a CPR object.
In addition, the internal state of a CPR object can be written to a string. See Section 6 for implementation
details. In case of errors or warnings, an error function is called that in most cases causes the program to
terminate. This behavior can be changed by providing a user defined error function.
The CLab library is used side by side with the BuDDy BDD package. The CPR class, however, needs

BuDDy to be initialized. BuDDy will be initialized if necessary during the construction of a CPR object.
If BuDDy is already running, the number of BDD variables may be increased to the number of Boolean
variables needed to encode the configuration problem represented by the CPR object. CPR objects of entirely
different configuration problems can co-exist.
It is possible to separate the often time consuming rule compilation and interactive product configuration

into two independent programs. This is done by compiling the BDD of some CP file and then saving it using
BuDDy’s file-writing facility. A different program -implementing the interactive product configurator- first
constructs a CPR object of the CP file, but does not compile the rules. Instead it loads the previously stored
BDD and bases the interactive product configuration on this BDD.

Public Members:

12

CPR::CPR(std::string cpFileName);

This is the only constructor for CPR objects. It carries out the following operations:

• Parsing and type checking the rules of the CP file given in cpFileName,

• Initialization and extension of the number of variables of the BuDDy package if needed,

• Initialization of various internal data structures.

bdd CPR::compileRules(CompileMethod method = cm_dynamic);

Returns a BDD representing the set of valid configurations of the configuration problem. The argument
method defines the compilation approach. There are three options:

Method Description
cm static Conjoin the BDDs of the rules in the order they appear in the CP file.
cm dynamic Add the BDDs of the rules to a work list. In each iteration, conjoin

the two smallest BDDs and add the result to the work list. Return the
resulting single BDD in the work list.

cm ascending Sort the BDDs of the rules ascendingly according to their size. Conjoin
the sorted BDDs from left to right.

The default method is cm dynamic.

bdd CPR::compile(Expr expr);

Returns a BDD representing the variable assignments satisfying the expression expr. The expression is type
checked before compilation.

std::map<std::string,std::set<std::string>> CPR::validAssignments(bdd sol);

Returns a map from variable names to sets of variable values represented by strings. A value is included in
the set if there exists some configuration in the set of configurations represented by the BDD sol where the
associated variable is assigned to that value. True and false are represented by the strings “1” and “0”. The
integers are represented by strings {...,”-1”,”0”,”1”,...}. An enumeration element is represented by a string
of its name.

~CPR::CPR();

Destructor of CPR objects. Deallocates internal data structures.

13

std::string CPR::writeBDDencoding();

Writes the BDD variable layout of the CPR object to a string.

void CPR::dump(std::string dumpFilename, bdd b);

Writes a readable dump to the file dumpFilename of the set of assignments stored in the BDD b. Each line
of the dump corresponds to one or more assignments. If a line represents several assignments, one or more
variables will have their values described in binary. In these binary encodings a “*” denotes a don’t care
(that is either true or false). It is necessary to know the value encoding of the variables to interpret these
patterns. The value encodings are written by writeBDDencoding described above.

void setErrorFunc(void (*errorFunc) (int,std::string));

Overwrites the default error function with the function pointed to by errorFunc. The int argument is the
error type while the std::string argument is the error message. There are five types of errors:

Error type Description
0 Warning
1 Parse error
2 Type checking error
3 Operating system error
4 CLab internal error

std::string CPR::write();

Writes a string representation of the internal state of the CPR object. See Section 6 for details.

6 Implementation

Clab is implemented in C/C++/STL and uses Flex and Yacc to compile CP descriptions. A flat software
architecture has been chosen to reduce the time needed to understand the code and make changes. To further
support development, the source code is well commented, and for each data structure there is a function for
generating a string representing the information it holds. In this section, an overall description of the file
structure and internal representation of CPR objects is given. This should be enough to get started working
on the code. We refer the reader to the BuDDy documentation shipped with CLab for a description of the
BuDDy source code.

6.1 Internal Representation of CPR Objects

A CPR object is represented by six data elements:

14

class CPR {

public:

//...

private:

CP* cpP;

Symbols* symbolsP;

Layout* layoutP;

Space* spaceP;

ValidAsnData* vadP;

void (*error) (int,std::string);

};

The cpP data structure is an internal representation of the parse tree of the CP description. The symbolsP
data structure is a collection of symbols of the configuration problem including type names, enumeration
elements, and variable names. This information is used to type check the type, variable, and rule declarations.
The layoutP data structure contains the binary encoding of types and the translation of variables to vectors
of BDD variables (the BDD layout). The spaceP data structure contains a BDD representing the domain
constraints described in Section 4. The vadP data structure is used by the specialized BDD operation
implemented in the BuDDy package to compute valid assignments efficiently. Finally error is the error
function used by the CPR object.

6.2 File Structure

The CLab source files are in CLab10/src. The file structure is classical modular. Each C/C++ file im-
plements one a more related classes and functions declared in the associated header file. The library is a
mixture of C and C++ files due to the use of Flex and Yacc. It also contains Flex and Yacc definition files
for the CP language. A description of each file in CLab10/src is given below.

File(s) Description
Makefile Make file for compiling the CLab library.
depend.inf Header file dependency file included by Makefile.
cp.l CP language token definition file for Flex.
lex.yy.c Lexer produced by Flex.
cp.y CP Language syntax file for Yacc.
y.tab.c/h Parser produced by Yacc.
common.cc/hpp Constant definitions and functions used through out CLab.
set.cc/hpp Template functions for set manipulation.
cp.cc/hpp Data structure of the internal representation build by Yacc.
symbols.cc/hpp Data structure of type, enumeration, and variable symbols of a CP de-

scription. Member functions for type checking rule declarations and
expressions of the Expr class.

layout.cc/hpp Data structure of the BDD layout of the CP description. Contains the
binary representation of types and the mapping from configuration vari-
ables to BDD variable vectors encoding the values of the variables. Mem-
ber functions for printing the encoding.

space.cc/hpp Data structure containing a BDD of the domain constraint. Member
functions for compiling rules and expressions of the Expr class.

dump.cc/hpp Functions for writing the assignments of a BDD to a file.
clab.cc/hpp Header file for the CLab library. The default error function is imple-

mented in clab.cc.

15

Acknowledgments

Thanks to the VeCoS group at the IT University of Copenhagen for valuable discussions on this work. The
T-shirt example is due to Erik Van Der Meer.

References

[1] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Com-

puters, 8:677–691, 1986.

[2] J. Lind-Nielsen. BuDDy - A Binary Decision Diagram Package. Technical Report IT-TR: 1999-028, Insti-
tute of Information Technology, Technical University of Denmark, 1999. http://cs.it.dtu.dk/buddy.

16

