
Runtime code generation to speed up
spreadsheet computations

Thomas S. Iversen, zensonic@diku.dk

July 30, 2006

Figure 1: Taming the compiler dragon inside spreadsheet engines.
The picture is taken from [2] and edited in The Gimp.

Abstract

In this thesis, a small spreadsheet calculation engine written in C#, is augmented
with runtime code generation (RTCG), I/O methods, a GUI and scripts. The re-
sulting spreadsheet system is named TinyCalc. The runtime code generator compile
formula expressions to IL assembler in .NET code while inlining subexpressions and
deducing types of values to avoid creating typechecks in the resulting code. More-
over, it tries to avoid creating temporary objects for intermediate values and, finally,
it tries to let the basic objects of calculation in .NET, double and string stay di-
rectly on the runtime evaluation stack between operations. The speedup of doing
so is measured using simple benchmarks and it is concluded that TinyCalc, while
simple, is able to outperform Gnumeric and Open Office Calc without using RTCG.
With RTCG, TinyCalc approaches and sometimes perform on par with Excel, when
not counting the overhead of doing RTCG. It is also concluded that TinyCalc needs
to rethink the way it does Matrix operations. The thesis ends with a section on the
perspectives for TinyCalc and RTCG.

ii

Contents

Contents iii

List of Figures vi

1 Foreword 1

2 Background 2

3 Thesis, goals and priorities 2

4 Building a spreadsheet system 5
4.1 Anatomy of spreadsheets . 5

4.1.1 Cell references . 6
4.1.2 Cell reference styles, A1 vs R1C1 7
4.1.3 Updating references . 8

4.2 Implementing a spreadsheet system . 11
4.2.1 Features . 11
4.2.2 Equivalence of formulas . 12
4.2.3 Representing spreadsheets . 12
4.2.4 Recalculation times and strategies 13
4.2.5 Structure of a workbook in TinyCalc 15
4.2.6 Cell references . 16
4.2.7 Formula grammar . 17

4.3 Graphical User Interface . 18
4.3.1 Implementation . 19
4.3.2 Problems and notes . 20

4.4 Command line interface . 21
4.5 Support for scripts with TinyScript . 21
4.6 Loading and saving spreadsheets . 22

4.6.1 Test sheet for XML investigation 23
4.6.2 Gnumeric Format used by Gnumeric 24
4.6.3 XMLSS Format used by Excel 25
4.6.4 ODF Format used by OOCalc 2.0 26
4.6.5 Selection of format for TinyCalc 27
4.6.6 Implementation . 28

4.7 Localization issues . 29

5 Augmenting spreadsheets with RTCG 30
5.1 What is RTCG? . 30
5.2 Possibilities for RTCG in a spreadsheet 31

5.2.1 RTCG Level 0 - Interpretation 32
5.2.2 RTCG Level 1 - Distinct RTCG for subexpression 33
5.2.3 RTCG Level 2 - Inlining . 33
5.2.4 RTCG Level 3 - Type check removal 34

iii

5.2.5 RTCG Level 4 - Avoid intermediate Value’s 35
5.2.6 RTCG Level 5 - Embed constants in IL code 36
5.2.7 RTCG Level 6 - CLR calculation 36
5.2.8 RTCG Level 7 - Speculative type deduction 37
5.2.9 RTCG Level 8 - Value optimizations 37
5.2.10 RTCG Level 9 - Function specialization 37

5.3 Imposed limits on RTCG in TinyCalc 38
5.4 Sharing of RTCG for formula expressions 38
5.5 Implementing RTCG in TinyCalc . 40

5.5.1 Evaluation of call overhead of doing RTCG in .NET 40
5.5.2 Thorough investigation of the interface method (.NET 1.1) . . 43
5.5.3 Implementation Overview . 43
5.5.4 RTCGAM — type analysis . 46
5.5.5 Generating Eval methods — parameter differences. 50
5.5.6 RTCGExprFieldInfo (parameters) 51

5.6 Debugging, development aids and ILasm notes 52
5.7 Conclusion on augmenting TinyCalc with RTCG 53

6 Tests 56
6.1 Testing the evaluation/RTCG engine 56
6.2 Testing the additions to the grammar 57
6.3 Testing the I/O methods . 57
6.4 Test conclusion . 58

7 Performance Evaluation 60
7.1 Benchmark setup . 60
7.2 Taylor benchmarks . 62

7.2.1 Taylor benchmark — no references 63
7.2.2 Taylor benchmark — Argument is referenced 64
7.2.3 Taylor benchmark — All references 65
7.2.4 Taylor benchmark — All references optimized 66

7.3 Simple Math function . 67
7.4 Long reference chains . 68
7.5 Performance conclusion . 74

8 Evaluation 75
8.1 Evaluation of the process . 75
8.2 Prior art . 76
8.3 Where to go from here . 77

9 Conclusion 80

10 References 81

iv

A Appendix 84
A.1 About this thesis . 84
A.2 Recalculation loop expressed as pseudocode 85
A.3 BNF grammar for formula expressions in TinyCalc 87
A.4 Overhead of doing RTCG . 93

A.4.1 The general power function in C# 93
A.4.2 The general power function in IL 93

A.5 IL Examples . 95
A.5.1 Level 2 for A1=5+6+7 . 95
A.5.2 Level 3 for A1=5+6+7 . 96
A.5.3 Level 4 for A1=5+6+7 . 96
A.5.4 Level 5 for A1=5+6+7 . 97
A.5.5 Level 6 for A1=5+6+7 . 97
A.5.6 Level 7 for A1=5+6+7 . 97
A.5.7 Level 2-3 for A1=A2+A3+A4 . 98
A.5.8 Level 4-5 for A1=A2+A3+A4 . 100
A.5.9 Level 6 for A1=A2+A3+A4 . 102
A.5.10 Level 7 for A1=A2+A3+A4 . 104

A.6 TinyScript - API and examples . 107
A.6.1 API, classes and methods . 107
A.6.2 First Script and its output . 109
A.6.3 Second Script and its output 110

A.7 Test Examples . 112
A.8 TinyBench - API and examples . 114
A.9 Benchmarks - An example . 118

A.9.1 Long reference chains . 118
A.10 Class diagrams . 123

A.10.1 Classes representing Expressions 123
A.10.2 Classes used for Values. 123
A.10.3 Classes representing Cells . 123
A.10.4 Classes used for type deduction 124
A.10.5 IOFormat classes . 124
A.10.6 The rest . 125

A.11 Structure of the files on the CD-ROM 126
A.12 Source code . 127

v

List of Figures

1 Frontpage . i
2 State machine implemented by Recalculate-Array 15
3 Design of the GUI as it is going to be built. 19
4 Screenshot of the final GUI. 20
5 Overhead of doing compilation . 41
6 Overhead of doing invocation . 42
7 Total compile time (ms) as function of number of compiled functions . 44
8 Formula expression parsed into an abstract syntax tree representation. 45
9 A simplified layout of TinyCalc . 47
10 Generated code cannot reference private fields. 51
11 Screenshot of the Visualizer showing a sequence of ILAsm code. 55
12 Taylor benchmarks — no references 63
13 Taylor benchmarks — Argument is referenced 64
14 Taylor benchmarks — All references 65
15 Taylor benchmarks — All references optimized 66
16 Simple Math function, SIN(PI()/4) . 67
17 Simple Math function, SIN(A1) . 68
18 Long reference chains . 69
19 The three implementations of SUM at Level0 71
20 Long reference chains combined graph 73

vi

Notational conventions

Throughout the thesis the notational conventions listed in table 1 is used.

Notation Description
Class Notation and typesetting used for classes.
Method Notation and typesetting used for methods.
Cell Notation and typesetting used for cells and cell references.
Filename Notation and typesetting used for filenames and paths.
Abbreviation (abbr) Denotes that “Abbreviation” are abbreviated as “abb”.
application Denotes an external application or utility, ie. ildasm.

Table 1: Notational conventions

Furthermore the following notation denotes cell definitions:

[<sheetname> ’!’] (<cellreference> | <cellarea>) ’=’ <expression>

where

sheetname := "Sheet" integer
cellreference := A1-style reference | R1C1-style reference

Section 4.1.2 gives an overview of the A1 and R1C1 reference styles. cellarea and
expression are defined in terms of the BNF grammar used by TinyCalc to define
formulas, see section A.3. Two examples of the notation can be seen below.

Example 1 Example of a cell definition

A1 = SUM(B1:B5)

This denotes that the single cell A1 contains a formula =SUM(B1:B5).

Example 2 Example of a cell definition

Sheet2!A1:B2 = MATINV(Sheet1!A5:B6)

This denotes that the cellarea A1:B2, that is the cells A1, A2, B1 and B2, in Sheet2 all
are defined in terms of the single formula =MATINV(Sheet1!A5:B6) which computes
the inverse of the matrix defined in Sheet1!A5:B6.

vii

1 Foreword

This thesis was written by Thomas S. Iversen (zensonic@diku.dk) in the period

December 2005 - July 2006 at the Department of Computer Science (DIKU), Uni-

versitetsparken 1, DK-2100 Copenhagen Ø to obtain a degree as master of science.

A small spreadsheet system named TinyCalc is augmented with runtime code

generators and this implementation is used to investigate code generation in spread-

sheets. TinyCalc is benchmarked against its own basis implementation which uses

evaluation and against then professional spreadsheet systems, Excel, OpenOffice Calc

and Gnumeric.

Readers of this thesis should be familiar with spreadsheets in general; know what

they are and how they are used. Furthermore, a good understanding of computer

science in general is required. Lastly some knowledge of C# and IL assembly and

assembly code in general is also required, preferably in conjunction with Visual Stu-

dio. Suggestions for getting up to speed on C#, IL and Visual Studio is [34], [20],

[22] and [21]; books which have been the basis for the author.

This thesis also exist in a PDF version with click able hyper references and can be

found on the accompanying CD-ROM (see section A.11). The source code produced

has been omitted from the paper version of the thesis, but a ready made PDF file

with all the source is located on the CD-ROM. Besides that, the thesis, source code

and tests can be located at

http://www.dina.kvl.dk/~thomassi/thesis/

The author of this thesis would like to thank his supervisors, Peter Sestoft, ITU

(sestoft@dina.kvl.dk) and Torben Æ. Mogensen, DIKU (torbenm@diku.dk) for

their good ideas, the valuable criticism and their input to this thesis. Also thanks to

Lars Josephsen, KVL, who provided the Excel license for this thesis. Finally, thanks

to my wife Maibritt and my kids Mathias and Benjamin for supporting me during

this period.

1

http://www.dina.kvl.dk/~thomassi/thesis/

2 Background

One of the most appealing features of spreadsheets is that they enable one to easily

perform similar calculations on data with identical properties. An example of this

could be a spreadsheet with one row per person, the person’s name in column 1, his

hourly salary in column 2, the number of hours he has worked this month in column

3 and finally a taxdeduction formula in column 4 which uses value in column 2 and

3 to calculate the monthly wage for the person in this row. Having done this for

one person, one can simply copy and paste the formula for all the other persons.

Spreadsheets are excellent at representing repetitive data dependencies. Almost all

spreadsheet systems in existence today provide extensive editing capabilities in this

regard.

Being good at representing repetitive, rigid structures, spreadsheets are widely

used. Spreadsheets are however not suited for demanding computations. In these

cases a custom developed application often provides faster execution times and/or

smaller memory usage. While most people, without a degree in computer science,

can use and understand spreadsheets, not many can program an application when

the problem becomes too large and complex for the spreadsheet system to handle.

When Peter Sestoft discovered that people in the insurance business sometimes

struggled with long recalculation time of spreadsheets, he formulated the idea of run-

time code generation (RTCG) in spreadsheet systems. Section 5.1 gives an overview

of runtime code generation.

This thesis investigates whether or not, RTCG can speed up spreadsheets in

the situation where the spreadsheet is (becoming) too complex for the spreadsheet

calculation engine to recalculate in reasonable time.

3 Thesis, goals and priorities

The main hypothesis of this thesis is that the time it takes to recalculate spreadsheets

can be reduced by using runtime code generation in the spreadsheet application.

Most notably for spreadsheets containing many identical formulas. Two formulas

are considered identical if they can share the same internal formula representation.

Runtime code generation in spreadsheets can be explored in the following two ways:

• Use of an existing, full blown system as a vehicle for exploration, or

• An experimental spreadsheet system which could be built from the ground.

2

Using an existing system like Excel or Open Office Calc requires that the flow of

formula evaluation in these systems is intercepted and augmented with some kind

of mechanism which uses RTCG for evaluation. Doing so, would enable one to

concentrate on RTCG and eliminate the need for spending time on internal data

representation, the GUI required to edit values interactively and the I/O routines

needed to get data in and out of the system. The downside to doing things this

way are, however, not negligible. It might not be possible to intercept the formula

evaluation mechanism or it might require a great deal of guesswork on the inner

workings of the spreadsheet system.

While the above approach certainly is worth considering the background for this

thesis has been to build a small, customized spreadsheet system geared towards

investigation of various hypotheses. This will give a more thorough and faster un-

derstanding of the various problems as well as total control over the system. The

disadvantage is that the application has to be built from the ground.

Building a spreadsheet system that provides data structures and methods for

recalculation of data, a GUI for manipulating data and I/O methods to get data in

and out of the system is in itself a non-trivial piece of work. To remedy this situation

Peter Sestoft has provided the infrastructure for a small spreadsheet system called

CoreCalc. CoreCalc has support for text strings, floating point values and matrix

values. This code will provide the basis for development. As Peter Sestoft had RTCG

in mind when developing the code, the formula representation in CoreCalc is already

geared towards RTCG. This will be discussed further in section 4.2.

The goals for the thesis are:

1. Implement a spreadsheet system prepared for RTCG. Specifically, it should

support the concept of identical formulas. This system will be called TinyCalc.1

2. Develop a GUI to the system geared towards debugging, investigation and de-

velopment of RTCG in spreadsheets.

3. Implement input and output support for a widely used format of spreadsheets.

More explicit the formats used in Gnumeric, Open Office Calc (OOCalc) and

Excel will be taken under consideration.

4. Consider how to maximize sharing of formulas when inserting and deleting rows

and columns as well as moving data around.

5. Extend TinyCalc with RTCG and consider RTCG for formula expressions as

well as for the functions involved in these expressions.
1The first commercial spreadsheet system was VisiCalc in 1987. The name TinyCalc is a kudos to

VisiCalc’s inventors while still describing the purpose of the application.

3

6. Test the implementation of RTCG in TinyCalc

7. Evaluate gains in recalculation times in various situations and accept or reject

the hypothesis for each situation.

8. Compare the recalculation times to those obtainable in professional spreadsheet

systems, most notably Microsoft Excel 2003, Open Office Calc 2.0 and an Open

Source system named Gnumeric.

9. Formulate when and when not to use RTCG in spreadsheets.

10. Conclude on the entire process.

The list above is not prioritized. It does, however, more or less depicts the

natural workflow. That said, the following applies with regards to the priorities. (1)

Implementation of a small system is already partly done by Peter Sestoft. The top

priority is getting this finished. This includes extending the existing system with new

functionality as well as considering if the code Peter Sestoft has written needs to be

adjusted for this thesis. (6) Correctness of the calculations is important, but a full

thorough test will not be conducted. Instead, regression tests will be developed during

development. (4) While it is important to consider the implications of performing

various operations on a spreadsheet with regard to their data representation, their

actual implementation is of lower importance in this system. (3) It is important to

be able to get actual spreadsheets and workbooks in and out of the system, but the

performance of the I/O routines is not important. (5) Finally a high priority is to

analyze and implement RTCG for the formula expressions themselves, as this alone

will give information about the complexity and the possible speed gains of RTCG.

4

4 Building a spreadsheet system

4.1 Anatomy of spreadsheets

To understand what spreadsheet systems are by today’s standard, three modern

spreadsheet applications are inspected. These are Excel 2003 (version 11.5612.5606)

by Microsoft Corporation, Open Office Calc version 2.0 by Sun Microsystems Inc.

and finally Gnumeric 1.5.90 developed by the GNOME Foundation. These three

systems are hereafter named Excel, OOCalc and Gnumeric.

A spreadsheet consists of one or more sheets which is combined into a unit. In

some systems, this combined collection of sheets is called the workbook, in others, it is

merely called a spreadsheet. In this report we will adopt the terminology workbook.

Each sheet in the workbook consists of cells, arranged in a grid of rows and columns.

A cell is the basic unit for simple calculations and can hold a value. A cell area

is the basic unit for matrix calculations. Cell areas define rectangular collections of

cells. A cell can either hold a constant value or a formula which, when evaluated,

gives the cell its value. Most spreadsheet systems implement string constants, integer

constants, floating point constants and boolean constants. Most spreadsheet systems

also support more advanced values like matrix values, complex number values and

date/time values. Lastly most spreadsheets has support for named cells and named

ranges where a user defined name is assigned to cells, cell ranges and cell areas and

this name can then be used in formulas. This provides a convenient abstraction level

when “building” a spreadsheet and removes need for hard coded cells in formulas.

To distinguish constant string values from formulas, most spreadsheet systems

have adopted the convention that cell formulas start with the character ’=’ followed

by an expression telling the spreadsheet how to calculate the value. There is a

difference between cell A1 containing the constant value 5 and it containing the

formula =5 that, when evaluated, evaluates to 5. Expressions consists of operators

and operands. Examples of operators are addition, subtraction, multiplication and

division. Operands can be either constant values or references to other cells, giving

the possibility to create dependencies among cell values. Early spreadsheet systems

allowed only one sheet, so only references to cells in that sheet were possible. Modern

spreadsheets can have many sheets and so cell references are allowed to refer to any

sheet in the workbook. This allows very sophisticated dependencies to be created.

Some systems even allow references to other workbooks, loading these on demand.

Besides the common operators such as addition, subtraction, and so forth, spread-

sheet systems contain built-in functions. Normally, these include, but are not limited

5

to, mathematical, statistical and financial functions. Most spreadsheet applications

also have some kind of report and graph generation facility built in.

Many modern spreadsheet applications also support some kind of computer lan-

guage (Basic, Pascal or a scripting language). This language is used to define func-

tions or subroutines that can be called from formula expressions. A user defined

function (UDF) for calculating the mean value of an array of single precision num-

bers in Visual Basic (VBA) could look like:

Example 3 Example of a user definable spreadsheet function

Function Mean(Arr() As Single)

Dim Sum As Single

Dim i As Integer

Sum = 0

For i = 1 To UBound(Arr)

Sum = Sum + Arr(i)

Next i

Mean = Sum / UBound(Arr)

End Function

Most spreadsheets including the three under investigation use some variant of an

imperative language but object oriented and functional variants do exists.

Calculations in a workbook are normally performed either automatically and in-

stantaneously when a value of a cell is changed or explicitly when requested by the

user. For performance reasons both Excel, Gnumeric and OOCalc tries to recalculate

only cells affected by the cell update contrary to recalculating all cells. This way of

recalculating the workbook is a challenge to implement efficiently and correctly. The

former because the dependency information with even very few formulas can be pro-

hibitory large. The latter because “problematic” constructs like A1=IF(A2;A1;A3)

is allowed. This formula might introduce a cyclic dependency in the workbook. User

defined functions might also cause problems as they might not be required to include

cell referenced in the body of the UDF in the parameter list to the UDF. This is

what causes all kinds of weird behavior in Excel, see section 8.

4.1.1 Cell references

References in an cell formula can be either absolute or relative. An example will show

the difference. Assume that cell A3 is expressed as:

A3 = A1 + A2 (1)

6

This is a formula with two relative cell references. It is possible to express the

same formula using absolute cell references. For instance

A3 = A$1 + A$2 (2)

Even though these two formula calculates the same expression as they are shown

here, they are quite different conceptually. When copied to cell A4 formula (1) be-

comes

A4 = A2 + A3 (3)

whereas the (2) remains

A4 = A$1 + A$2 (4)

Depending on the purpose of the copy, either representation might be desirable.

The ’$’ fixates the row index when copying or moving the formula to a new location.

By duality the same semantic works for columns.

Investigation of OOCalc, Microsoft Excel and Gnumeric shows that all three

applications support both relative and absolute addressing. All three spreadsheets

also support inter-sheet references. Excel and Gnumeric use the ! sign as marker:

Sheet1.A1 = Sheet2!A1 (5)

whereas OOCalc uses a dot (.) to denote the same. While Excel and Gnumeric

only support absolute sheet references OOCalc support both absolute and relative

sheet references, with relative sheet references being the default. One explicitly has

to request absolute sheet references as in

Sheet1.A1 = $Sheet2.A1 (6)

which, when copied to Sheet3.A1, then yields

Sheet3.A1 = $Sheet2.A1 (7)

4.1.2 Cell reference styles, A1 vs R1C1

Cell references as introduced in section 4.1.1 are called A1 style references. All three

systems understand this style of references. An alternative to this style is the R1C1

7

style in which formula (1) becomes2:

A3 = R[-2]C + R[-1]C (8)

R1C1 can express both relative and absolute references. Absolute references as-

sume origo at (1,1) in the upper left corner. The square brackets denote relative

references and negative numbers denotes columns to the “left” or rows “above”. The

absence of a number for either a row or column index means that the indexing is

relative and denote the current row or column. So expressing formula (4) in R1C1

style we obtain:

A4 = R1C + R2C (9)

When copying formula (8) to cell A5 it remains:

A4 = R[-2]C + R[-1]C (10)

It should be noted how formulas (8) and (10) are identical whereas (1) and (3) are

not. While A1 style references might be easy to understand, they have the drawback

that their indexes need to be updated when a formula is copied. References in R1C1

style does not have this problem. This is caused by the fact that in a R1C1 type

reference the index denotes two different things depending on whether the reference

is absolute or relative.

It is easily seen that R1C1 and A1 are equivalent in the sense that an arbitrary

A1 type reference can be converted to an R1C1 type reference, and vice versa.

Only Excel, supports displaying an entry of R1C1 references. They are not se-

lected by default, but Excel can be told to use them. This, however, disable the

support for the A1 reference style. Investigation shows that Excel uses R1C1 style

references internally, at least when saving spreadsheets, no matter what the GUI

accepts when editing. Both Gnumeric and OOCalc use A1 style references for saving

formulas.

4.1.3 Updating references

When a cell is moved to a new location, all references to this cell have to be updated

automatically. The word “moved” is used in a very broad sense here. When rows

2It should be noted that R[-2]C is a valid shorthand notation for R[-2]C[0]. In fact Excel always shortens
references according to this shorthand notation. Similarly R[0]C[0] = RC

8

and columns are inserted or deleted, some cells are moved. When an entire sheet is

inserted, renamed or deleted a whole sheet of cells are “moved”.

It is possible to categorize moves according to what has to be done to a cell

reference because of the move.

Assume that cell C[i, j] in row i and column j contains an reference to a cell

C[k, l] in row k and column l. Assume furthermore that i 6= k and consider what

happens when deleting or inserting a row. When deleting or inserting a new row m,

some or all cells get new row names. More precisely, four cases can be formulated,

two for absolute reference and two for relative references. For absolute references:

m < k: When deleting or inserting row m, where m < k, cell C[k, l] become

either C[k− 1, l] or C[k + 1, l] respectively and as a consequence cell C[i, j] needs to

be updated with a new reference:

cell(j,i)

cell(l,k)

j

l

k

i
absolute ref.

deleted/inserted row m

m > k: When deleting or inserting row m, where m > k, cell C[k, l] continues to

be cell C[k, l] and therefore cell C[i, j] needs not be updated with a new reference:

cell(j,i)

cell(l,k)

j

l

k

i
absolute ref.

mdeleted/inserted row

For relative references:

9

m ≤ min(k, i) or m > max(k, i): When deleting or inserting row m, where

m ≤ min(k, i) or m > max(k, i), cell C[k, l] become either C[k − 1, l] or C[k + 1, l]

respectively and cell C[i, j] becomes either C[i − 1, l] or C[i + 1, l] respectively and

as a consequence of relative references cell C[i, j] needs not be updated with a new

reference:

cell(j,i)

cell(l,k)

j

l

k

i
relative ref.

deleted/inserted row m

min(k, i) < m ≤ max(k, i): When deleting or inserting row m, where min(k, i) <

m ≤ max(k, i), cell C[k, l] continues to be cell C[k, l] but cell C[i, j] becomes either

C[i − 1, l] or C[i + 1, l] respectively and as a consequence of relative references cell

C[i, j] needs to be updated with a new reference.

cell(j,i)

cell(l,k)

j

l

k

i
relative ref.

mdeleted/inserted row

The same situation goes for column based insertions and deletions. If one think

of the sheets in a workbook as stacked, forming a third dimension, a situation similar

to the above presents itself when deleting or inserting sheets in a workbook. It is

not hard to list all cases, but it will be tedious to write and boring to read so a full

analysis of all cases is not presented.

10

4.2 Implementing a spreadsheet system

Having identified the main components of modern spreadsheet systems, it is now

possible to develop a little spreadsheet system for this thesis. It will be augmented

with RTCG in a later chapter, but decisions and directions taken in this chapter has

to consider this fact, so problems later will not arise because of this.

4.2.1 Features

The spreadsheet system is going to be named TinyCalc and is going to have the

following features.

• The concept of workbooks and multiple sheets.

• Intersheet references as described in section 4.1.1.

• Support for floating point numbers (double, 64-bit IEEE754[16]) and arithmetic

on these numbers. Integers are supported by casting them to double numbers

and vice versa.

• Support for matrices of real numbers and functions to perform calculation on

matrices.

• Support for text strings and operators to perform string concatenation.

• A basic but usable GUI.

• Support for both A1 and R1C1 style references.

• A basic grammar for formulas.

• A command line interface enabling one to perform calculations, tests and bench-

marks from the command line. This is needed for automatic test and bench-

marks.

• The possibility of loading and saving workbooks.

• A list of functions which can be used when constructing formulas. The list

should be extensible and easy to maintain.

• Support for recalculation and detection of cyclic dependencies.

• Support for type checking formulas during recalculation.

• The choice of performing recalculation when updating a cell or manually by a

keystroke.

Note that this feature list indicates support for pretty printing and formatting of

data have not been considered important.

11

4.2.2 Equivalence of formulas

As noted earlier, sharing of formula expressions are crucial for RTCG in spreadsheets.

Only equivalent formulas can be shared. While these calculations

(A1−B1) + C1 = A1− (B1 + C1) = −B1 + (C1 + A1)

hold as algebraic identities they do not necessarily hold when calculating with float-

ing point numbers, which have limited precision. So equivalence of formulas is not

algebraic equivalence. Even when it is possible to rearrange formulas so that they

still produce the exact same result using floating point arithmetic, it is not a good

idea to do so. Firstly, it takes a considerable amount of time to determine if a formula

can be rearranged into a new formula equivalent to one already seen. Secondly, the

user might be confused when entering A1+B1+C1 and it gets rearranged to B1+A1+C1.

So two formulas F and G in TinyCalc are equivalent when their abstract syntax

tree are identical. Equivalence testing two abstract syntax trees is nontrivial. To

circumvent this it is assumed that if the two strings obtained by expressing the

abstract syntax trees as formulas using R1C1 style references are identical, so are

their abstract syntax trees.

Using this definition, formulas copied and pasted in a spreadsheet will be consid-

ered equivalent. This should be more than sufficient to exploit the amount of sharing

of formulas possible in a spreadsheet as most identical formulas indeed are the result

of copy and paste operations.

4.2.3 Representing spreadsheets

While the cells in a spreadsheet conceptually and visually are arranged in rows and

columns, their internal representation might not be. There are in fact two common

ways of constructing the internal representation of a spreadsheet:

1. Using a two-dimensional array or

2. Using one or more Direct Acyclic Graphs (DAGs) where the vertices represent

cells and the edges represent dependencies between cells.

Each has its strength and its weaknesses. The array representation provides for

O(1) lookup of a cell given its row and column index. This is not possible with a DAG.

A DAG, however, expresses dependencies in a way that recalculation of the entire

sheet after update of a single cell can be done easily by only recalculating the cells

which actually need recalculation. This is not as easy with an array structure. The

12

biggest disadvantage of DAGs however, is that they do not work well with constructs

that change dynamically during runtime. Consider

A2 = IF(A3+A4=5;A6;A2)

The above is a perfectly valid expression in Excel, OOCalc and Gnumeric even

though it might produce a cyclic dependency during recalculation. The expression

can not be represented using a DAG as cycles are not allowed in a DAG and a DAG

has to represent both branches of the IF statement. A cycle will turn the DAG

into a general Graph which would make it impossible to use topological sorting to

generate the sorted list used for proper recalculation order. It is known that Excel

and Gnumeric uses dependency information to recalculate only cells affected since

last recalculation. How this is done if a DAG is used and how this DAG would

represent the IF construct above is unknown.

It is possible to augment the array structure with dependency information and it

is also possible to maintain a DAG besides the basic array structure in an effort to

obtain the best of both representations.

4.2.4 Recalculation times and strategies

Consider a spreadsheet with n cells of which m cells are used and consider a change

in a cell s which affects k cells. To perform a recalculation in a DAG this algorithm

is used:

Recalculate-Dag(G, s)

1 Q← {s}
2 while Q 6= Ø

3 do u← head[Q]

4 Reevaluate(G, u)

5 Dequeue(Q)

6 for each v ∈ Adj[u] in topological sorted order

7 do

8 enqueue(Q, v)

It should be noted that the above algorithm skips the finer details in obtaining

the next cell in topological sorted order. It is crucial that the cells are recalculated

in dependency order. This is not an easy task, but can be done efficiently using a

topological sorting of G. Sorting the graph G using a topological sort will give the

13

algorithm a running time of Θ(V + E) + O(k), where V is the number of vertices in

the G and E is the number of edges in G. Sorting G from scratch with each update to

G is known as offline topological sorting. It is also possible to do online topological

sorting of G where the previous sort of G is used as basis for sorting G after the

update. Two articles [9] and [32] present algorithms for doing online topological

sorting. The first give an O(V 2.75) algorithm, the other a O(δ log δ) where δ are the

number of nodes needing recalculation. So the recalculation time using a DAG is

O(k) but requires a non-trivial amount of time to maintain the dependency invariant

when a cell is updated, deleted or inserted.

The array structure does not give the luxury of knowing the dependencies in a

backwards manner, that is “which cells depend on this cell?”. An array structure

instead provides information on which cells this cell depends, ie dependencies flowing

forwards. To recalculate a spreadsheet when it is represented as an array, a recursive

depth-first approach is used. To avoid recalculating the same (sub)expression over

and over again a status field and a cached value for each cell is maintained. The

algorithm can be seen below. Figure 2 depicts the simple state machine of the

algorithm.

Recalc-Array(A)
1 for i = 1 . . . n

2 do
3 state[i]← dirty

4
5 for i = 1 . . . n

6 do
7 if A[i].e 6= nil

8 then A[i].v ← Recal-Cell(A, i)

Recalc-Cell(A, i)
1 if state[i] == dirty

2 then
3 state[i]← inprogress

4 v ← Recalc-CellValue(A, i)
5 state[i]← uptodate

6
7 return v

Recalc-CellValue(A, i)
1 if typeof (A[i].e) == ScalarExpression

2 then
3 return A[i].e
4 else
5 // for this example assume simple
6 // addition of two cells.
7 cellref1← A[i].e[1]
8 cellref2← A[i].e[2]
9 v1← Recalc-Cell(A, cellref1.index)))

10 v2← Recalc-Cell(A, cellref2.index)))
11 v ← v1 + v2
12 return v

14

inprogress

dirty

uptodate

Figure 2: State machine implemented by Recalculate-Array .

A simple example of an addition of two cells is used in this algorithm to show

how it works. The reality is more complex, as non-strict expressions like

=IF(RAND()<0.5;1;2)

exists. Only one of the two branches is going to be recalculated and the algorithm

above recalculates that branch depending on the outcome of the test. These details

do not affect the running time or complexity, they only take up space when being

presented, so they are omitted. Using an array for representing data, makes it possible

to represent formulas containing possible cycles. Cycles still pose a problem but using

a array the problem only shows up during recalculation and only if the calculation

actually enters a cycle. It is thus possible to represent cycles and even perform

calculations on a workbook with possible cycles as long as an actual cycle in the

recalculation is avoided. Using this depth first calculation strategy in which cell

values is calculated exactly once using a cache, while possible visited many extra

times, is rather similar to lazy evaluation in a functional language. The drawback

of this depth first approach is that the stack usage is linear in the number of nodes

between the top node and the maximal tree depth in the dependency graph.

The recalculation time when using an array as data structure, is O(m), that is

linear in the number of cells used, but cell updates, insertions and deletions only

takes O(1) time.

To keep things simple TinyCalc represents a sheet as a two-dimensional array of

references to cells.

4.2.5 Structure of a workbook in TinyCalc

TinyCalc implements workbooks as described in the following list:

15

• A workbook is a list of sheets.

• A sheet is a two-dimensional array whose elements are either null or a cell.

• A cell is either a constant or a formula or a matrix.

• A constant is either a string or a floating point number.

• A matrix can cover many cells and therefore shares a single cached matrix

formula between the cells.

• A cached matrix formula consists of a formula, the cell location where the

matrix formula was entered and the upper left and lower right cell covered by

the matrix.

• A formula is

– an non-null expression that evaluates to the cell’s value

– and a cached value

– and a workbook reference

– and a uptodate field used when recalculating the workbook.

– and a visited field used when recalculating the workbook.

• A value is either a text string or a floating-point number or a matrix value or

an error value.

• An expression may be

– a constant floating-point number

– or a constant text string

– or a cell reference (sheet and a relative/absolute reference)

– or an area reference (sheet and two relative/absolute references)

– or an application of an operator or function to one or more subexpressions.

• Legal expressions follow the grammar in section A.3. It basically is a simple ex-

pression grammar as known from most imperative computer languages. Instead

of variables though, it has cell references in both A1 and R1C1 style.

4.2.6 Cell references

TinyCalc supports both relative and absolute cell references. It also supports absolute

sheet references. While relative sheet references are not hard to support, it has been

16

chosen not to implement these, as it is questionable how useful they are. Written

formally, cell references in A1 format follow these grammar rules3:

A1CellRef := [Sheetname ’!’] [’\$’] ColumnIdentifier [’\$’] RowIdentifier

ColumnIdentifier := ’A’ .. ’I’ {’A’ .. ’Z’}

RowIdentifier := digit {digit}

TinyCalc supports R1C1 style references through this grammar:

R1C1CellRef := [Sheetname ’!’] RowR1C1Ref ColR1C1Ref

RowR1C1Ref := RowR1C1RelRef | RowR1C1AbsRef

ColR1C1Ref := ColR1C1RelRef | ColR1C1AbsRef

RowR1C1RelRef := R [’[’ SignedInt ’]’]

RowR1C1AbsRef := R UnsignedInt

ColR1C1RelRef := C [’[’ SignedInt ’]’]

ColR1C1AbsRef := C UnsignedInt

As seen in section 4.1.2, R1C1 referencetypes has the desirable property that

they remain unchanged when copied. As it is desirable to share as many formulas as

possible when doing RTCG, all A1 type references are converted to R1C1 references

in TinyCalc.

The internal representation of references should also be unchanged when copied.

A class combining both absolute and relative references achieves this.

public sealed class RARef {
//True=absolute, False=relative
public readonly bool colAbs, rowAbs;
public readonly int colRef, rowRef;

}

It should be noted that by representing both relative and absolute references in this

way, relative references need to be converted to absolute indexes before indexing the

cells in an array. This imposes a small overhead but it is negligible in contrast to the

gain obtained by being able to share formula expressions for RTCG.

4.2.7 Formula grammar

Formula expressions in TinyCalc are given by the BNF grammar in section A.3.

Compared to the grammar found in the basis implementation, it has been augmented

with:
3As TinyCalc uses a single grammar to parse both A1 and R1C1 style references, the ColumnIdentifier

does not allow RC being parsed as a valid A1 column identifier. Hence, the reason that the first char in
ColumnIdentifier only is allowed to be in the range ’A’ .. ’I’

17

• Support for references in the R1C1 format.

• Support for string concatenation operator (&).

• Support for numbers in scientific notation.

• Support for sheet references.

• Support for the power operator (ˆ).

4.3 Graphical User Interface

A spreadsheet system comprises of two main parts, a spreadsheet user interface (UI)

and a calculation engine. Normally, the UI is graphical (GUI) but could also be text

based (TUI) and has been so in the past. For TinyCalc a GU will be implemented.

Focus, when designing the GUI for this system, should be on making it easy and

efficient to investigate problems and hypotheses regarding RTCG, but nothing else.

Advanced GUI design has very little relevance to the main conclusions of this thesis.

The GUI is implemented in Window’s forms, as this framework is part of Visual

Studio 2005 for C# in which TinyCalc is implemented. Lengthy discussion about

Window forms will be skipped but readers should be aware of that books exists on

the topic and that Microsoft already has announced the successor to Windows forms.

With the above criteria in mind, the following list of features and limitations of

the GUI are listed:

• Data should be arranged in rows and columns and be easily editable.

• Rows and columns should be named after the normal consensus among spread-

sheet systems; that is, rows are numbered using integers, starting from 1.

Columns are named using the 26 standard letters in the English alphabet A-Z.

When using more than 26 columns a ”breath first´´ name scheme is used. Ex-

emplified the column names are ordered this way: A, B, . . ., Z, AA, AB, . . ., AZ,

BA, BB, and so forth.

• It should be possible to navigate the GUI using shortcut keys.

• The GUI should be constructed so that access to the whole workbook is easily

possible. That is, it should be possible to switch quickly between the individual

sheets in the workbook when editing the spreadsheet.

• Visual shortcuts should be implemented. For instance, instead of following the

cursor up through the rows to get the actual column name and then following

the row to get the row name, the cell name should always be visible a fixed

place on the GUI for easy retrieval.

18

• The following menu items are required to do the most basic things: (create)

new workbook, open workbook, close workbook, save workbook, add sheet, add

row, add column, delete row, delete column and recalculate workbook.

• Lastly, a configuration form for the spreadsheet should be implemented. This

form should provide support for changing global parameters for the spreadsheet.

This is all the system is going to implement with respect to the GUI. In the fol-

lowing subsections, various design choices and problems is presented and the section

is concluded with a screenshot of the GUI.

4.3.1 Implementation

Based on the above list the GUI in figure 3 was designed. At the heart of the design

are two Windows FORMS controls: the DataGridView control and the TabPage

control.

Celllokation

Menubar

Formula/Expression editor

Statuslabel

Sheet1 Sheet2 Sheet3

Datagridview control with cells in rows and columns

Celllokation View mode for formulas Generator Options Recalculation mode

Figure 3: Design of the GUI as it is going to be built.

The DataGridView control is capable of displaying strings in a tabular format.

It has editing- and layout capabilities, column- and row headers and are able to scroll

the grid when needed. It is the perfect control for the job, featurewise.

The TabPage control can display other controls in a tab. The user can select

which tab to display. It has automatic scrollbar facility which displays a scrollbar if

19

the control contains more TabPages than can be displayed on-screen. A screenshot

of the final GUI for the application can be seen in figure 4.

Figure 4: Screenshot of the final GUI.

4.3.2 Problems and notes

When building the GUI some problems and annoyances were found. For the record

these are presented here.

• The DataGridView class is slow. On a 750MHz Pentium III with 192MB

RAM, one can follow the screen redrawing when scrolling in spreadsheets with

around 1000 cells. The official Microsoft F.A.Q for the DataGridView[3] con-

tains hints and tips on how to reduce the memory footprint of the control or

speed it up by avoiding certain usage patterns, but unfortunately none of these

hints can be applied to TinyCalc.

20

• Any attempt to reuse a single DataGridView control for all the TabPages

were fruitless. It seems that a DataGridView control can have only one par-

ent. The solution to this, in this system, was to use a new DataGridView

control per tab. This makes the performance and memory problems with Data-

GridView worse, but was by far the fastest way to get the GUI up and running.

4.4 Command line interface

Besides the relative simple GUI, the system also implements a simple command line

interface to facilitate scripting of tests and benchmarks. The most important option

for the program to implement with regards to the command line interface is the

option to suppress the GUI from starting up and just execute a TinyScript (Section

4.5) script. The system is kept simple and help on usage can be obtained by executing

TinyCalc.exe --help:

Usage:

-[v|version] Shows the current version of TinyCalc
-[h|help] Shows a little help text for CLI usage of TinyCalc
-[s|script][=]<argument> Executes the TinyScript(tm) script given
-[f|scriptfilename][=]<argument> Executes the TinyScript(tm) script

given by the filename
-[a|scriptargument][=]<argument> String argument to be given

to the script. Can be used multiple times.

Arguments can be quoted using doublequotes if needed be.

4.5 Support for scripts with TinyScript

To facilitate automated testing, some sort of programming language was needed in

TinyCalc. Even though inventing and implementing yet another scripting language

is an interesting and educational accomplishment, it is both very time consuming

and not especially relevant for this thesis. Instead, it was decided to use C# as the

“script” language in TinyCalc and then use the .NET reflection API to compile these

C# scripts at runtime.

To do so requires that an API between TinyCalc and TinyScript to be defined.

The API is kept simple as TinyScript primarily is a tool for constructing regression

tests (section 6) and benchmarks(7.

Large projects normally define dynamic linkable libraries (DLLs) which can be

referenced independently in other programs. TinyCalc, however, is build as a stand

alone application without dynamic libraries, and while being very modular, the time

21

does not permit a script API being extracted and put into a DLL, which would enable

stand alone scripts. Instead, TinyScript defines the methods and classes constituting

the TinyScript API among all methods and classes in TinyCalc. At a later time,

these methods could be factored out into a DLL. As could the GUI and command

line interface, but more about this in section 8.3.

To summarize: TinyScript scripts are in fact C# programs which references meth-

ods and classes as defined in an API. These methods and classes live in the TinyCalc

namespace.

The TinyScript API consists of classes used to model a spreadsheet, methods per-

forming I/O on spreadsheets, methods to build new spreadsheets from scratch, meth-

ods for editing spreadsheets, a single method for performing recalculation, a method

for controlling recalculation and formatting of formulas when displaying them. The

actual API can be seen in an appendix in section A.6.1.

Two examples of using this API are presented. First, a script that creates a new

workbook with two sheets, makes up a couple of formulas, recalculates the workbook

and retrieves the results of the calculations. The script can be seen in A.6.2.

The second script creates a new workbook with a single sheet and a couple of

formulas, saves this workbook and reopens it as a new instance. It then recalculates

both workbooks, one in Level 0 (evaluation) and the other in Level 1 (RTCG for

each subexpression) and then compares the results. Outputs the string ”OK” if the

calculations are identical. The script can be seen in A.6.3

4.6 Loading and saving spreadsheets

However good a spreadsheet system might be at performing operations on data, it

is not a very useful tool if it is time consuming and tedious to get the data in or

out of the system. For small data sets, it is possible to use the GUI, but it quickly

gets tedious and repetitive if all changes to a spreadsheet are lost when closing the

application.

So TinyCalc needs to be able to load and save spreadsheets in some way. Looking

at the three spreadsheet systems Excel, OOCalc and Gnumeric it looks like XML is

the way to encode spreadsheets and office documents in the years to come. Excel

presently (2006) has it own proprietary .xls format, but introduced XMLSS in Excel

2002 and have announced a successor to XMLSS called Office Open XML format[17]4

to compete with the OpenOffice standard. This successor is scheduled for ECMA

standardization. While .xls files are smaller and loads/saves faster, encoding data

4The Office Open XML format draft 1.3 consist of approximately 4000 pages!

22

in XML is actually a good thing. XML is designed to be rigid in structure and easily

parsable by computers, while (possibly) still being readable by humans.

Based on these observations, TinyCalc will also store spreadsheets in XML. In-

stead of inventing yet another XML document format, the three formats used by

Excel, OOCalc and Gnumeric will be investigated and a format will be picked for

use in TinyCalc. The choice will depend on the following:

1. How readable is the saved data? Put in a different way, how complex is the

XML markup in the given format?

2. How well documented is the format and how difficult is it to obtain this docu-

mentation?

3. How likely is it that third party data is delivered in this format? How much

interoperability does a given format give TinyCalc?

4. Is the encoding single file or multi file and is the datastream compressed?

The overall criteria for selecting a format is ease and speed of implementation.

With regard to 4.) above, it should be noted that while applications might pro-

duce a single file having the .xml suffix this might be an illusion. Often the file is

actually some kind of compressed file or archive, as XML can be quite voluminous

and as text it has excellent compression ratio. Furthermore, applications take ad-

vantage of the fact that compressed files can contain a directory structure, so the

singular .xml file is often an illusion for a compressed filed containing a directory

with many small files.

When choosing the actual format for use in TinyCalc, we will disregard anything

not related to computations. More specifically, data format options, cell format

options, sheet layout options, metadata and document history is disregarded. So is

a given format’s ability to store figures, images and charts. That said, it will briefly

be stated if a given format supports these features.

4.6.1 Test sheet for XML investigation

A simple test sheet is constructed in order to investigate how the three systems encode

their data. The test sheet is constructed so it uses all the features and types that

TinyCalc is going to support. It does also contain some features and types which are

not going to be supported by TinyCalc in order to investigate if nonessential features

might hinder the usage of a given format in TinyCalc. The test sheet is constructed

so that it contains:

• At least two sheets in the workbook.

23

• A couple of floating point numbers and strings, ie: 5, 6.0, 7.0e0, 8.0e1, “test-

string”.

• A couple of special chars and strings, ie is any chars escaped?

• A formula using purely absolute addressing.

• A formula using purely relative addressing.

• A formula using both absolute and relative addressing.

• A formula using absolute intersheet addressing.

• A formula using relative intersheet addressing if the spreadsheet supports it.

• A formula combining both absolute and relative intersheet and absolute and

relative formula references.

• Three matrices, two 2x3 and a 1x1, to see how they are encoded. Can a 1x1

matrix be distinguished from a double value?

• A matrix calculation formula.

• A formula using a fixed function, ie the sinus function SIN

• A formula using a dynamic function, ie the random function RAND.

• A couple of types that TinyCalc is not going to support at first: date/time and

currency formats.

• A couple of examples of markup such as colors and justification.

• Examples of more exotic features such as weblinks, embedded images, charts

and cellcomments.

The three spreadsheets are made as identical as possible and it is then investigated

how each spreadsheet system encodes this sheet in their own markup. They can all be

found on the accompanying CD-ROM in the XML analysis directory. In the same

directory there also exist cut-down versions of the test sheets in which the XML

markup for the nonessential features has been removed.

4.6.2 Gnumeric Format used by Gnumeric

Gnumeric has developed its own format for storing data. There exists very little doc-

umentation about this format. The official documentation [11] consists of a webpage

and contains almost no relevant information besides stating that Gnumeric com-

presses the .gnumeric files with gzip for space reasons. It does, however, provide a

24

link to [12] which describes the gnumeric format as seen by a developer when imple-

menting support for the gnumeric format in JWorkBook. This document contains 30

pages and together with the test sheet it provides nearly enough information to de-

duce what is necessary to implement support for the format. Two things are missing.

Firstly, a description of defined ValueTypes is lacking. However, looking at value.h

in the source[13] for Gnumeric the missing information can be found. Secondly, there

is no grammar or textual description of the formula expressions.

Gnumeric stores workbooks in a single file, compressed with gzip. It includes style

and layout information for the data values. It includes document history and display

options as metadata. It supports embedding of objects and images inside the XML

file. It has support for named cells and, finally, it conceptually support sharing of

identical formulas as it introduces an index for a particular formula and then reuses

that index later on if a identical formula should reappear in the spreadsheet.

It should be noted that while it appears that it is possible to support the gnumeric

format, the documentation is produced by a third party person and is from 2001,

hence nonauthoritative and old. Furthermore the documentation lacks information

on whether XML elements and/or attributes are optional or required, making it

uncertain how complete and error free any support might be. The format will not

provide great interoperability with other spreadsheet systems.

Finally, it is noted that it is not possible to construct a single pass forward only

parser for this format without some kind of memory.

4.6.3 XMLSS Format used by Excel

Excel can save in a XML format in addition to its native .xls format. This XML

format is called XMLSS for XML SpreadSheet. On MSDN there are two webpages,

[27] and [26], documenting the XMLSS format. These are not complete in the sense

that they cover all details in the format but especially [27] is very thorough. These

webpages and the test sheet are enough to implement support for XMLSS in Tiny-

Calc.

An XMLSS file is a single noncompressed file. It includes style and layout in-

formation for the data values and metadata such as document history and display

options. It lacks support for embedded objects and graphs [35]. It supports named

cells and named ranges, but has no support for formula sharing in the format.

There is no grammar describing how formula expressions are constructed. There

are however a couple of attempts ([4] and [1]) at constructing a BNF grammar for

what people think constitutes Excel formula expressions. The interoperability with

25

other spreadsheet systems using the XMLSS format are very high either directly or

through Excel.

It is not possible to construct a single pass forward only parser for this format

without some kind of memory.

4.6.4 ODF Format used by OOCalc 2.0

OOCalc 2.0 uses Open Document Format (ODF) version 1.0, see [25]. The standard

is a 706 page large PDF file, organized so that small sections describe distinct features

(document metadata, named items, links, images and so forth) and then it is up to

an application developer to decide how many of these features the application is

going to support. There is, however, a recommended list of points for any given type

of application such as a wordprocessor, a spreadsheet system, and so forth. Using

this list as a guideline, the standard recommends that for a spreadsheet application

features that cover about 410 pages is to be considered.

The ODF format is compressed using the zip format. It contains a directory

structure. It is optionally encrypted as are the files in the directory structure. A

Manifest file in the root directory provides an entry point to decoding data. This

manifest file contains information about files, paths, compression- and encryption

methods and finally any keys needed for decryption.

An indented version of the reformatted test sheet called contents-reformatted.xml

can be found on the CD-ROM, as can a cut down version. There are more than

enough information to implement both read and write support for ODF in TinyCalc.

It comes as no surprise that ODF supports almost anything Gnumeric or XMLSS

supports. This includes named cells, named ranges, images, charts, layout and style

information for data and metadata.

The documentation does not give any grammar for formula expressions in ODF

and lastly, it is noted that it is not possible to construct a forward only single pass

XML parser for TinyCalc using this format.

26

4.6.5 Selection of format for TinyCalc

This table lists the features of the three formats relevant for this thesis:

ODF XMLSS Gnumeric

Documentation Excessive Plentiful Incomplete
Documentation status up to date up to date outdated
Dir/file layout Dir structure Single file Single file
Compressed Yes, Zip No Yes, GZip
Encrypted Possible5 No No
Formula encoding A1 R1C1 A1
Single pass possible No No No
Named Cells Yes Yes Yes
Charts and Images Yes, extern No Yes, inline
Formula indexation No No Yes
Format styles Yes Yes Yes
Metadata Yes Yes Yes
CellRef Origo in markup6 (undef,undef)7 (1,1) (0,0)
Formula grammar No 3rd Party in the source

Based on the fact that XMLSS is the simplest format combined with the fact that

it is well documented and provides excellent interoperability with Excel and OOCalc

as OOCalc can read XMLSS files, whereas Excel cannot read ODF files, XMLSS is

chosen as the primary format for TinyCalc.

That said, both ODF and Gnumeric are interesting in a broader sense; ODF in a

broader context than this thesis, because it is very likely to become the Open Source

standard for document encoding in the years to come. It has major momentum going

for it in the public service sector as well as in the private sector and is scheduled for

ISO standardization. Gnumeric, on the other hand, is interesting in this thesis as it

does formula indexing in the Gnumeric format.

Should time permit any further development of input and output formats, the

formats are prioritized this way:

1. Read support for Gnumeric.

2. Read support for ODF.

3. Write support for ODF.

4. Write support for Gnumeric.

5ODF can be encrypted with a vendor specific method.
6The cell references in question are those presented by the markup, not those in the actual formulas.
7ODF does not define any absolute indexes in its markup, so it is undecidable.

27

4.6.6 Implementation

.NET provides many ways to work with XML but only two methods are considered

here:

• One possibility is to parse data using a forward only scanner, extracting data

as it appears in the stream. This has a speed and memory advantage for large

inputs as almost no state is kept during parsing. The disadvantage is that it is

hard or impossible to update an existing document or preserve data not relevant

for TinyCalc. A forward only scanner works best if it is possible to scan the

whole document in a single pass. The XmlTextReader class implements a

fast forwarding XML scanner in .NET.

• The other possibility is to read in the XML data into an internal XML treestruc-

ture. For large inputs, the memory and cpu usage of doing that might not be

negligible. It does, however, make it easy to keep structure of the XML file

and easily update this structure without touching structure of elements of no

importance for our application. An internal XML document is well suited if

multiple passes over input are required. The XmlDocument class implements

an XML scanner with an internal XML representation.

XMLSS can not be parsed in one pass using XmlTextReader, but considering

the fact that some people recommend XmlTextReader over XmlDocument when

the XML files is large [14], XmlTextReader is chosen. Our hypothesis is that one

of the areas where RTCG might be beneficial in spreadsheet calculations is on large

inputs with lots of similar formulas.

Implementation should be straightforward with the exception of the following

point. In order to fully exploit RTCG, identical formulas should share the same

representation internally. XMLSS does not support formula sharing, but stores the

formulas as simple text strings. Therefor as written in section 4.2.2 TinyCalc needs

to:

1. Parse the formula from the textstring into an abstract syntax tree using a

scannar/parser.

2. Reconstruct the formula as a string using R1C1 style references.

3. Using a dictionary/hash table (for fast lookup) of strings to determine if a

formula has been seen before and can therefore be shared.

As a last note, it can be said that time did permit read support for Gnumeric to be

implemented. It uses a XmlDocument class and it can be noted that though Xml-

Document uses more memory than XmlTextReader it appears that the memory

28

requirements are four times the size of the input XML spreadsheet file on average. So

most spreadsheets can be read using an XmlDocument class. A program library

called sharpziplib[19] is used for the GZIP decryption of .gnumeric files. This library

can also decrypt ZIP files used in the .ods format.

The code implementing I/O in TinyCalc is found in the WorkBookIO.cs file.

4.7 Localization issues

As COCO/R currently only allow a single generated parser in a namespace, a couple

of issues arises. These are caused by the fact that the single parser has to parse

formulas entered in the GUI, appearing in TinyScript scripts and as encoded in the

XML files. The problem is three fold:

1. Formulas are parsed using the double.Parse(...) method. The method is

culture based and follows the culture defined by the operating system.

2. The three XML formats encode their formulas using English cultural settings.

3. There is no general consensus among the XML formats as to which token that

separate numbers in a list. Some uses ’;’ whereas others uses ’,’. This ambiguity

causes problems in conjunction with the cultural issues and makes it non-trivial

to construct a single parser which can parse formulas from all ”input” sources.

The solution to the problem has been to construct the grammar so that it parses

formulas as appearing in XMLSS, that is English cultural encoding of formulas.

Furthermore it is required that TinyCalc operate under an English cultural setting

in the underlying operating system.

29

5 Augmenting spreadsheets with RTCG

5.1 What is RTCG?

Runtime Code Generation (RTCG) can be used for program specialization. Program

specialization is a technique where a specialized version of the original general pro-

gram is produced, either during runtime or compile time. More formally, consider

the program P with two inputs, the static input S and the dynamic input D. When

the program P is run with these inputs, it produces the result R, which we write as:

P (S, D) = R

A specialized program is a program, which takes the dynamic input D as param-

eter and produces the exact same result PS(D) = R as the original program.

While it is possible to specialize programs by hand, it is tedious and errorprone.

People, however, have done it for years. Some types of code optimization can be seen

as program specialization. There is a subtle point, however. People skilled in the art

of writing hand optimized code, often do more than write specialized programs as

defined above. They often also impose assumptions on the original program which

enable them to further optimize the code. The original program and the specialized

program will still produce identical results in the common case, but the error cases

might be different.

Instead of specializing programs by hand, a program that automates the task can

be written. Such a program is called a partial evaluator and is essentially a program

or generating extension which produces programs as output.

It is possible to specialize programs both at compile time and at runtime. Compile

time specialization eliminates the cost of performing specialization at runtime. On

the other hand, compile time specialization is hard, as it is hard to deduce which input

is static and which is dynamic at compile time. Furthermore, a runtime specializer

is smaller and easier to develop than a compile time specializer.

Given that compile time specialization is hard and time consuming, runtime code

generation will be used in TinyCalc through a generating extension. This requires

that the overhead of invoking the code generator is minimized. Section 5.5.1 examines

the overhead of doing RTCG.

30

5.2 Possibilities for RTCG in a spreadsheet

The possibilities for RTCG in a spreadsheet are plentiful and can be graduated

according to how many CPU and memory resources are used in the RTCG phase.

To support various optimization strategies an optimization level hierarchy is de-

fined in TinyCalc. Level 0 does not generate any code at runtime but uses interpre-

tation to evaluate expressions. Level 1 and all subsequent levels generate code at run

time. The hierarchy looks like:

Optimization level Description

Level 0 Evaluation of formula expression by interpretation as

performed in the initial system delivered by Peter Ses-

toft.

Level 1 A piece of code is generated for each subexpression,

that is: A1+A2 generates 3 pieces of code which needs

to be evaluated. One for referencing A1, one for refer-

encing A2 and one that applies the + operator on the

referenced values.

Level 2 At this level, inlining of subexpressions is performed

so only one piece of code is generated for each formula

expression.

Level 3 Level 3 does inlining like Level 2 and also subexpres-

sion type analysis in an attempt to remove runtime

type checks.

Level 4 As Level 3, and also avoids creating intermediate

Value objects if possible

Level 5 As Level 4, and also inlines constant values if possible.

Level 6 As Level 5, and avoids generating stloc and ldloc in

the code, optimizing the best case as much as possible.

Level 7 As Level 5 (NB!), while extending the scope of the

type deduction to cell references.

Level 8 As Level 7 with value optimizations in the abstract

stack machine in order to remove dead branches in IF

statements.

Level 9 As Level 8 but also specializes spreadsheet functions.

The individual levels will be described in greater details in subsequent sections.

The analysis will start at Level 1 and use C# as a pseudo language. References will

31

be made to the actual IL code generated. Four simple examples will be used, each

being good at making a point at various levels. Of course the optimizations apply to

all expression constructs, but some benefit more than others from level to level. The

Four examples as formulas

A1 = A2+A3 (11)

A1 = A2+A3+A4 (12)

A1 = 5+6 (13)

A1 = 5+6+7 (14)

In the discussion that follows, it is assumed that the Expr, Value and Number-

Value have the definitions below.

public abstract class Expr { ... }

// A Const is a constant (immutable, sharable) expression
abstract class Const : Expr { ... }

class NumberConst : Const {
private readonly NumberValue value;
...

}

public abstract class Value { }

// A NumberValue is a floating-point number
public class NumberValue : Value
{

public readonly double value;
...

}

In order to see the differences between the different optimization strategies, IL code

for two of the four examples (A1=A2+A3+A4 and A1=5+6+7) has been put in appendix

A.5 and can it is recommended to have ready when reading the following sections.

5.2.1 RTCG Level 0 - Interpretation

At this level, no code is generated at runtime. All expressions are interpreted, using

the Eval method implemented by each (sub)expression. The algorithm presented in

section 4.2.4 is used to recalculate the entire workbook.

32

5.2.2 RTCG Level 1 - Distinct RTCG for subexpression

At Level 1 code is generated at runtime. A piece of code is generated for each

subexpression corresponding to the fact that each subexpression implements an Eval

method. When a piece of code for an expression is evaluated and that expression

depends on (sub)expressions, these are in turn evaluated by function calls. Consider

the formula expression (11). At Level 1, three pieces of code are generated, two

implementing cell references to cells A2 and A3 and one for the addition which calls

the two other methods to obtain the values of the cell references. Under the assump-

tion that the subexpressions A2 and A3 are located in the expression array es, the

generated function will implement this Eval function:

Example 4 Example of pseudocode to calculate A2+A3 at Level1

Value Eval(Sheet sheet, Expr[] es, int col, int row) {
if (es.Length == 2)
{

NumberValue v0 = es[0].Eval(sheet, col, row) as NumberValue,
v1 = es[1].Eval(sheet, col, row) as NumberValue;

if (v0 != null && v1 != null)
return new NumberValue(v0.value + v1.value);

else
return new ErrorValue("ARGTYPE");

}
else

return new ErrorValue("ARGCOUNT");
}

5.2.3 RTCG Level 2 - Inlining

Level 2 tries to inline as much code as possible so that only one Eval method is

generated for each formula expression. Considering formula expression (11) again,

the generated function implements this Eval method:

Example 5 Example of pseudocode to calculate A2+A3 at Level2

Value Eval(Sheet sheet, int col, int row) {
if (es[0].sheet != null)

sheet = es[0].sheet;
CellAddr ca = es[0].raref.Addr(col, row);
Cell cell = sheet[ca];
NumberValue v0 = cell == null ? null :

cell.Eval(sheet, ca.col, ca.row) as NumberValue;

if (es[1].sheet != null)
sheet = es[1].sheet;

CellAddr ca = es[1].raref.Addr(col, row);

33

Cell cell = sheet[ca];
NumberValue v1 = cell == null ? null :

cell.Eval(sheet, ca.col, ca.row) as NumberValue;
if (v0 != null && v1 != null)

return new NumberValue(v0.value + v1.value);
else

return new ErrorValue("ARGTYPE");
}

Note that the Eval method does not require a subexpression array Expr[] es —

all the subexpressions have been inlined and the es array appearing inside the func-

tion represents the expressions at compile time! Secondly note that the calls to

raref.Addr also can be inlined, but has been omitted in this example. Thirdly note

that the check for the right number of subexpressions are performed when generating

code8. Lastly note, that while two calls to subexpressions can be omitted, the call

to the cells Eval method cannot!

Inlining of Addr method call in the RARef class is possible as written above.

This call does the following:

Example 6 Addr method in the RARef class

// Absolute address of ref
public CellAddr Addr(int col, int row) {

return new CellAddr(this, col, row);
}

The call to the constructor for CellAddr performs:

Example 7 CellAddr constructor

public CellAddr(RARef cr, int col, int row) {
this.col = cr.colAbs ? cr.colRef : cr.colRef + col;
this.row = cr.rowAbs ? cr.rowRef : cr.rowRef + row;

}

Clearly these two small code snippets can be inlined as well.

5.2.4 RTCG Level 3 - Type check removal

At Level 1, no optimization are performed. At Level 2, the optimizations are: call

inlining and removal of the argument check. At Level 3, typechecks of subexpressions

are performed at compile time. This is done using a simple abstract stack machine.

8In case the generator detects a wrong number of parameters it will generate specialized code which
returns an ErrorValue.

34

The code generator will use the abstract stack machine to deduce the type of

values returned by subexpressions and avoid the typecheck and just do the calcula-

tion. If the types are not compatible with the operation, or can not be deduced at

compile time the generator will instead generate code that will catch the type errors

at runtime and return an ErrorValue of ARGTYPE as in the previous levels. That is,

for A1 = 5 + 6 the generator would deduce that

NumberValue + NumberValue 7→ NumberValue

and then generate what corresponds to:

Example 8 Example of pseudocode to calculate 5+6 at Level3

Value Eval(Sheet sheet int col, int row) {
NumberValue v0 = es[0].Value;
NumberValue v1 = es[1].Value;
return new NumberValue(v0.value + v1.value);

}

This code saves the tests that checks that v0 and v1 really are NumberValues

as they are supposed to be. Note that this code also is a lot simpler than the

previous code examples because we changed from cell references to constant values,

a change due to the fact that at Level 3 TinyCalc only performs subexpression type

optimization, and the point can not be made with an example using cell references.

When generating code for a single formula expression at a time, types inside the

expression cannot change at runtime. Types of values in referenced cells on the other

hand depend on the values in the cells, and these can change at runtime and/or

between subsequent evaluations. But more about this in section 5.2.8.

5.2.5 RTCG Level 4 - Avoid intermediate Value’s

Level 4 tries to avoid generation of intermediate Value objects. Consider the ex-

pression A1=5+6+7. At Level 3, the generated code implements a function that looks

like:

Example 9 A1=5+6+7 at Level 3

Value Eval(Sheet sheet int col, int row) {
NumberValue v0 = es[0].value;
NumberValue v1 = es[1].value;
NumberValue v2 = new NumberValue(v0.value + v1.value);
NumberValue v3 = es[2].value;
return new NumberValue(v2.value + v3.value);

}

35

However this can be shortened. There is no reason to construct v2. The only thing

it is used for is a placeholder for the final addition. An improved generator, would

instead deduce that the v2 is not used for anything except being a placeholder and

then generate:

Example 10 Avoiding new NumberValue(...) in A1=5+6+7

Value Eval(Sheet sheet int col, int row) {
NumberValue v0 = es[0].Value;
NumberValue v1 = es[1].Value;
double v2d = v0.value + v1.value;
NumberValue v3 = es[2].Value;
return new NumberValue(v2d + v3.value);

}

5.2.6 RTCG Level 5 - Embed constants in IL code

At Level 4, new objects were avoided by using locals (of type double and string)

instead of NumberValue and TextValue’s. But why stop there? Constants have

constant types and, as such, an even better generator would generate IL code that

implemented the following C# function for A1=5+6+7.

Example 11 Calculating directly in local variables

Value Eval(Sheet sheet, int col, int row) {
double v0d = es[0].Value.value;
double v1d = es[1].Value.value;
double v2d = v0d + v1d;
double v3d = es[2].Value.value;
return new NumberValue(v2d + v3d);

}

The above example is a bit contrived, as it is not very likely that three constants

are added together to form a new constant in an actual spreadsheet, but the point

is that constants can easily be type deduced and optimized when generating code.

5.2.7 RTCG Level 6 - CLR calculation

Considering the IL code for the example of A1=5+6+7 at Level 5, it can be seen that

code uses ldloc and stloc quite a bit. At Level 6, the generator tries to avoid using

these constructs and simply leave the actual double or string objects on the stack

of the CLR, when the compile time type checks have verified the expression, it can

be done safely.

36

5.2.8 RTCG Level 7 - Speculative type deduction

The type deduction optimizations introduced in Level 3 are limited by the fact that

they only can be applied to subexpressions of formula expression. It would be prefer-

able to do type analysis across cells, so values obtained from cell references could be

part of the type analysis. This analysis will be called speculative type deduction in

the future and in the next sections it will be clear why.

There are difficulties with letting the type analysis span cell boundaries. Consider

a situation where A2=8, A3=9 and A1=A2+A3. With speculative type deduction, it

is assumed that A2 and A3 both hold a NumberValue and this assumption allows

the codegenerator to skip typechecks from the generated code. Now consider what

happens if the user changes cell A2 from 8 to ”Thomas”? Instead of A1 containing

a NumberValue of value 17 it should now hold an ErrorValue of value ARGTYPE.

But what had happened if the user changed A2 from 8 to another NumberValue,

for instance 10? Nothing! At least not with regard to the codegenerator and the

generated code for A1. The assumption that A2 and A3 is of NumberValue type

still holds. This leads to two interesting points:

1. Deploying speculative, intercell type analysis requires dependency information

from referred cells and formula expressions to the referring expression. That is,

when changing the content of A2 or A3 above, the system needs to know that

A1 depends on the (types) of these cells.

2. Only when changing a referred cell to a value or expression of another type will

the referring expression need to be recompiled.

5.2.9 RTCG Level 8 - Value optimizations

Optimization Level 8 extends the deduction of types to cover also constant values.

Doing value analysis at compile time will allow the generator to skip dead branches,

most notably IF(Test;Branch1;Branch2) constructs. Not only will the generated

code be shorter, but it might be possible to avoid using time on generating code

which never gets executed. It is, however, questionable whether this optimization

level is worthwhile doing in general.

5.2.10 RTCG Level 9 - Function specialization

At this level, spreadsheet functions are specialized with regards to static arguments.

It should be noted, that not all functions are good candidates for specializing. Some

can not be specialized at all, some only in special circumstances, and finally some

37

functions requires a great deal of cpu time to be specialized. This makes it unclear

whether it is worth the effort to specialize functions in TinyCalc.

5.3 Imposed limits on RTCG in TinyCalc

Due to time constraints only RTCG Level 0-6 are implemented in TinyCalc. Level

7 is implemented with a presumed working type deduction scheme. An actual type

deduction using dependency information is not possible due to time constraints,

but by assuming that the infrastructure exists, Level 7 with type deduction on cell

references can be implemented in the code generator in a very short time. This allows

the potential of doing type deduction on cell references to be evaluated and it can be

concluded whether it is worth the effort to implement it fully in a later project.

RTCG support for MatrixValue is also implemented, but is not as complete as

for NumberValue and TextValue’s. As matrices poses a new set of optimization

problems and solutions, a new set of optimization levels has been defined (Section

7.4).

Lastly it is noted that all optimizations described in the previous sections also is

used only if they can be applied to some of the subexpression. For instance A1 = 5

+ A2, where A2=6 will at Level 3-6 still produce optimized code for the Number-

Value(5) subexpression even though the A2 subexpression first can be optimized at

Level 7.

5.4 Sharing of RTCG for formula expressions

As seen in section 4.1.1, implementing formula expressions in a smart way implies

that equivalent formulas can share the same formula expression. When combined

with RTCG, this opens up the possibility of performing the RTCG once for each

shared formula expression. A spreadsheet can be expected to contain many identical

formulas thereby reducing the penalty of performing RTCG on the spreadsheet.

The code generated should be bound to the expression being used for the genera-

tion. This means that as long as the codegenerator does not assume anything about

types and/or values of other cells, code sharing is easy (Level 1-6). Sharing of the

generated code for identical formula expressions, where the codegenerator tries to be

speculative about types and/or values in other cells, however, is not that easy. A

couple of examples will clarify these matters. Consider:

A1 = B1 + C1 (= RC[+1]+RC[+2])

38

Copying A1 to A2 yields:

A2 = B2 + C2 (= RC[+1]+RC[+2])

as expected. Obviously, code for the formula expression RC[+1]+RC[+2] can be

generated once and used twice. At least this is the case as long as the generator

method does not do speculative type deduction as defined in section 5.2.5. Consider

an alternative expression:

A1 = "foo" + 8

Clearly this should yield #ERR:ARGTYPE as a value. As both ”foo” and 8 are expression

constants, non-speculative type deduction is safe, and the final code can be boiled

down to a couple of IL instructions that just return the #ERR:ARGTYPE value. Clearly,

the IL code implementing the expression can be shared when copied to A2. Now

consider what happens at Level 7 with speculative type deduction in the following

situation:

A1 = B1 + C1 (RC[+1]+RC[+2])

A2 = B2 + C2 (RC[+1]+RC[+2])

B1 = B2 = "foo"

C1 = C2 = 8

The generator deduces that B1=B2 and C1=C2 contains different types and gener-

ates IL code which just returns #ERR:ARGTYPE. Furthermore, the generator deduces

that A1=A2 and that the types are still different, so the code can be shared among

A1 and A2. Now what happens when the user changes B2 from ”foo” to a numerical

value, 4 for instance? Both A1 and A2 shows #ERR:ARGTYPE, which is only correct for

A1. Cell A2 should really contain the value 12. It could be worse than this. Assume

that B1, B2, C1 and C2 all contained numerical values. The speculative generator

would correctly deduce that the types were indeed identical and generate code with-

out type checks. If the user later changes, for instance, B2 to a string value, A2 would

not evaluate to a #ERR:ARGTYPE as it should, but the CLR would instead generate

an exception as the IL stream tries to add a string to a float.

So to summarize, sharing of generated code is straightforward at Level 1 through

6 as the code generator at these levels does not try do deduce anything about the

39

values or types of other expressions. This means that a single piece of code shared by

two identical formula expressions will behave identically. When sharing code at Level

7+ (speculative deduction), care should be taken to keep track of assumptions about

types and values, and generate new IL code that behaves correctly if the assumptions

for the current IL code breaks.

5.5 Implementing RTCG in TinyCalc

5.5.1 Evaluation of call overhead of doing RTCG in .NET

There are essentially two approaches to runtime code generation in C# in use today.

The first approach generates C# code and the second generates IL code. In the

following, the general power function pow(x,y) will be used to measure the cost

of doing RTCG using various APIs in C#. C# and ILASM versions of these two

functions can be seen in appendix A.4.1 and A.4.2.

Generation of C# code can be done at runtime by emitting C# code constructs

to a stream, invoking the compiler through external system calls thereby generating

bytecode, and finally load the bytecode into the common language runtime (CLR),

where the code is ready to be run. A variant of this technique is to use the Code

Document Object Model (CodeDOM) in .NET to represent the C# program instead

of using a stream. CodeDOM is basically just an abstract syntax representation of

code and allows for creating code at runtime using classes and types found in the

CodeDOM. After having expressed a C# program as a CodeDOM object, the code

can easily be emitted, compiled and invoked. Lastly, it should be noted that the

CodeDOM framework also supports compilation and parsing of C# code expressed

as literal text. A high overhead of generating code at runtime using C# is to be

expected, as the compiler has to be invoked.

In contrast to invoking a compiler, it is possible to emit IL code directly. This

removes the cost of invoking the compiler at the cost of making it harder, more time

consuming and more error prone to generate the generating extension. Luckily this

only has to be done once. On the other hand, expressing the code in ILASM pro-

vides greater control over the actual code executing in the CLR, thereby potentially

allowing for more specialized and faster code. There essentially exist two ways of

generating IL code in .NET 2.0.

• The first method is to use the DynamicMethod class and invoke the generated

method through a delegate.

• The second method is to build the module from the ground creating an assembly.

40

In that assembly creating a module and in that module creating an class and

in that class creating a method, for that method obtaining an ILGenerator

finally being able to emit IL code for the body of the generated method.

Figure 5 shows the time it takes to compile code using the various methods above.

The benchmark can be found on the CD-ROM in the OverheadBenchmark directory

along with the actual output (RTCG Overhead Compile.xml). As expected, it can be

seen that invoking the compiler is a costly affair in contrast to emitting the IL code

directly. The high overhead combined with a very high level approach rules out C#

as the RTCG language.

RTCG Overhead (Compile)

15950

15438

756

3

3

Time to perform 100 compilations (ms)

CodeDOMSrc

CodeDOMGraph

Interface to Method (.NET 1.1)

DynamicMethod.Delegate

DynamicMethod.Invoke

CompileTime resolution

Figure 5: Overhead of doing compilation

It should be noted that the difference between using the interface method and

a DynamicMethod is a lot higher than expected, as both methods emit code using

an ILGenerator. What causes this discrepancy is investigated in the next sections.

However, before that, it is noted that, in any case, RTCG in TinyCalc is performed

by emitting a stream of IL instructions, and then call a method which executes this

stream of instructions. As described by Peter Sestoft in [33] (2002, .NET 1.1) and

again by Joel Pobar in [18] (2005, .NET beta 2), it appears that the fastest way to

call ILasm code at runtime is through an interface call. As good practise, a simple

reevaluation of this fact is performed as things easily could have changed from .NET

41

beta 2 (2005) to the finalized .NET 2 edition (2006) used in this Thesis. More

specifically it will be investigated:

1. How long it takes to invoke a static compiled method through compile time

resolution.

2. How long it takes to invoke code compiled using CodeDOM (for the reference).

3. How long it takes to invoke a dynamically compiled method through reflection,

that is the possibility of a program being able to inspect, alter and invoke its

own classes and methods.

4. How long it takes to invoke a static method through a delegate.

5. How long it takes to invoke a DynamicMethod method through a delegate which

is the preferred way of doing RTCG i .NET 2.x according to Microsoft.

6. How long it takes to invoke a dynamic method through an interface call which

is the .NET 1.1 way of doing RTCG.

The code implementing these tests can be found in the OverheadBenchmark on the

CD-ROM. The results can be found in the RTCG Overhead Invoke.xml file. Figure

6 depicts the test graphically.

RTCG Overhead (Invoke)

22075

20519

255

128

187

129

130

Time to perform 1000000 invocations (ms)

CompileTime reflection

DynamicMethod.Invoke

DynamicMethod.Delegate

Interface to Method (.NET 1.1)

CompileTime resolution

CodeDOMGraph

CodeDOMSrc

Figure 6: Overhead of doing invocation

42

The illustration shows that the fastest way to call a method is through static

compile time resolution. This is also the case when using the CodeDOM API. It is

slowest to use reflection, then a DynamicMethod and last calling a function through

a declared interface. It is interesting to note that the fastest method for executing a

runtime generated method in 2006 still is through an interface call. This was also the

case when Peter Sestoft first investigated these matters back in 2002, so it appears

that performance-wise not much has happened in .NET with regards to doing RTCG

in the last four years! It is however, claimed [10], that the Dynamic Method should

be as fast as the interface method in .NET 2.0, but this has not been the results

obtained in this thesis. It is evident, that the stricter a “contract” between the caller

and the callee can be formed with regard to parameter passing, the faster a method

call can be performed.

5.5.2 Thorough investigation of the interface method (.NET 1.1)

Figure 5 indicated that the overhead of emitting IL code using the .NET 1.1 (In-

terface) method is slower than the .NET 2.0 (DynamicMethod) method. Taking a

closer look at the actual output (RTCG Overhead Compile.xml), it can be seen that

it takes longer and longer time to compile functions using the interface method. To

investigate this further, a new test was conducted. This test basically just compiles

even more functions in order to reveal the tendency behind the numbers.

The raw output can be seen in the directory OverheadBenchmarks in the file

CompileRefInterfaceReuse Run1.txt. Figure 7 shows that plotting the total time

used compiling as a function of the number n, resembles a quadratic function. It

is speculated that this is caused by the fact that each function generated using an

interface constructs a new class in which to implement the function. It is likely that

it is related to all these classes and that one (or more) structures used by the class

loader, shows linear running time in the number of classes when adding an item. A

brief test was conducted to test whether the behavior was related to the class names

in the example, as they follow a naming scheme of class+number (worst case for

insertion in a list which maintains a sorted order). The conclusion is: no matter

what name the classes are given, the quadratic runtime is seen. So it is simply the

sheer number of classes generated that causes this runtime behavior!

5.5.3 Implementation Overview

The implementation of RTCG in TinyCalc are straight forward. There are a cou-

ple of points worth mentioning and this section will give a brief overview of the

43

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Figure 7: Total compile time (ms) as function of number of compiled functions

implementation.

First it is noted that the underlying abstract machine in the CLR of .NET is

stack based. IL assembly instructions first pops its arguments off the evaluation

stack then performs the operation before the result is pushed back onto the stack.

This is contrary to how assembly code in modern native cpus work with registers.

The fact that the abstract machine in CLR is stack based implies that evaluation

of formula expressions in TinyCalc needs to be performed in infix order or reverse pol-

ish style known from the HP calculators produced by Hewlett Packard. Fortunately,

the abstract syntax tree produced by the COCO/R parser makes this trivial. Figure

44

8 shows an example of a formula expression being converted into an abstract syntax

tree. The possible types of expressions were presented in section 4.2.5. Section A.10

shows the possible expression types as class diagrams.

String
IF(RAND() < 0,5 ; "Thomas" ; A1 + A2)

Parsing
into Abstract Syntax Tree (AST)

Done by Scanner.cs and Parser.cs

ExprType: FunCall
Function: IF

ExprType: FunCall
Function: <

ExprType: FunCall
Function: RAND()

ExprType: NumberConst
Number: 0,5

ExprType: StringConst
String: "Thomas"

ExprType: FunCall
Function: +

ExprType: CellRef
Cell: A1

ExprType: CellRef
Cell: A2

Figure 8: Formula expression parsed into an abstract syntax tree representation.

The main recalculation loop follows the algorithms presented for an array based

implement in section 4.2.4. Pseudocode for the recalculation can be found in section

A.2.

RTCG is implemented through a generating extension. The original code written

by Peter Sestoft implements an

Eval(Sheet sheet, int col, int row)

45

method for each expression class. Expression classes can be found in DOM/Expr.cs.

The FunCall expression class is treated specially inside DOM/Function.cs due to

the high number of functions. Each expression class is augmented with a

void Generate(ILGenerator ilg, RTCGExprFieldInfo fii, RTCGAM rtcgam)

method for RTCG. Due to the high number of functions, RTCG code for functions

can be found in RTCG/RTCGFunction.cs. The parameters of the Generate method

are as follows. The first parameter is an ILGenerator used for emitting the actual IL

code implementing the expression. The second parameter is an RTCGExprField-

Info containing FieldInfo references to fields needed when generating IL for this

expression. This class are further discussed in section 5.5.6. The last parameter is

an instance of the RTCGAM class, which are a Abstract Machine used for type

analysis when doing RTCG. This class is further discussed in section 5.5.4. As these

Generate methods mostly consist of static ilg.Emit statements the ”compilation”

overhead is minimal.

A simplified layout of TinyCalc can be seen in figure 9. The arrows denotes how

information flows towards the CLR. The filenames denotes which files implement

that part of TinyCalc. For a full overview of files and directories in TinyCalc see

section A.11.

5.5.4 RTCGAM — type analysis

Compile time type analysis is performed with the RTCGAM class, implementing

a simple Abstract Machine for RTCG. Type deduction is performed using a type

hierarchy as each expression produces a Value of a specific type. From Level 3 and

onwards the Generate method are required to adhere to a couple of invariants when

generating code. Consider an expression e having n subexpressions e1 . . . en. At Level

3 the generate method for e is required to:

• pop type information off the type stack in the RTCGAM class for each of the

n subexpressions after the subexpressions generate method has been called.

• push type information onto the type stack for the type of the return value.

As an example consider the expression 5 + 3. It consists of two subexpressions:

NumberConst(5) and NumberConst(3). At optimization Level 2 the generate

method for + just performs two calls to the subexpressions generate methods and

then performs the addition:

46

CLR

static compile time
Evaluation method

dynamic runtime
Evaluation method

AST
Document Object Model

workbook.cs, value.cs, adjusted.cs,
expr.cs, cell.cs, raref.cs,

function.cs, sheet.cs & celladdr.cs

Generating extension

RTCG.cs, RTCGFunction.cs,
RTCGAM.cs, RTCGType.cs &

RTCGDict.cs

Parsing
parse.cs & scanner.cs

Workbook I/O
WorkbookIO.cs

GUI
Form1.cs

MyTabPage.cs
Tinyscript

Tinyscript.cs

Figure 9: A simplified layout of TinyCalc

+.Generate([NumberConst(5),NumberConst(3)]) {
call 5.Generate(...)
call 3.Generate(...)
Generate code for + on 2 NumberValues

}

The Generate method for + generates IL code with type checks as it is not known

before runtime at Level 2, what actually appears on the value stack. At Level 3 the

generate method for + instead do:

+.Generate([NumberConst(5),NumberConst(3)]) {
call 5.Generate(...)
{

Emit_code for NumberValue(5)

47

rtcgam.push(NumberType)
}

call 3.Generate(...)
{

Emit_code for NumberValue(5)
rtcgam.push(NumberType)

}

t1 = rtcgam.pop();
t2 = rtcgam.pop();

if(t1 == NumberType || t2 == NumberType)
// skip type one or both checks in IL code
Generate Optimized Code for +

else
Generate Normal Code for +

rtcgam.push(NumberType);
}

The type hierarchy are defined in RTCGType.cs and looks like:

ExprType
AnyType

NumberType
DoubleType

TextType
StringType

MatrixType
ErrorType

ErrorArgCountType
ErrorArgTypeType

From Level 5 and onwards (Embed constants in IL code) the RTCGAM class

is also used in an attempt to leave double and string values on the CLR stack. For

that it is augmented with a stack holding information about which value types an

expression prefer being left on the stack by a subexpression. Two new rules are

added to the invariants for Level 5 to accommodate this. At Level 5 the generate

method for e is required to:

• push information about which value type it would be prefer the subexpression

leaves on the value stack. The push is required to be executed before the

subexpressions generate method is called.

• pop type information off the type stack in the RTCGAM class for each of the

n subexpressions after the subexpressions generate method has been called.

48

• pop type information off the preferred type stack in the RTCGAM class trying

to adhere to what type of value the parent expression prefers being left on the

value stack if it is possible.

• push type information onto the type stack for the type of the return value.

As an example consider the expression 5+3 again.

+.Generate([NumberConst(5),NumberConst(3)]) {

rtcgam.preferpush(DoubleType)
call 5.Generate(...) {

pt = rtcgam.preferpop()

if(pt can be satisfied)
Emit code for leaving double(5) on the stack
rtcgam.push(DoubleType)

else
Emit code for leaving NumberValue(5) on the stack
rtcgam.push(NumberType)

}

rtcgam.preferpush(DoubleType)
call 3.Generate(...) {

pt = rtcgam.preferpop()

if(pt can be satisfied)
Emit code for leaving double(3) on the stack
rtcgam.push(DoubleType)

else
Emit code for leaving NumberValue(3) on the stack
rtcgam.push(NumberType)

}
t1 = rtcgam.pop();
t2 = rtcgam.pop();

ptself = rtcgam.preferpop();
if(t1 == DoubleType && t2 == DoubleType && ptself == DoubleType) {

Emit(Opcodes.Add);
rtcgam.push(DoubleType);

else
if(t1 == NumberType || t2 == NumberType)

Generate optimized code without
typechecks for one or both operands

else
Generate Normal Code for + with runtime type check
for both operands.

rtcgam.push(NumberType);
}

}

49

5.5.5 Generating Eval methods — parameter differences.

As seen in section 5.5.1 and 5.5.2 it is hard to say if RTCG in TinyCalc in the future

uses Dynamic Methods or Interface Methods for its implementation. As written,

TinyCalc are going to support both methods as they both are generated through an

ILGenerator class. There are however, subtle differences between the two methods

and in this section these will be described.

The Interface Method builds a method as a class, adhering to an interface. The

Dynamic Methods are built as DynamicMethods, which are classless. Being classless

methods, DynamicMethods can not use the this reference. Interface Methods how-

ever can. This in turn impacts how parameters to the methods are referenced in the

IL stream. When implementing Eval(Sheet sheet, int col, int row) as an Dy-

namic Method, the sheet parameter is passed along as the first argument (arg[0]).

When the same method is implemented as a Interface Method, the sheet parameter

is passed along as the second argument (arg[1]), as the first argument (arg[0]),

contains a reference to the this object. Thus the Generate(...) methods needs to

be able to cope with arguments being passed along depending on wether an Interface

og Dynamic Method are used for implementing the cell formula at runtime.

Things are in fact a bit more complicated as the methods implemented for the

Eval methods have a different call interface than for Level 2+. For Level 1 a new

method is generated for each subexpression and the generated Eval method expects

to be called with an Array of subexpressions. This table summarizes the call inter-

faces and methods:

Dynamic methods Interface Methods

Level1 this: nonexisting this: arg[0]

Sheet sheet: arg[0] Sheet sheet: arg[1]

Expr[] expr: arg[1] Expr[] expr: arg[2]

int col: arg[2] int col: arg[3]

ı́nt row: arg[3] int row: arg[4]

Level2+ this: nonexisting this: arg[0]

Sheet sheet: arg[0] Sheet sheet: arg[1]

int col: arg[1] int col: arg[2]

ı́nt row: arg[2] int row: arg[3]

The Generator methods uses the GeneratorOptions class to obtain the cor-

rect argument number for the parameters. The GeneratorOptions then uses its

internal state about what generator method and generator level to supply the correct

parameter information.

50

5.5.6 RTCGExprFieldInfo (parameters)

The runtime generated method for a formula need to reference data found in the

(sub)expressions of that formula. As an example, consider the formula expression

A1=6+A2. This expression consist of two subexpressions, a CellRef and a Number-

Const. The CellRef contains two private members RARef and Sheet whereas

the NumberConst class has a private NumberValue. When doing evaluation

through interpretation (Level 0) each (sub)expressions Eval method have access to

these private members which are needed for evaluation of the expression. The method

generated by the generating extension also need access to these members, but being

private to another class this is not directly possible. See figure 10 for an example of

the problem using C# as pseudo code for the generated code.

FunCall : Expr

private readonly Function function ("+")

Value Eval(Sheet sheet, int col, int row) {
 NumberValue v0 = es[0].Eval(sheet, col, row) as NumberValue,
 v1 = es[1].Eval(sheet, col, row) as NumberValue;
 if (v0 != null && v1 != null)
 return new NumberValue(v0.value + v1.value);
 else
 return new ErrorValue("ARGTYPE");
}

NumberConst : Expr

private readonly NumberValue value (6)

Value Eval(Sheet sheet, int col, int row) {
 return value;
}

CellRef : Expr

private readonly RARef raref (A2);
private readonly Sheet sheet (null);

Value Eval(Sheet sheet, int col, int row) {
 if (this.sheet != null)
 sheet = this.sheet;
 CellAddr ca = raref.Addr(col, row);
 Cell cell = sheet[ca];
 return cell == null ? null : cell.Eval(sheet, ca.col, ca.row);
}

Class Barrier

Generated inlined method (Level 2)
in a new class

Value Eval(Sheet sheet, int col, int row) {
 NumberValue v0 = {
 value
 } as NumberValue,

 NumberValue v1 = {
 if (this.sheet != null)
 sheet = this.sheet;
 CellAddr ca = raref.Addr(col, row);
 Cell cell = sheet[ca];
 cell == null ? null : cell.Eval(sheet, ca.col, ca.row);
 } as NumberValue;

 if (v0 != null && v1 != null)
 return new NumberValue(v0.value + v1.value);
 else
 return new ErrorValue("ARGTYPE");
}

Figure 10: Generated code cannot reference private fields.

A possible solution could be to make the private members public but this is

considered bad practise in object oriented programming and therefore avoided. The

approach taken in TinyCalc are to let each class that derives from the Expr class

implement a CollectFieldInfo(List<RTCGField> list) method which adds the

private fields for that class to a list using a RTCGField class.

public class RTCGField
{

Object obj; // Generic object which can ref. anything.

51

Expr expr; // Expression this field is defined in
Type valuetype; // Type of the obejct.

// Object.GetType() does exist
// but obj _can_ be null.

Type classtype; // Type of class
String fieldname; // Name of field
private FieldInfo fi; // FieldBuilder to be used when

// generating ILASM.
}

The list of references are then passed to the runtime generated class through

the constructor for that class. While this scheme works and avoids turning private

members into public ones in the expression classes, a Object class is utilized and this

in turn make the code non type safe! As a last point it is noted that aforementioned

list of RTCGField is converted to a hash for fast lookup of fields when generating

the code.

5.6 Debugging, development aids and ILasm notes

It is useful to make debugging an integral part of the development process when

using a rapid development methodology. This thesis is no exception. Developing

applications that utilize native IL is at best tricky business. Often the CLR will just

throw an exception stating: “Bad IL” when trying to execute a method. There is

often no hint of what IL instruction caused the CLR to throw the exception.

While being a really good tool for developing code in C# or other high level

languages, Visual Studio 2005 (VS2005) is not adequately equipped to help debugging

IL code without leaving the IDE. That said, VS2005 comes with the ildasm utility

which allows one to disassemble code into IL code. It is not fancy, but for what it is

supposed to do, it does it rather well. However, having ildasm in the development

loop was found to slow development down enough to be irritating, because one has

to leave the VS2005 IDE, reopen and reexpand the class hierarchy tree in ildasm

to find the changes just made to the IL code. A search for alternatives brought up

three interesting methods for debugging IL:

1. It is possible to augment the generated code with SequencePoints and make a

mapping between these sequence points and a simple textual file. Together with

some magic telling the JIT compiler not to optimize the code, this enables high

level debugging using the built-in debugger in VS2005. Thus it is possible make

up high level statements9 out of ILasm and singlestep these. This technique is
9These statements are, in fact, just strings, so they need not be C# language constructs or language

constructs at all.

52

described in [28]. This method does not work on the new Lightweight Code Gen

(LCG) style of emitting IL code in .NET 2.0 (DynamicMethod) but only works

using the old .NET 1.1 way of generating code at runtime (Interface method).

2. A visualizer for VS2005 has been written that, when given a DynamicMethod

displays the ILasm of the method. A description can be found in [36]. This

technique only works for code emitted in a DynamicMethod.

3. Mike Stall has written a debugger for managed code under .NET. This debugger

is called MDbg [29] and is capable of debugging ILcode besides high level code.

It should be noted that MDbg uses the native JIT compiled code as sequence

marks for its stepsize. That is, when “single-stepping” code with MDbg the

cursor advances in steps according to the native code, not according to the IL

code.

While (1.) and (3.) are interesting and provide the ability to single step IL,

single-stepping IL code is not really required in developing the generating extension

in TinyCalc. Besides, (1.) requires extra code and a textual file to be written and

kept in sync between the IL code and the high level description. The visualizer in

(2.) is a no-frills simple solution to show IL code from within VS2005 so TinyCalc

will use this to display the IL. A sample screen shot of TinyCalc and (2.) showing

the IL which is about to be evaluated after the visualizer window is closed, can be

seen in Figure 11.

5.7 Conclusion on augmenting TinyCalc with RTCG

TinyCalc has been augmented with RTCG and it can be concluded that it is doable

to extend spreadsheet systems with RTCG. It can also be concluded that while not

the easiest system to implement, it has been easier than expected. The hard part

has been implementing the generating extension, notably writing and debugging the

IL assembler code. This, however, only has to be done once when implementing the

generating extension. The complexity of RTCG is thus well encapsulated in a small

set of classes and files. Lastly it can be concluded that the generating extension need

to know about private fields of expression and subexpressions. There is a tradeoff

between the complexity of obtaining access to these fields and their security level.

The approach taken in this thesis has been not to alter the member access modifiers

as defined in the base system.

It can be concluded that a simple system like TinyCalc can be augmented with

basic support for RTCG in about 5 months time by a single person. The basis

53

implementation given by Peter Sestoft is about 1400 lines of code. Support for

RTCG has added around 4500 lines of code to this number. Of those 4500 lines of

code, 3800 make up RTCG Function.cs. This would be a lot less if it had not been

for the decision to make separate code paths for each optimization level. With GUI,

command line interface, support for scripts, interpretation and RTCG, TinyCalc

consists of a mere 11.000 lines of commented source code.

54

Figure 11: Screenshot of the Visualizer showing a sequence of ILAsm code.

55

6 Tests

The emphasis of this thesis is exploring new ideas with RTCG in spreadsheets, so a

rigorous test is not constructed. That said, testing is still vital since a well crafted

test suite will speed up the development by ensuring that source modifications and

experiments do not introduce any (significant) bugs. These tests are known as re-

gression tests.

In essence, TinyCalc consists of a little spreadsheet engine with RTCG and a set

of supporting classes providing I/O methods, a GUI, a command line interface, a

script interface and methods dealing with debugging and development aids scattered

throughout the files. Due to time restrictions only the core spreadsheet calculation

engine is subject to regression tests. The core spreadsheet engine consists of 4 parts:

1. A set of parser/scanner classes which turn text strings into formulas and con-

stants in an internal format.

2. A set of methods and classes for (in a broad sense) initializing and setting up

spreadsheets.

3. A set of methods and classes dealing with evaluation of spreadsheets to produce

values.

4. A set of methods and classes dealing with run-time code generation of a spread-

sheet followed by evaluation of the spreadsheet using the generated code.

The methods in (3) is largely untouched compared to the initial code delivered by

Peter Sestoft and as such is considered being the basis to which the code in (4) it is

being compared. The grammar and code in (1) have been augmented (section 4.2.7)

compared to the grammar and code given by Peter Sestoft and only these additions

are tested as it is assumed that the grammar in the basis system is correct. Lastly

the I/O methods er tested by loading and saving the test sheets defined in section

4.6.

6.1 Testing the evaluation/RTCG engine

Testing the evaluation/RTCG engine is done by ensuring that the engine produces

correct results at all generator levels. The test can be further subdivided into these

subtests:

• At all levels ensuring that TinyCalc evaluates expressions according to the gram-

mar rules for spreadsheets as defined in section 4.2.7. This is done by utilizing

a small set of formulas exercising the extensions to the grammar.

56

• Perform tests that ensure that TinyCalc produces identical results at all op-

timization levels. This implies tests that ensures the correct and expected

numerical value is returned at all levels, as well as tests ensuring that errors are

caught at all levels. Testing for errors can be further subdivided into two tests:

1. Errors resulting from an operator or function being applied to a wrong

number- or type of arguments. This type of errors result in an error value

instead of a number, string or matrix.

2. Errors resulting from fatal exceptions, ie. when a formula tries to reference

a cell outside of the sheet and so forth.

• When using formula sharing, ensure that the semantics for formula sharing can

handle that the shared formula might not produce the identical kind of result

as described in 5.4.

• A set of adhoc tests which are found to be useful during development.

6.2 Testing the additions to the grammar

Testing the additions to the grammar consist of testing that:

• The power operator is parsed with the right precedence.

• Scientific numbers are parsed correctly.

• References in R1C1 style are parsed correctly.

• The string concatenation operator (&) can be parsed and has the correct prece-

dence.

• That sheet references can be parsed.

6.3 Testing the I/O methods

Testing the I/O methods constitute of

• loading the XMLSS test sheet checking that it could be loaded correctly.

• loading GNUMERIC test sheet checking that it could be loaded correctly.

• saving one of the test sheets above in XMLSS format.

• loading the newly saved XMLSS sheet and checking that it could be loaded

correctly.

If these 4 points can be performed without errors the I/O methods are assumed

to be working.

57

6.4 Test conclusion

The tests has been implemented and an example of these tests can be seen in section

A.7. The full set of tests can be located in the Regression-Tests directory on

the CD-ROM. To run the test, issue an runtests.bat in that catalog. TinyScript

(section 4.5 is utilized for testing which makes it possible to write a test in a single

line. See expression-tests.txt as an example. A total of approximately 350

regression tests are conducted.

The tests has been a success [31] in the sense that errors were found and corrected.

That said, no major errors were found by the test procedure. The errors found are

listed below along with their status:

• The statement ilg.ThrowException(typeof(ArgumentException)); causes

an error when used in a DynamicMethod:

Unable to cast object of type ’System.Reflection.Module’ to type ’Sys-

tem.Reflection.Emit.ModuleBuilder’.

The statement appears in the ApplyAct methods and can be exercised by trying

to compute the formula A1=SUM(5,"Thomas") using the Dynamic Method call

interface. The problem is not resolved for the time being.

• The grammar extension supporting sheet references using the ’ !’ character as

separator was found to clash with the “not equal” token ’ !=’ in the grammar.

An example showing this problem is the formula A1=A2!=A3. The parser would

parse A2! as a sheet reference to a sheet named A2 and complain that =A3 was

not a valid cell reference. To remedy this situation the “not equal” has been

converted to ’<>’ in the grammar. This is consistent with Excel, OOCalc and

Gnumeric.

• The invariance rules for the abstract stack machine was found not to obeyed

in a single spot in the generator. This caused an exception during runtime

generation. The mistake has been corrected.

• The stack invariance rules for the CLR was not obeyed for variadic functions.

These rules in essence states that no matter how the flow through the code might

be at runtime, the CLR evaluation stack need to be compile time deterministic

and consistent for the JIT compiler. SUM(A1:A5) did not exhibit the problem

but SUM(SUM(A1:A5) did as the inner SUM function could potentially cast an

exception causing objects to remain on the evaluation stack that would not

be there if the computation had progressed without error. The error has been

corrected.

58

• The I/O tests showed that Gnumeric and Excel encodes single cell matrix values

differently. Gnumeric treats them as matrix values, whereas Excel encodes them

as number values. Nothing has been done about this as it is unclear how single

cell matrix values are to be interpreted in CoreCalc.

• It was found that SUM(A1:A3) worked but SUM(A3:A1) did not. As this problem

also was present in CoreCalc, Peter Sestoft was informed and he produced a

patch which has been incorporated into TinyCalc. Furthermore the generating

extension has been augmented with a corresponding generator method.

• Lastly it was found that only exceptions of type “Cyclic” resets the compu-

tation flags to a valid and known state. If for instance an formula causes an

“IndexOutOfBounds” exception this exception is not caught by the calculation

logic and the computation flags are not reset and some cells will figure as be-

ing uptodate others needing recalculation. Any subsequent recalculation will

(probably) produce invalid results. The problem has been resolved by catching

all exceptions.

With these tests it is concluded that it is very unlikely that TinyCalc contains

any major bugs in the code generator as the generated code in all 350 tests produces

identical and correct results to the results obtained by interpretation.

59

7 Performance Evaluation

A couple of small benchmarks were performed on TinyCalc. These benchmarks were

performed to gain information in two areas:

• What impact does RTCG have on the calculation time in TinyCalc? What

speedup can be obtained at the different optimization levels?

• How does TinyCalc fare against full featured spreadsheets, most notably Mi-

crosoft Excel, OOCalc and Gnumeric?

The benchmarks were constructed so that recalculation took a considerable amount

of time, whilst still only used features implemented in TinyCalc, that is simple arith-

metic operations on doubles, cell reference, cell areas and simple function calls. Keep-

ing the benchmarks simple also makes it easier to understand whether a given opti-

mization is good or bad for the recalculation time. Each “simple” primitive formula

might not take a long time, but to remedy that, these simple formulas were duplicated

many times. This benefitted the benchmark in two ways: First of all, it made the

recalculation take enough time for it to be measured reliably. Secondly, using dupli-

cated formulas made the time used for compilation of formula expressions negligible,

as formula sharing was possible. This allowed us to concentrate on the performance

gain of the generated code instead of the overhead. Three sets of benchmarks were

constructed:

1. Many duplicated formulas performing a lot of arithmetic. With and without

cell references. A Taylor series expansion of exp(x) was calculated.

2. Simple calls to a spreadsheet function which is translated to a native C# func-

tion call, eg. sin(0.5) and sin(A1).

3. Long reference chains using literally millions of cell references.

7.1 Benchmark setup

All benchmarks are performed on a laptop with an Intel Pentium-M Dorthan CPU

with 2MB Level 2 cache, 768MB ram. The Pentium-M CPU is equipped with Speed-

step enabling it to run at various speeds. While conducting the benchmarks the

cpu are kept at 600MHz. The system is kept as idle as possible during the bench-

marks: all nonessential programs are closed and the system is left alone without user

intervention. On the software side, the setup is:

• Operating System: Windows 2000 professional (Microsoft Windows NT 5.0.2195

Service Pack 4)

60

• Excel 2003 (Version 11.5612.5606)

• OOCalc (Version 2.0.2)

• Gnumeric for Windows version 1.6.3

• Visual Studio 2005 (8.0.50727.42)

• Microsoft .NET Framework Version 2.0.50727

TinyCalc uses a Stopwatch class (new in .NET 2.0) to measure time. Its precision

depends on the hardware on which the code is running. If the hardware supports it,

it uses a high resolution hardware performance counter; if it does not, the system

timer is used instead.

Example 12 Example of using Stopwatch class to time execution time

Stopwatch watch = new Stopwatch();

// How precise are the measurements?
long frequency = Stopwatch.Frequency;

watch.Reset();
watch.Start();
... long running calculation ...
watch.Stop();
watch.ElapsedMilliseconds;

Recalculation time in Excel is measured using a Visual Basic macro (invoked by

pressing ALT-F8). The resolution of the Timer in Excel/VB is not known:

Example 13 Macro for timing recalculation in Excel

Sub Recalculate()
’ Recalculate Macro
’ Macro recorded 27-05-2006 by Thomas S. Iversen
timing = Timer ’Floating point register used

Application.CalculateFullRebuild
timing = Timer - timing
timing1 = Timer

Application.CalculateFull
timing1 = Timer - timing1
MsgBox "CalculateFullRebuild: " & Format(timing,"0.000") & " seconds"

& vbCrLf
& "CalculateFull: " & Format(timing1, "0.000") & " seconds"

End Sub

61

The difference between CalculateFull and CalculateFullRebuild is that the latter

rebuilds the dependency graph(s) for the workbook before performing a full recalcu-

lation. It is included due to the fact that some people [24], [7], [7], find it necessary

to use this recalculation method in order for the recalculation to work. It is unclear

why this is so, but it seems related to large workbooks with complex dependencies

and/or user defined functions.

Recalculation time in Gnumeric is measured using a hand held stopwatch. While

Gnumeric has an Python based plugin API, it does not work under Windows, so the

old-fashioned method has to be used.

The macro used for performing recalculations in OOCalc is identical with the one

used for recalculations in Excel, except that in OOCalc the recalculation method is

named ThisComponent.calculateall() instead of Application.CalculateFull.

Screenshots taken of the benchmarks performed in Excel and OOCalc makes it

easier to remember the actual numbers. TinyCalc implements the benchmarks in

TinyScript (Section 4.5), but as this still requires tedious work in order to make

charts from the raw data, a helper class called TinyBench has been implemented.

This class can produce a XML representation of the benchmark data. A utility

TinyBench2Ploticus has been implemented. This utility takes XML data (including

third party data for Excel, OOCalc and Gnumeric), a Ploticus[15] plot template and

then generates a ploticus plotscript. After this initial programming, the benchmarks

and constructions of charts can be fully automated. See section A.8 in the appendix

for further information on how to use TinyBench. Each benchmark in TinyCalc is

run 3 to 5 times and the average runtime computed. All benchmarks and their results

can be located on the CD-ROM in the TinyCalc/Benchmarks/Script directory and

its subdirectories.

7.2 Taylor benchmarks

The basic idea in the Taylor benchmarks is to use a lot of simple operations such as

multiply, division, addition and combine them with cell references to get an expression

that is simple and yet still take time to calculate.

A Taylor series expansion of exp (0.5) can be expressed as:

exp (0.5) = 1 +
0.5
1!

+
0.52

2!
+

0.53

3!
+ . . . +

0.5n

n!

While the pow (ˆ) operator is implemented in TinyCalc, the purpose is to use

as many simple operations in these benchmarks, so the pow terms is replaced by

62

simple multiplications. The factorial function (!) is also expanded into a series of

multiplications:

exp (0.5) = 1 +
0.5
1

+
0.5 ∗ 0.5

2 ∗ 1
+

0.5 ∗ 0.5 ∗ 0.5
3 ∗ 2 ∗ 1

+ . . . +
0.5 ∗ . . . ∗ 0.5

n ∗ (n− 1) ∗ . . . ∗ 1
(15)

As Excel can handle up to 1024 chars in an expression, n is set to 13. 131072

copies are then made of this formula (32 columns, 4096 rows) and the time taken to

recalculate the whole workbook is measured.

7.2.1 Taylor benchmark — no references

This benchmark uses formula (15) as presented in section 7.2. The benchmark and

corresponding result can be found in the subdirectory TaylorNoReferences. Figure

12 shows the results.

Taylorexpansion of exp(0.5), no cellreferences

21000

16000

10294

7554

5483

3105

1953

789

629

217

626

Evaluation time (ms)

OOCalc

Gnumeric

Level0

Level2

Level3

Excel (FullCalculationRebuild)

Excel (FullCalculation)

Level4

Level5

Level6

Level7

Figure 12: Taylor benchmarks — no references

It is interesting to note that using interpretation (Level 0) TinyCalc outperforms

both OOCalc and Gnumeric. It can be seen that inlining all the subexpressions

gives a performance speedup (Level 2). Removal of type checks (Level 3) is also

worthwhile. Level 4 shows that avoiding construction of temporary NumberValues

in long computation sequences is very beneficial. Inlining of constant values (Level

63

5) gives a little speedup and Level 6, where the double values are kept directly on

the stack, brings the time down to an absolute minimum. Remembering that Level

7 equals Level 5 with speculative external type deduction, the times for Level 7 are

to be expected as there are no external cell references in this example.

7.2.2 Taylor benchmark — Argument is referenced

Formula (15) is not very useful as the argument is hard coded into each formula. In

this benchmark the formulas are modified so that they reference an argument in A1:

exp (A1) = 1 +
A1
1

+
A1 ∗A1

2 ∗ 1
+

A1 ∗A1 ∗A1
3 ∗ 2 ∗ 1

+ . . . +
A1 ∗ . . . ∗A1

n ∗ (n− 1) ∗ . . . ∗ 1

where A1 = 0.5. The benchmark and corresponding result can be found in the

subdirectory TaylorReferenceArgument. Figure 13 shows the result as a chart.

Taylorexpansion of exp(A1), A1 is referenced

53076

40000

18000

12970

9541

7501

5308

4697

5248

2254

1671

Evaluation time (ms)

Excel (FullCalculationRebuld)

OOCalc

Gnumeric

Level0

Level2

Level3

Level4

Level5

Level6

Excel (FullCalculation)

Level7

Figure 13: Taylor benchmarks — Argument is referenced

TinyCalc is again faster than OOCalc and Gnumeric at Level 0. Inlining and type

deduction helps (Level 2 ... 6), but it is only at Level 7 that TinyCalc can deduce

that A1 indeed is a NumberValue. When that happens, however, type checks can

be removed and TinyCalc ends up being faster than Excel. Notice, also, how Level

6 is slower than Level 5 when the double values cannot remain on the CLR stack

64

between calculations. This need not be the case and implementing a special case in

the generator would make Level 6 and Level 5 equally fast in that circumstance. As

it is a minor problem, this is postponed.

7.2.3 Taylor benchmark — All references

In this tests the denominators of the formula expressions are also converted to cell

references:

exp (A1) = 1 +
A1
B1

+
A1 ∗A1
B2 ∗ B1

+
A1 ∗A1 ∗A1
B3 ∗ B2 ∗ B1

+ . . . +
A1 ∗ . . . ∗A1

Bn ∗ B(n− 1) ∗ . . . ∗ B1

Where A1 = 0.5 and Bn = n. The benchmark and corresponding result can be

found in the subdirectory TaylorAllReferences. Figure 14 shows the result as a

chart.

Taylorexpansion of exp(A1), Both enumerator (A1) and
denominator (factorial) are referenced

203513

50500

23000

14765

10367

10417

10440

10552

11664

3054

2803

Evaluation time (ms)

Excel (FullCalculationRebuild)

OOCalc

Gnumeric

Level0

Level2

Level3

Level4

Level5

Level6

Level7

Excel (FullCalculation)

Figure 14: Taylor benchmarks — All references

Again is it possible for TinyCalc to outperform OOCalc and Gnumeric at Level

0. Level 2 provides a little speedup as subexpressions are inlined. Again, it is only

at Level 7, where it can be deduced that A1,B1 . . .B13 are NumberValues, that

TinyCalc can perform the recalculation nearly as fast as Excel. It is also evident that

65

Excel has some problems with a FullCalculationRebuild when a workbook contains

lots of references.

7.2.4 Taylor benchmark — All references optimized

In order to minimize the number of calculations performed over and over again, the

benchmark is reexpressed:

exp (A1) = 1 +
A1
B1

+
A2
B2

+
A3
B3

+ . . . +
An

Bn

Where An = 0.5n and Bn = n!. The benchmark and corresponding result can

be found in the subdirectory TaylorAllReferencesOptimized. Figure 15 shows the

result as a chart.

Taylorexpansion of exp(A1), Both enumerator (A1) and
denominator (factorial) are referenced. Optimized

15843

7000

4000

2269

1522

1511

1528

1491

1519

806

484

Evaluation time (ms)

Excel (FullCalculationRebuild)

OOCalc

Gnumeric

Level0

Level2

Level3

Level4

Level5

Level6

Level7

Excel (FullCalculation)

Figure 15: Taylor benchmarks — All references optimized

TinyCalc is again faster than OOCalc and Gnumeric. Inlining helps a little, but

only external type deduction can speed the calculation up any further. Even so,

Excel beats TinyCalc by approximately a factor 2.

66

7.3 Simple Math function

In this benchmark, a simple function call will be benchmarked. These calculations

performs almost no calculation inside the spreadsheet calculation engine. Instead,

a (heavily) optimized method is called in an external library. The first benchmark

performs 262144 calculations of sin(π/4). The TinyScript script and corresponding

output can be found in the subdirectory SimpleStaticMathFunction on the CD-

ROM and figure 16 shows the numbers in a chart.

Simple Math function, static argument (SIN(PI()/4))

2000

1000

663

922

806

591

404

446

402

401

383

Evaluation time (ms)

OOCalc

Gnumeric

Level0

Level2

Level3

Excel (FullCalculationRebuild)

Level4

Level5

Level6

Level7

Excel (FullCalculation)

Figure 16: Simple Math function, SIN(PI()/4)

It can be seen that all 3 spreadsheets can perform the calculations almost equally

fast. The benchmark is performed so fast that external events (disk access and

the like) can skew the results quite considerably, and as such care should be taken

concluding too much from these benchmarks. It should, however, be noted, that

it appears that avoiding temporary objects can be beneficial. It is only one object

per calculation, but as the benchmark consists of 262144, calculations it amounts to

262144 calls to the memory management code in C#, which needs to synchronize

with the garbage collector. Level 2 and Level 3 are most likely slower than Level 0

due to overhead by generating and invoking the code.

The next benchmark consists of 262144 calculations of sin(A1), where A1 =

PI()/4. The TinyScript script and corresponding output can be found in the sub-

67

directory SimpleReferenceMathFunction on the CD-ROM and figure 17 shows the

numbers in a chart.

Simple Math function, reference argument (SIN(A1))

2644

1000

1000

336

324

549

483

523

503

459

514

Evaluation time (ms)

Excel (FullCalculationRebuild)

OOCalc

Gnumeric

Excel (FullCalculation)

Level0

Level2

Level3

Level4

Level5

Level6

Level7

Figure 17: Simple Math function, SIN(A1)

Notice how Excel and TinyCalc are equally fast at Level 0. TinyCalc performs

the benchmark approximately equally fast at Level 2 through 7. This is most likely

because of overhead and the fact that there are no temporary objects that TinyCalc

can avoid creating as there was in the first simple benchmark.

The one and only conclusion drawn from this benchmark is that, for simple func-

tions which utilizes an external library TinyCalc is as fast as Excel, OOCalc and

Gnumeric, and that the overhead of doing RTCG on these simple calls might not be

beneficial. On the contrary, it proved to slow the calculations down this benchmark.

7.4 Long reference chains

The two previous benchmarks had limited cell reference utilization. To benchmark

how TinyCalc, Excel, OOCalc and Gnumeric cope with literally millions of refer-

ences, this benchmark was constructed. Again, it is quite simple. In the A column,

a series of simple interest formulas are calculated. More specifically, A1 = number,

A2 . . .A12288 = R[−1]C ∗ 1, 00001. In the B column, 12288 partial sums are con-

structed. More precisely B1 = SUM(A$1 : A1) and this formula is then copied to

68

B2 . . .B12288 yielding a total of 12288 references from the A column and approxi-

mately (12288 + 1)/2 ∗ 12288 cell references from the B column. In total, over 75

million cell references using only two distinct formulas when using formula sharing!

Due to time constraints, this thesis has not considered RTCG for MatrixValues

in general, but specially for this benchmark, the CellArea class and Eval and Apply

methods were implemented so that code for SUM could be generated. Performance for

Level 2 through 7 are expected to be equal to the performance of Level 0 as almost

no optimization has been performed.

The TinyScript script and corresponding output can be found in the subdirectory

LongReferenceChains on the CD-ROM. Figure 18 contains the results as a chart.

LongReferenceChains

323054

107000

58631

56411

55301

54805

54683

54707

54663

17000

4285

Evaluation time (ms)

Excel (FullCalculationRebuild)

Gnumeric

TinyCalc SUM −− Level0

TinyCalc SUM −− Level2

TinyCalc SUM −− Level3

TinyCalc SUM −− Level4

TinyCalc SUM −− Level5

TinyCalc SUM −− Level6

TinyCalc SUM −− Level7

OOCalc

Excel (FullCalculation)

Figure 18: Long reference chains

As it was expected, performance of Level 0 (interpretation) is the same as Level

2 through 7. TinyCalc is faster than Gnumeric (by a comfortable margin), but is a

lot slower than Excel. Excel is very fast and uses about 32 cyles10 per addition and

reference pair which is impressive.

The differences in recalculation time between Excel and TinyCalc is so big that

it was investigated why this was so. Performing crude optimizations on the IL code

1075 million addition and references in 4 seconds at 600Mhz

69

emitted for MatrixValue calculations proved worthless. Eventually, it was found

that it boiled down to the way MatrixValue is implemented in TinyCalc. The

MatrixValue class uses an Value[,] array to hold the actual values a specific Ma-

trixValue contains. That is, evaluating SUM(A1:D4) evaluates the cell area A1:D4,

which in turn returns a MatrixValue in which a Value[4,4] array has been allocated

and initialized with references to the 16 underlying values. It is the assignment of

these 75 million references that slow TinyCalc down when performing the benchmark

above.

It is fair to say that the CoreCalc (which TinyCalc has inherited) representation

of MatrixValues is overly general using a Value[,]. In contrast to Excel, it allows

matrices containing a mixture of numbers and matrices, possibly containing further

matrices and so forth. In TinyCalc MatrixValues can for instance model general bi-

nary trees something Excel can not. Two alternative MatrixValue implementations

are proposed:

1. A class LWMatrixValue which contains a tuple (sheet, ulCa, lrCa) defin-

ing the sheet, the upper left cell and the lower right cell defining this matrix.

In essence, this defines a matrix in terms of a view or cursor on the underly-

ing sheet. This has the implication that these matrix values only works when

a function that uses them would expect a 1:1 mapping between the values as

they appear in the sheet and as they appear in the matrix value. SUM(A1:B4)

would work with matrices implemented by LWMatrixValue as there exists

a 1:1 mapping between the the LWMatrixValueinduced by A1:B4 and the

sheet. SUM(MMULT(A1:B4;C1:D4)), however, would not work with matrices

implemented through LWMatrixValue. The speed of LWMatrixValue is

expected to be good.

2. A class DoubleMatrixValue which implements matrices using a double[,]

instead of a Value[,]. Both the direct and indirect usage of matrix values, as

seen in the previous point, will work with a DoubleMatrixValue. There are

subtleties with DoubleMatrixValue which does not exist in MatrixValue.

What about null cells? How are they represented using a double[,]? Or how

are matrices where not all cells are numbers handled? These semantic problems

are deferred in this thesis, but should be considered later on. The performance

of DoubleMatrixValue is expected to lie in between LWMatrixValue and

MatrixValue.

Using the two definitions above, two functions FASTSUM and DOUBLESUM are im-

plemented. They compute the sum as SUM does, but utilize LWMatrixValue and

70

DoubleMatrixValue respectively and have the limitations outlined above. Figure

19 shows that FASTSUM gives a remarkable speedup and DOUBLESUM a decent speedup

at Level 0.

LongReferenceChains SUMS at Level0

107000

58631

25037

17000

14468

4285

Evaluation time (ms)

Gnumeric

TinyCalc SUM −− Level0

TinyCalc DOUBLESUM −− Level0

OOCalc

TinyCalc FASTSUM −− Level0

Excel (FullCalculation)

Figure 19: The three implementations of SUM at Level0

As both methods look promising, the generating extension is augmented with

methods that can generate code for both of them. The optimizations possible for

either of the two methods differs and does not follow the level scheme used for

optimizations on expressions (section 5.2). A consequence of this is the way opti-

mizations is implemented as levels needs to be rethought and reimplemented using

another scheme. Suggestions on how to remedy the situation in the future are pre-

sented in section 8.3. For now, we redefine the optimizations levels for these two

functions:

71

Level FASTSUM DOUBLESUM

Level 0 Interpreted in C# Interpreted in C#

Level 2 As IL code. Evaluation of ar-

guments are inlined.

As IL code.

Level 3 As Level 2 and also inlining

and generation of the (v as

LWMatrixValue).Apply(act)

call so that the innermost

loops can be optimized. First

innermost loop optimization

which is done at Level 3 is to

inline the 75 million delegate

calls.

Inlining of the delgate

Level 4 As Level 3 but optimize loop

overhead by moving offset cal-

culations outside of the loops.

This optimization is also possi-

ble in C# code.

N/A.

Level 5 As Level 4 but assume that

speculative type checking is

working and that if a cell is

non-null so will the resulting

value be of NumberValue

type.

N/A.

With these optimizations, two new benchmarks were run. The benchmark script

and corresponding output can be found in the subdirectory LongReferenceChainsFastSum

and LongReferenceChainsDoubleSum on the CD-ROM. Figure 20 contains the re-

sults as a chart.

As can be seen, very little speedup can be obtained by utilizing RTCG on Dou-

bleMatrixValue. A further investigation showed that the overhead of allocating the

array is 4 seconds. Traversal of the array when populating it with a takes 6 seconds.

The actual additions takes about 2 seconds and the traversal fetching the values for

the sum takes another 6 seconds. The last 3 seconds overhead not belonging to a

specific part of the code. It is not possible to shave much time off LWMatrixValue

either. The computation of the actual sum takes 2 seconds as for DOUBLESUM and 6

seconds are used to reference the actual values giving a total of 8 seconds. This is

72

LongReferenceChains Combined Graph

107000

58631

25037

22996

21052

17000

14468

14685

9421

8978

8373

4285

Evaluation time (ms)

Gnumeric

TinyCalc SUM −− Level0

TinyCalc DOUBLESUM −− Level0

TinyCalc DOUBLESUM −− Level2

TinyCalc DOUBLESUM −− Level3

OOCalc

TinyCalc FASTSUM −− Level0

TinyCalc FASTSUM −− Level2

TinyCalc FASTSUM −− Level3

TinyCalc FASTSUM −− Level4

TinyCalc FASTSUM −− Level5

Excel (FullCalculation)

Figure 20: Long reference chains combined graph

as fast as these implementations of MatrixValues get. Besides that the LWMa-

trixValue has the limitation of being a view as discussed above, but it is speculated

that most applications of SUM on a matrix is actually of the kind where the matrix

has a 1:1 mapping to the underlying sheet. As such LWMatrixValue has its place

in TinyCalc.

73

7.5 Performance conclusion

It can be concluded that TinyCalc without RTCG is faster than OOCalc and Gnu-

meric in almost all cases. The exception being that MatrixValue is to general mak-

ing SUM slower than it ought to be. Implementing FASTSUM and DOUBLESUM shows

that TinyCalc at Level 0 can compute sums as fast as OOCalc and Gnumeric.

With RTCG TinyCalc approaches or outperforms Excel in the benchmarks. When

using TinyCalc as a calculation engine and the calculation can be optimized to be

performed on the CLR stack TinyCalc shines compared to Excel. Calculation of

formulas containing a lot of cell references is slower in TinyCalc than in Excel.

The main conclusion is that RTCG speeds up TinyCalc by a factor of two to four

times on average and much more in some benchmarks, most notably those utilizing

TinyCalc as a calculation engine.

74

8 Evaluation

8.1 Evaluation of the process

Extending TinyCalc with a GUI, I/O methods and RTCG has been easier than ex-

pected even though it has been hard at times. That said, hours have been used

searching for documentation on Excel, OOCalc, and Gnumeric and for further refer-

ence the collected information has been documented in this thesis, whenever possible.

As it is also often the case, this thesis has raised more questions than it has an-

swered. A section on (some) of the interesting directions one could go with TinyCalc

is presented.

Obtaining documentation on how Excel works and documentation on how Gnu-

meric is meant to work has been troublesome. Microsoft clearly can not disclose the

source code for Excel, but a small paper describing the overall recalculation strategy

along with the major data structures would have been more than enough. Similarly

very little documentation on how Gnumeric and OpenOffice Calc are supposed to

work can be obtained. In these latter examples the source code can be obtained,

but a small paper would be much easier to read and understand than digging the

information out of several thousands lines of code.

As a reference for future work, the documentation found will be listed here:

• Microsoft Developer Network has an article [23] about how formulas are re-

calculated in Excel 2002 (and previous versions). While being ambiguous and

repetitive and raises further questions, it does provide valuable information, es-

pecially regarding why user defined functions in Excel can be evaluated multiple

times with incomplete parameters during a global recalculation. The article is,

however, not enough to deduce the exact recalculation algorithm for Excel.

• A company called Decision Models is specialized in speeding up Excel work-

sheets. More importantly, they have published [30] all the information they

have gathered about how Excel actually works.

• A blog entry [8] by a Microsoft Excel developer lists what appears to be an

exhaustive list of limits in the upcoming Excel2007 as well as the limits imposed

in previous versions of Excel. The big question arising when reading the list is:

“why do these limits exist in Excel; even Excel2007 is limited”. The list might

be used to deduce how Excel is implemented.

• Two MSDN articles [27] and [26] describes the XMLSS format used as XML

format by Excel2002. The articles are good, but lack information about the

75

grammar used for formulas.

• Various attempts has been made to construct a BNF grammar for Excel for-

mulas, most notably [1] and [4].

• The difference between CalculateFull and CalculateFullRebuild is clear

enough. The former recalculates the entire workbook, and the latter rebuilds

the dependency structure before doing a full rebuild. What is interesting, how-

ever, is that some people ([24], [7], [7]) have trouble performing a proper recal-

culation using the former method when they have not changed the dependency

structure in a workbook but only changed values. It is unclear in what cir-

cumstances it is safe to use the faster CalculateFull over the much slower

CalculateFullRebuild.

8.2 Prior art

Has RTCG been performed in spreadsheets before? No technical article exists on the

subject but two patents, US Patents 5471612[5] and 5633998[6] are titled respectively:

Electronic spreadsheet system and methods for compiling a formula stored

in a spreadsheet into native machine code for execution by a floating-point

unit upon spreadsheet recalculation.

and

Methods for compiling formulas stored in an electronic spreadsheet sys-

tem.

These patents were issued by Borland in 1995 and 1997 and both details a method

for performing runtime code generating of spreadsheet formulas. Compared to Tiny-

Calc the described method compile formulas to Intel x87 FPU code as opposed to

CLR byte code and contains a different recalculation model than TinyCalc. While

the patent and TinyCalc both utilize runtime code generation to speed up spread-

sheet calculations and have comparable ideas for some kind of abstraction level the

implementations is different. It is unclear who possesses these patents as of writing

(July 2006). It is also unclear if the methods described in the patents ever has been

implemented in an actual spreadsheet application.

Besides these patents no prior examples, patents or articles describing how to pair

runtime code generation with the spreadsheet recalculation model could be found.

76

8.3 Where to go from here

As it is often the case, investigation of new ideas and concepts spawns a lot of new

work and ideas. Below is a list of things which could be investigated in later projects.

The list can be divided into two sections, one consisting of extending TinyCalc as

a calculation engine, that is, the datatypes, valuetypes, recalculation model, RTCG

and so forth. The other part concerns the I/O (in a broad sense) of spreadsheets.

Many of these projects can easily be generalized and need not to be restricted to the

actual implementation of TinyCalc.

• Separating the command line interface code and GUI code from the rest of the

project, that is turn TinyCalc into a DLL from which a stand alone command

line version and a stand alone GUI version could be built. Estimated time frame

is one month.

• Implementing GUI for loading, editing and saving TinyScript scripts. Estimated

time: A couple of weeks.

• Reconsider what place DoubleMatrixValue, LWMatrixValue and the orig-

inal MatrixValue have in TinyCalc. Should they coexist? Or should one

be selected and the two others scraped? The semantic consequences of Dou-

bleMatrixValue and LWMatrixValue should be analyzed. Time frame: 1-2

months.

• Extending RTCG support for matrices when the MatrixValue classes are in

place. The generator supports DoubleMatrixValue and LWMatrixValue

as of now, but further optimizations should be considered. Time frame: 1-2

months.

• Investigate the frequency with which spreadsheet functions are used and how

their running time affect the total recalculation time of spreadsheets. Which

functions are the most “problematic”? Which functions is the best candidates

for optimization? Estimated time frame: 2-3 months as it takes time to collect

problematic spreadsheets.

• Adding support for more spreadsheet file formats, most notably read support

for ODF. Estimated time frame: max 1 month.

• Investigate if anything can be done about the problem of calling RTG code

efficiently. Section 5.5.2 clearly showed that the Interface method of executing

RTG code has problems with the asymptotic run time, as the number of gener-

ated functions induce more and more classes to be instantiated into the CLR.

77

Investigate whether it is possible to prune unused runtime generated code from

memory? Or can the DynamicMethod be made faster? Estimated time frame:

1-1.5 month.

• Implemented the concept of named cells and named ranges. A company called

Decision Models (www.decisionmodels.com) makes a living by selling a pro-

gram called fastexcel that can take an arbitrary Excel workbook and produce

an identical workbook in which named cells and named ranges has been avoided

for speed reasons. This suggests that named cells and named ranges might be

harder than one thinks. Estimated time frame: 1-2 months.

• Implementing code that, at runtime, analyzes what optimization is best suited

for a given spreadsheet. And further, reconsider the optimization strategy im-

plemented in TinyCalc. As it is now, Level n always do what Level n− 1 did,

and then some more, except Level 6. Maybe it would be wiser to switch to a

generator model, where the optimization levels are defined according to what

options are turned on and off. Different optimization strategies could then be

performed on different datatypes (NumberValues are different beasts than

MatrixValues) and furthermore the optimization level could follow the data

instead of being global to a sheet. Knowledge of the JIT engine could also

be put into this heuristic. Estimated time frame: 3-4 months depending on

ambitions.

• Augment TinyCalc with the possibility of tracking types of external references.

That is, implement some sort of dependency structure, so that when a change

to the value in a cell cause the value to change type, any dependent formulas

are recalculated. Estimated time frame: 3-5 months.

• Implement dependent recalculation, so that only affected formulas of a change

to a cell are recalculated. As it is now, all formulas are recalculated. For

what kind of spreadsheets is this simple strategy enough? And what situation

will benefit greatly from a smarter recalculation engine? And how would that

impact the simple structure of TinyCalc? Estimated time frame: 3-5 months.

• Implementing support for saving RTGC to permanent storage so that a spread-

sheet can be optimized with RTCG once so that when it is loaded from storage

the next time, it is ready to perform recalculation using RTG code without first

compiling the code. Should the user change a couple of values before the sheet

is recalculated only the affected expressions need to be recompiled, and that

is only if the values changes types. This optimization would help in the case

78

www.decisionmodels.com

where a large and time demanding but more or less static spreadsheet is used

frequently. Estimated time frame: 3-4 months.

• Splitting up RTCG Function.cs into smaller files. All spreadsheet functions in

the basis implementation live in Function.cs and to make a 1:1 mapping a

single file, RTCG Function.cs, was created containing all the RTCG versions

of the same functions. This decision, however, made RTCG Function.cs quite

large and splitting RTCG Function into smaller files, preferably one for each

function, would be advisable. Time did not permit this to be done as part of

the thesis. Estimated time frame: less than 1 month.

• Combining other spreadsheet ideas done under supervision of Peter Sestoft,

ITU, into TinyCalc. Especially the idea of making user definable functions

(UDF) as spreadsheets themselves seems like a intriguing concept to combine

with RTCG. Estimated time frame: 2-3 months.

• Correct the two remaining problems found in section 6.4

• In general, perform research on spreadsheet systems and spreadsheet technol-

ogy. A search for technical articles and research papers on spreadsheets divides

into two groups of papers. The first groups contain papers on solving various

(mathematical or intensive) problems using spreadsheets. The other group con-

tain papers on how to minimize spreadsheet errors. The authors of papers in

the first group seem to have a mathematical or statistical background where

as authors from the second group seem to have a financial background. It is

quite remarkable that almost no articles can be found on spreadsheet research

originating from computer scientists. Spreadsheet applications has been around

since the late seventies, early eighties and are used daily by millions of people

in businesses worth billions and yet very little research can be found. Besides

augmenting spreadsheet systems with RTCG what else could be researched?

79

9 Conclusion

It can be concluded that runtime code generation (RTCG) can speed up spreadsheet

calculations and the hypothesis from section 3 has been proved.

It can be concluded that the speedups seen in TinyCalc, which is written in C#,

generally can be grouped into two groups. The first group giving speedup revolve

around compile time type deduction, thereby avoiding type checks at runtime. It has

been seen that type checks can be further divided into two subcategories, internal (for

the formula expression in question) type deduction and external type deduction (for

cell references). It can be concluded that both types are equally important for RTCG

to be beneficial in spreadsheets. External type deduction was not implemented in this

thesis, as time did not permit advanced dependency graphs to be built into TinyCalc.

That said, performance measurements were conducted with an assumed working

external type deduction scheme in order to get knowledge of potential speedup gained

from external type deduction. It can be concluded that expressions containing cell

references will benefit greatly from external type deduction as will matrix operations.

The second group of optimizations are those where careful consideration is paid

to the .NET CLR and its implementation. First, it was seen that speedups could be

achieved by avoiding creation of new objects in the .NET CLR. Speedup was seen

when TinyCalc avoided creating new instances of NumberValue to hold interme-

diate results that just served as input the the next operation. Likewise, it was also

seen that a “simple” matrix operation like SUM(A$1:A12288) could be speeded up

a factor of nearly 4 (55 to 15 seconds) by avoiding using a Value[,] array to hold

NumberValue references. And this was before any RTCG was performed.

It can also be concluded that an overhead of doing RTCG in spreadsheets does

exist and should be taken into account. The overhead has been measured, and it

can be concluded that both of the two likely candidates for doing RTCG in TinyCalc

have problems. The problems are, however, not general in nature, but are caused by

the way DynamicMethods and the class loader are implemented in .NET.

Comparing TinyCalc to commercial or full fledged spreadsheets like Excel, OOCalc

or Gnumeric, TinyCalc has great potential. TinyCalc was consistently faster than

OOCalc and Gnumeric when doing calculation by interpretation. When doing cal-

culation using RTCG, TinyCalc approached or beat Excels calculation times. It is

obvious that TinyCalc by no means is a full fledged spreadsheet, but it is interesting

that a simple spreadsheet engine, written in a modern, JIT compiled language per-

forms so well using simple structures and recalculation methods when coupled with

runtime code generation.

80

10 References

[1] aamshukov@cogeco.ca. Ms excel grammar, bnf? http://compilers.iecc.

com/comparch/article/05-07-101, July 2005.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princiles, Tech-

niques, and Tools. Addison-Wesley, 1986.

[3] Jessica (aka JFo). Datagridview faq. http://www.windowsforms.net/

Samples/Go%20To%20Market/DataGridView/DataGridView%20FAQ.doc,

November 2005.

[4] Daniel Ballinger. Invesitgation into excel syntax and a formula grammar. https:

//www.mcs.vuw.ac.nz/~db/Excel.shtml.

[5] Inc. Borland International. Electronic spreadsheet system and methods for com-

piling a formula stored in a spreadsheet into native machine code for execution

by a floating-point unit upon spreadsheet recalculation. United States Patent

5,471,612, November 1995.

[6] Inc. Borland International. Methods for compiling formulas stored in an elec-

tronic spreadsheet system. United States Patent 5,633,998, May 1997.

[7] Chance224. Update linked cells within a workbook??? http://www.

excelbanter.com/showthread.php?t=550&goto=nextnewest.

[8] Microsoft Corporation David Gainer. Microsoft excel 2007 (nee excel 12) –

some other numbers. http://blogs.msdn.com/excel/archive/2005/09/26/

474258.aspx.

[9] Tobias Friedrich Deepak Ajwani and Ulrich Meyer. An o(n2.75) algorithm for on-

line topological ordering. http://www.mpi-inf.mpg.de/~ajwani/ftp/SWAT06_

ajwani.pdf, 2006.

[10] Microsoft Corporation Eric Gunnerson. Calling code dynamically.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dncscol/html/csharp02172004.asp, May 2004.

[11] Gnome foundation. Gnumeric xml file format. http://www.gnome.org/

projects/gnumeric/doc/file-format-gnumeric.html.

[12] David Gilbert. The gnumeric file format. http://www.jfree.org/jworkbook/

download/gnumeric-xml.pdf, November 2001.

[13] Jody Goldberg. gnumeric-value.h source. http://cvs.gnome.org/viewcvs/

gnumeric/src/value.h?view=markup, May 2005. Revision 1.67.

81

http://compilers.iecc.com/comparch/article/05-07-101
http://compilers.iecc.com/comparch/article/05-07-101
http://www.windowsforms.net/Samples/Go%20To%20Market/DataGridView/DataGridView%20FAQ.doc
http://www.windowsforms.net/Samples/Go%20To%20Market/DataGridView/DataGridView%20FAQ.doc
https://www.mcs.vuw.ac.nz/~db/Excel.shtml
https://www.mcs.vuw.ac.nz/~db/Excel.shtml
http://www.patentstorm.us/patents/5471612.html
http://www.patentstorm.us/patents/5633998.html
http://www.excelbanter.com/showthread.php?t=550&goto=nextnewest
http://www.excelbanter.com/showthread.php?t=550&goto=nextnewest
http://blogs.msdn.com/excel/archive/2005/09/26/474258.aspx
http://blogs.msdn.com/excel/archive/2005/09/26/474258.aspx
http://www.mpi-inf.mpg.de/~ajwani/ftp/SWAT06_ajwani.pdf
http://www.mpi-inf.mpg.de/~ajwani/ftp/SWAT06_ajwani.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp02172004.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncscol/html/csharp02172004.asp
http://www.gnome.org/projects/gnumeric/doc/file-format-gnumeric.html
http://www.gnome.org/projects/gnumeric/doc/file-format-gnumeric.html
http://www.jfree.org/jworkbook/download/gnumeric-xml.pdf
http://www.jfree.org/jworkbook/download/gnumeric-xml.pdf
http://cvs.gnome.org/viewcvs/gnumeric/src/value.h?view=markup
http://cvs.gnome.org/viewcvs/gnumeric/src/value.h?view=markup

[14] Ryan Gregg. Xmldocument vs xmltextreader. http://ryangregg.com/2004/

10/29/XmlDocumentVsXmlTextReaderXmlTextWriter.aspx.

[15] Stephen C. Grubb. Ploticus — a free, gpl, non-interactive software pack-

age for producing plots, charts, and graphics from data. http://ploticus.

sourceforge.net/doc/welcome.html.

[16] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point

Arithmetic. IEEE, New York, August 12 1985.

[17] Ecma International. Ecma tc45 office open xml standard - draft

1.3. http://www.ecma-international.org/news/TC45_current_work/Ecma%

20TC45%20OOXML%20Standard%20-%20Draft%201.3.pdf.

[18] Microsoft Corporation Joel Pobar. Reflection — dodge common per-

formance pitfalls to craft speedy applications. MSDN Magazine, http:

//msdn.microsoft.com/msdnmag/issues/05/07/Reflection/default.aspx,

July 2005.

[19] Mike Krueger and John Reilly. The zip, gzip, bzip2 and tar implementation for

.net. http://www.icsharpcode.net/OpenSource/SharpZipLib/.

[20] Jesse Liberty. Programming C#. O’Reilly, 4. ed. edition, 2005.

[21] Jesse Liberty. Visual C# 2005. O’Reilly, 1. ed. edition, 2005.

[22] Serge Lidin. Inside Microsoft .NET IL Assembler. Microsoft Press, Redmond,

WA, USA, 2002.

[23] Microsoft Corporation Loreen La Penna. Recalculation in microsoft excel 2002.

MSDN, http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/dnexcl2k2/html/odc_xlrecalc.asp, October 2001.

[24] Matt. Updating formula with link to another work-

sheet using vlookup. http://help.lockergnome.com/office/

Updating-formula-link-worksheet-vlookup-ftopict639819.html.

[25] et. al. Michael Brauer. Open document format for office applications (odf) v1.0.

http://docs.oasis-open.org/office/v1.0, May 2005.

[26] Microsoft Corporation Michael Stowe. Xml in excel and the spreadsheet com-

ponent. http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/dnexcl2k2/html/odc_xlsmlinss.asp, August 2001. 8 printed pages.

[27] Microsoft Corporation Michael Stowe. Xml spreadsheet reference.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnexcl2k2/html/odc_xmlss.asp, August 2001. 53 printed pages.

82

http://ryangregg.com/2004/10/29/XmlDocumentVsXmlTextReaderXmlTextWriter.aspx
http://ryangregg.com/2004/10/29/XmlDocumentVsXmlTextReaderXmlTextWriter.aspx
http://ploticus.sourceforge.net/doc/welcome.html
http://ploticus.sourceforge.net/doc/welcome.html
http://www.ecma-international.org/news/TC45_current_work/Ecma%20TC45%20OOXML%20Standard%20-%20Draft%201.3.pdf
http://www.ecma-international.org/news/TC45_current_work/Ecma%20TC45%20OOXML%20Standard%20-%20Draft%201.3.pdf
http://msdn.microsoft.com/msdnmag/issues/05/07/Reflection/default.aspx
http://msdn.microsoft.com/msdnmag/issues/05/07/Reflection/default.aspx
http://www.icsharpcode.net/OpenSource/SharpZipLib/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexcl2k2/html/odc_xlrecalc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexcl2k2/html/odc_xlrecalc.asp
http://help.lockergnome.com/office/Updating-formula-link-worksheet-vlookup-ftopict639819.html
http://help.lockergnome.com/office/Updating-formula-link-worksheet-vlookup-ftopict639819.html
http://docs.oasis-open.org/office/v1.0
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexcl2k2/html/odc_xlsmlinss.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexcl2k2/html/odc_xlsmlinss.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexcl2k2/html/odc_xmlss.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexcl2k2/html/odc_xmlss.asp

[28] Microsoft Corporation Mike Stall. Debugging dynamically generated code (re-

flection.emit). Mike Stall’s .NET Debugging Blog, http://blogs.msdn.com/

jmstall/archive/2005/02/03/366429.aspx, February 2005.

[29] Microsoft Corporation Mike Stall. Mdbg extension to debug il. Mike Stall’s

.NET Debugging Blog, http://blogs.msdn.com/jmstall/archive/2005/11/

04/mdbg_il_debugging.aspx, October 2005.

[30] Decision Models. Excel pages - calculation secrets. http://www.

decisionmodels.com/calcsecrets.htm.

[31] Glenford J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York,

NY, USA, 1979.

[32] David J. Pearce and Paul H. J. Kelly. Online algorithms for maintaining the

topological order of a directed acyclic graph. http://www.mcs.vuw.ac.nz/

~djp/files/tr0703.pdf, July 2003.

[33] Department of Mathematics Peter Sestoft, Royal Veterinary Physics, and

Copenhagen Denmark & IT University of Copenhagen Agricultural Univer-

sity. Runtime code generation with jvm and clr. http://www.dina.kvl.dk/

~sestoft/rtcg/rtcg.pdf, October 2002.

[34] Peter Sestoft and Henrik I. Hansen. C# precisely. MIT Pr., 2004.

[35] Microsoft Corporation Unknown. Info: Microsoft excel 2002 and xml. http:

//support.microsoft.com/kb/288215/EN-US/, December 2003. Revision 1.0.

[36] Haibo Luo’s weblog. Debuggervisualizer for dynamicmethod (show me the il).

Haibo Luo’s weblog, http://blogs.msdn.com/haibo_luo/archive/2005/10/

25/484861.aspx, October 2005.

83

http://blogs.msdn.com/jmstall/archive/2005/02/03/366429.aspx
http://blogs.msdn.com/jmstall/archive/2005/02/03/366429.aspx
http://blogs.msdn.com/jmstall/archive/2005/11/04/mdbg_il_debugging.aspx
http://blogs.msdn.com/jmstall/archive/2005/11/04/mdbg_il_debugging.aspx
http://www.decisionmodels.com/calcsecrets.htm
http://www.decisionmodels.com/calcsecrets.htm
http://www.mcs.vuw.ac.nz/~djp/files/tr0703.pdf
http://www.mcs.vuw.ac.nz/~djp/files/tr0703.pdf
http://www.dina.kvl.dk/~sestoft/rtcg/rtcg.pdf
http://www.dina.kvl.dk/~sestoft/rtcg/rtcg.pdf
http://support.microsoft.com/kb/288215/EN-US/
http://support.microsoft.com/kb/288215/EN-US/
http://blogs.msdn.com/haibo_luo/archive/2005/10/25/484861.aspx
http://blogs.msdn.com/haibo_luo/archive/2005/10/25/484861.aspx

A Appendix

A.1 About this thesis

For those interested a short description of this thesis is presented.

The thesis is written in LATEX, which is a typesetting system developed by Donald

E. Knuth for his wife. As the code for TinyCalc is written in Visual Studio 2005,

the MikTex package for Windows is used. To edit the actual .tex files, WinEdt a

versatile LATEX editor, was used.

The layout used is the article layout of LATEX on A4 paper with 12 point fonts,

wide margins (a4wide package) and a line spacing 1.5. Code listings are produced

using a simple verbatim environment. Internet references are produced using the

URL package, the hyperref package takes care of producing clickable links in the PDF

file, graphs and charts are constructed automatically using ploticus and finally the

fixme package is used for keeping track of things needed to be fixed before publishing

a document.

84

A.2 Recalculation loop expressed as pseudocode

The three pieces of pseudo code presented below performs the recalculation in Tiny-

Calc for RTCG.

Workbook.Recompute() {

// Before doing a recomputation of the entire workbook

// Clear the compiler dictionary (used for formulasharing).

if (GeneratorOptions.Level >= GeneratorLevel.Level2)

RTCGDict.Clear();

cyclic = false;

// O(1) way of marking all formulas

// non-visited and non-uptodate.

set = !set;

// Now for all cached expressions, ce.visited != set and ce.uptodate != set

try

{

foreach (Sheet sheet in sheets)

sheet.Recompute();

}

catch (Cyclic)

{

foreach (Sheet sheet in sheets)

sheet.Reset();

cyclic = true;

throw;

}

}

sheet.Recompute() {

for (int col = 0; col < Cols; col++)

for (int row = 0; row < Rows; row++)

{

Cell cell = cells[col, row];

if (cell != null)

cell.Eval(this, col, row);

}

}

cell.Eval (for Functions) {

if (uptodate != workbook.Set)

{

if (visited == workbook.Set)

throw new Cyclic("Cyclic cell reference: ");

else

{

visited = workbook.Set;

85

switch (GeneratorOptions.Level)

{

case GeneratorLevel.Level0:

default:

v = Level0_Eval(sheet, col, row);

break;

case GeneratorLevel.Level1:

v = Level1_GenEval(sheet, col, row);

break;

case GeneratorLevel.Level2:

case GeneratorLevel.Level3:

case GeneratorLevel.Level4:

case GeneratorLevel.Level5:

case GeneratorLevel.Level6:

case GeneratorLevel.Level7:

v = Level2P_GenEval(sheet, col, row);

break;

}

uptodate = workbook.Set;

}

}

return v;

}

Level23_GenEval (for functions) {

if (GeneratorOptions.UseFormulaSharing)

{

rtcgexpr = RTCGDict.Lookup(e);

if (rtcgexpr == null)

{

rtcgexpr = e.InlineSubExpr_Gen(sheet, col, row);

RTCGDict.Insert(e, rtcgexpr);

}

}

else

{

rtcgexpr = e.InlineSubExpr_Gen(sheet, col, row);

}

if (rtcgexpr != null)

return rtcgexpr.Eval(sheet, col, row);

else

return null;

}

86

A.3 BNF grammar for formula expressions in TinyCalc

/* Coco/R grammar for spreadsheet formulas */

/* mono ~/cs/coco/Coco.exe Spreadsheet.ATG -namespace Spreadsheet */

/* gmcs Spreadsheet.cs Scanner.cs Parser.cs */

/* Originally written by Peter Sestoft, 2005 */

/* Modified by Thomas S. Iversen, January, April 2006 to support: */

/* - RaRefs in the R1C1 format

* - The string concatnation operator &

* - Numbers in scientific notation

* - Sheetreferences in the style: [Alpha{Alpha}!]Raref

* - ^ (power) operator (April 2006).

*

* Compile with: coco -namespace TinyCalc Spreadsheet.ATG

*/

using System.Collections;

COMPILER Spreadsheet

private int col, row;

private Workbook workbook;

private Cell cell;

System.Globalization.NumberFormatInfo ni = null;

public void SetNumberDecimalSeparator(String nds) {

System.Globalization.CultureInfo ci =

System.Globalization.CultureInfo.InstalledUICulture;

this.ni = (System.Globalization.NumberFormatInfo)

ci.NumberFormat.Clone();

this.ni.NumberDecimalSeparator = nds;

}

public Cell ParseCell(Workbook workbook, int col, int row) {

this.workbook = workbook;

this.col = col; this.row = row;

87

// US decimal point, regardless of culture

SetNumberDecimalSeparator(".");

Parse();

return cell;

}

/*--*/

CHARACTERS

letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".

atoi = "ABCDEFGHIabcdefghi".

digit = "0123456789".

Alpha = letter + digit.

cr = ’\r’.

lf = ’\n’.

tab = ’\t’.

exclamation = ’!’.

dollar = ’$’.

newLine = cr + lf.

strchar = ANY - ’"’ - ’\\’ - newLine.

char = ANY - ’\\’ - newLine.

TOKENS

name = letter { letter } CONTEXT("(").

number =

digit { digit }

[/* optional fraction */

["." digit { digit }] /* optional fractional digits */

[("E" | "e") /* optional exponent */

["+" | "-"] /* optinoal exponentsign */

digit { digit }

]

].

sheetref = Alpha { Alpha } exclamation.

raref = [dollar] atoi { letter } [dollar] digit { digit }.

xmlssraref1= "RC".

xmlssraref2= "R" digit {digit} "C".

xmlssraref3= "R[" ["+"|"-"] digit { digit } "]C".

xmlssraref4= "R" digit {digit} "C" digit {digit}.

xmlssraref5= "R[" ["+"|"-"] digit { digit } "]C" digit {digit}.

xmlssraref6= "RC" digit {digit}.

88

xmlssraref7= "RC[" ["+"|"-"] digit { digit } "]".

xmlssraref8= "R[" ["+"|"-"] digit { digit } "]C[" ["+"|"-"] digit { digit } "]".

string = "\"" { strchar } "\"".

textcell = "\’" { char }.

COMMENTS FROM "/*" TO "*/" NESTED

COMMENTS FROM "//" TO cr lf

IGNORE cr + lf + tab

PRODUCTIONS

/*--*/

AddOp<out String op>

= (. op = "+"; .)

(’+’

| ’-’ (. op = "-"; .)

| ’&’ (. op = "&"; .)

).

LogicalOp<out String op>

= (. op = "=="; .)

("=="

| "<>" (. op = "<>"; .)

| "<" (. op = "<"; .)

| "<=" (. op = "<="; .)

| ">" (. op = ">"; .)

| ">=" (. op = ">="; .)

).

/*--*/

Expr<out Expr e> (. Expr e2; String op; e = null; .)

= LogicalTerm<out e>

{ LogicalOp<out op>

LogicalTerm<out e2> (. e = new FunCall(op, new Expr[] { e, e2 }); .)

}

.

LogicalTerm<out Expr e> (. Expr e2; String op; e = null; .)

= Term<out e>

89

{ AddOp<out op>

Term<out e2> (. e = new FunCall(op, new Expr[] { e, e2 }); .)

}

.

/*--*/

Factor<out Expr e> (. RARef r1, r2; Sheet s1 = null; double d; e = null; .)

= (

| sheetref (.

String sheetname = t.val.TrimEnd("!".ToCharArray());

s1 = workbook[sheetname];

.)

)

Raref<out r1> ((. e = new CellRef(s1, r1); .)

| ’:’ Raref<out r2> (. e = new CellArea(null, r1, r2); .)

)

| Number<out d> (. e = new NumberConst(d); .)

| string (. int len = t.val.Length-2;

e = new TextConst(t.val.Substring(1, len));

.)

| ’(’ Expr<out e> ’)’

| Application<out e>

.

/*--*/

PowFactor<out Expr e> (. Expr e2; .)

= Factor<out e>

{ ’^’

Factor<out e2> (. e = new FunCall("^", new Expr[] { e, e2 }); .)

}

.

/*--*/

Raref<out RARef raref> (. raref = null;.)

= raref (. raref = new RARef(t.val, col, row); .)

| xmlssraref1 (. raref = new RARef(t.val); .)

| xmlssraref2 (. raref = new RARef(t.val); .)

| xmlssraref3 (. raref = new RARef(t.val); .)

| xmlssraref4 (. raref = new RARef(t.val); .)

| xmlssraref5 (. raref = new RARef(t.val); .)

90

| xmlssraref6 (. raref = new RARef(t.val); .)

| xmlssraref7 (. raref = new RARef(t.val); .)

| xmlssraref8 (. raref = new RARef(t.val); .)

.

/*--*/

Number<out double d> (. d = 0.0; .)

= (number (. d = double.Parse(t.val, ni); .)

| ’-’ number (. d = -double.Parse(t.val, ni); .)

) .

/*--*/

Application<out Expr e> (. String s; Expr[] es; e = null; .)

= Name<out s> ’(’

(’)’ (. e = new FunCall(s, new Expr[0]); .)

| Exprs1<out es> ’)’ (. e = new FunCall(s, es); .)

)

.

/*--*/

Exprs1<out Expr[] es> (. Expr e1, e2;

ArrayList elist = new ArrayList();

.)

= (Expr<out e1> (. elist.Add(e1); .)

{ (’;’ | ’,’) Expr<out e2> (. elist.Add(e2); .)

}

) (. es = new Expr[elist.Count];

elist.CopyTo(es, 0);

.)

.

/*--*/

Name<out String s>

= name (. s = t.val; .)

.

/*--*/

MulOp<out String op>

= (. op = "*"; .)

(’*’

| ’/’ (. op = "/"; .)

).

/*--*/

Term<out Expr e> (. Expr e2; String op; .)

= PowFactor<out e>

91

{ MulOp<out op>

PowFactor<out e2> (. e = new FunCall(op, new Expr[] { e, e2 }); .)

}.

/*--*/

Spreadsheet (. Expr e; double d; .)

= (’=’ Expr<out e> (. this.cell = new Formula(workbook, e); .)

| textcell (. this.cell = new TextCell(t.val.Substring(1)); .)

| Number<out d> (. this.cell = new NumberCell(d); .)

| string (. this.cell = new TextCell(t.val.Substring(1)); .)

).

END Spreadsheet.

92

A.4 Overhead of doing RTCG

A.4.1 The general power function in C#

Example 14 A C# version of the general xy function

public int pow(int x, int y) {

int r = 1;

while(y > 0) {

if(y % 2 == 0) {

x = x * x;

y = y / 2;

} else {

r = r * x;

y = y - 1;

}

}

return r;

}

A.4.2 The general power function in IL

Example 15 A IL version of the general power function xy

// Assume that first local variable is double x

// Assume that second local variable is int y

Label elsepart = ilg.DefineLabel();

Label looptest = ilg.DefineLabel();

Label loopstart = ilg.DefineLabel();

// Declare and initilize r to 1 as a local variable

LocalBuilder r = ilg.DeclareLocal(typeof(double));

ilg.Emit(OpCodes.Ldc_R8, 1.0);

ilg.Emit(OpCodes.Stloc, r);

// Jump to the test of the while loop exit condition

ilg.Emit(OpCodes.Br_S, looptest);

// y % 2 == 0?

ilg.MarkLabel(loopstart);

ilg.Emit(OpCodes.Ldarg, yarg);

ilg.Emit(OpCodes.Ldc_I4_2);

ilg.Emit(OpCodes.Rem);

93

ilg.Emit(OpCodes.Ldc_I4_0);

ilg.Emit(OpCodes.Ceq);

ilg.Emit(OpCodes.Brfalse_S, elsepart);

// Yes, x = x * x

ilg.Emit(OpCodes.Ldarg, xarg);

ilg.Emit(OpCodes.Ldarg, xarg);

ilg.Emit(OpCodes.Mul);

ilg.Emit(OpCodes.Starg_S, xarg);

// y = y / 2

ilg.Emit(OpCodes.Ldarg, yarg);

ilg.Emit(OpCodes.Ldc_I4_2);

ilg.Emit(OpCodes.Div);

ilg.Emit(OpCodes.Starg_S, yarg);

ilg.Emit(OpCodes.Br_S, looptest);

// No, r = r * x

ilg.MarkLabel(elsepart);

ilg.Emit(OpCodes.Ldloc, r);

ilg.Emit(OpCodes.Ldarg, xarg);

ilg.Emit(OpCodes.Mul);

ilg.Emit(OpCodes.Stloc, r);

// y = y - 1

ilg.Emit(OpCodes.Ldarg, yarg);

ilg.Emit(OpCodes.Ldc_I4_1);

ilg.Emit(OpCodes.Sub);

ilg.Emit(OpCodes.Starg_S, yarg);

// y > 0?

ilg.MarkLabel(looptest);

ilg.Emit(OpCodes.Ldarg, yarg);

ilg.Emit(OpCodes.Ldc_I4_0);

ilg.Emit(OpCodes.Cgt);

ilg.Emit(OpCodes.Brtrue_S, loopstart);

// return r;

ilg.Emit(OpCodes.Ldloc, r);

ilg.Emit(OpCodes.Ret);

94

A.5 IL Examples

This section will present the IL code generated when going through the optimization

levels for a couple of expressions:

A.5.1 Level 2 for A1=5+6+7

IL_0000: /* 02 | */ ldarg.0

IL_0001: /* 7b | 04000002 */ ldfld TinyCalc.NumberValue value/TinyCalc.NumberConst

IL_0006: /* 75 | 02000003 */ isinst TinyCalc.NumberValue

IL_000b: /* 0c | */ stloc.2

IL_000c: /* 02 | */ ldarg.0

IL_000d: /* 7b | 04000004 */ ldfld TinyCalc.NumberValue value/TinyCalc.NumberConst

IL_0012: /* 75 | 02000005 */ isinst TinyCalc.NumberValue

IL_0017: /* 0d | */ stloc.3

IL_0018: /* 08 | */ ldloc.2

IL_0019: /* 39 | 0000001A */ brfalse IL_0038

IL_001e: /* 09 | */ ldloc.3

IL_001f: /* 39 | 00000014 */ brfalse IL_0038

IL_0024: /* 08 | */ ldloc.2

IL_0025: /* 7b | 04000006 */ ldfld Double value/TinyCalc.NumberValue

IL_002a: /* 09 | */ ldloc.3

IL_002b: /* 7b | 04000007 */ ldfld Double value/TinyCalc.NumberValue

IL_0030: /* 58 | */ add

IL_0031: /* 73 | 06000008 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_0036: /* 2b | 0A */ br.s IL_0042

IL_0038: /* 72 | 70000009 */ ldstr "ARGTYPE"

IL_003d: /* 73 | 0600000A */ newobj Void .ctor(System.String)/TinyCalc.ErrorValue

IL_0042: /* 75 | 0200000B */ isinst TinyCalc.NumberValue

IL_0047: /* 0a | */ stloc.0

IL_0048: /* 02 | */ ldarg.0

IL_0049: /* 7b | 0400000C */ ldfld TinyCalc.NumberValue value/TinyCalc.NumberConst

IL_004e: /* 75 | 0200000D */ isinst TinyCalc.NumberValue

IL_0053: /* 0b | */ stloc.1

IL_0054: /* 06 | */ ldloc.0

IL_0055: /* 39 | 0000001A */ brfalse IL_0074

IL_005a: /* 07 | */ ldloc.1

IL_005b: /* 39 | 00000014 */ brfalse IL_0074

IL_0060: /* 06 | */ ldloc.0

IL_0061: /* 7b | 0400000E */ ldfld Double value/TinyCalc.NumberValue

IL_0066: /* 07 | */ ldloc.1

IL_0067: /* 7b | 0400000F */ ldfld Double value/TinyCalc.NumberValue

IL_006c: /* 58 | */ add

IL_006d: /* 73 | 06000010 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_0072: /* 2b | 0A */ br.s IL_007e

IL_0074: /* 72 | 70000011 */ ldstr "ARGTYPE"

IL_0079: /* 73 | 06000012 */ newobj Void .ctor(System.String)/TinyCalc.ErrorValue

IL_007e: /* 2a | */ ret

95

A.5.2 Level 3 for A1=5+6+7

IL_0000: /* 02 | */ ldarg.0

IL_0001: /* 7b | 04000002 */ ldfld TinyCalc.NumberValue value/TinyCalc.NumberConst

IL_0006: /* 0c | */ stloc.2

IL_0007: /* 02 | */ ldarg.0

IL_0008: /* 7b | 04000003 */ ldfld TinyCalc.NumberValue value/TinyCalc.NumberConst

IL_000d: /* 0d | */ stloc.3

IL_000e: /* 08 | */ ldloc.2

IL_000f: /* 7b | 04000004 */ ldfld Double value/TinyCalc.NumberValue

IL_0014: /* 09 | */ ldloc.3

IL_0015: /* 7b | 04000005 */ ldfld Double value/TinyCalc.NumberValue

IL_001a: /* 58 | */ add

IL_001b: /* 73 | 06000006 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_0020: /* 0a | */ stloc.0

IL_0021: /* 02 | */ ldarg.0

IL_0022: /* 7b | 04000007 */ ldfld TinyCalc.NumberValue value/TinyCalc.NumberConst

IL_0027: /* 0b | */ stloc.1

IL_0028: /* 06 | */ ldloc.0

IL_0029: /* 7b | 04000008 */ ldfld Double value/TinyCalc.NumberValue

IL_002e: /* 07 | */ ldloc.1

IL_002f: /* 7b | 04000009 */ ldfld Double value/TinyCalc.NumberValue

IL_0034: /* 58 | */ add

IL_0035: /* 73 | 0600000A */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_003a: /* 2a | */ ret

A.5.3 Level 4 for A1=5+6+7

IL_0000: /* 02 | */ ldarg.0

IL_0001: /* 7b | 04000002 */ ldfld TinyCalc.NumberValue value/TinyCalc.NumberConst

IL_0006: /* 13 | 04 */ stloc.s V_4

IL_0008: /* 02 | */ ldarg.0

IL_0009: /* 7b | 04000003 */ ldfld TinyCalc.NumberValue value/TinyCalc.NumberConst

IL_000e: /* 13 | 05 */ stloc.s V_5

IL_0010: /* 11 | 04 */ ldloc.s V_4

IL_0012: /* 7b | 04000004 */ ldfld Double value/TinyCalc.NumberValue

IL_0017: /* 11 | 05 */ ldloc.s V_5

IL_0019: /* 7b | 04000005 */ ldfld Double value/TinyCalc.NumberValue

IL_001e: /* 58 | */ add

IL_001f: /* 0c | */ stloc.2

IL_0020: /* 02 | */ ldarg.0

IL_0021: /* 7b | 04000006 */ ldfld TinyCalc.NumberValue value/TinyCalc.NumberConst

IL_0026: /* 0b | */ stloc.1

IL_0027: /* 08 | */ ldloc.2

IL_0028: /* 07 | */ ldloc.1

IL_0029: /* 7b | 04000007 */ ldfld Double value/TinyCalc.NumberValue

IL_002e: /* 58 | */ add

IL_002f: /* 73 | 06000008 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_0034: /* 2a | */ ret

96

A.5.4 Level 5 for A1=5+6+7

IL_0000: /* 23 | 5 */ ldc.r8 5

IL_0009: /* 13 | 06 */ stloc.s V_6

IL_000b: /* 23 | 6 */ ldc.r8 6

IL_0014: /* 13 | 07 */ stloc.s V_7

IL_0016: /* 11 | 06 */ ldloc.s V_6

IL_0018: /* 11 | 07 */ ldloc.s V_7

IL_001a: /* 58 | */ add

IL_001b: /* 0c | */ stloc.2

IL_001c: /* 23 | 7 */ ldc.r8 7

IL_0025: /* 0d | */ stloc.3

IL_0026: /* 08 | */ ldloc.2

IL_0027: /* 09 | */ ldloc.3

IL_0028: /* 58 | */ add

IL_0029: /* 73 | 06000002 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_002e: /* 2a | */ ret

A.5.5 Level 6 for A1=5+6+7

IL_0000: /* 23 | 5 */ ldc.r8 5

IL_0009: /* 23 | 6 */ ldc.r8 6

IL_0012: /* 58 | */ add

IL_0013: /* 23 | 7 */ ldc.r8 7

IL_001c: /* 58 | */ add

IL_001d: /* 73 | 06000002 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_0022: /* 2a | */ ret

A.5.6 Level 7 for A1=5+6+7

IL_0000: /* 23 | 5 */ ldc.r8 5

IL_0009: /* 13 | 06 */ stloc.s V_6

IL_000b: /* 23 | 6 */ ldc.r8 6

IL_0014: /* 13 | 07 */ stloc.s V_7

IL_0016: /* 11 | 06 */ ldloc.s V_6

IL_0018: /* 11 | 07 */ ldloc.s V_7

IL_001a: /* 58 | */ add

IL_001b: /* 0c | */ stloc.2

IL_001c: /* 23 | 7 */ ldc.r8 7

IL_0025: /* 0d | */ stloc.3

IL_0026: /* 08 | */ ldloc.2

IL_0027: /* 09 | */ ldloc.3

IL_0028: /* 58 | */ add

IL_0029: /* 73 | 06000002 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_002e: /* 2a | */ ret

97

A.5.7 Level 2-3 for A1=A2+A3+A4

IL_0000: /* 20 | 00000000 */ ldc.i4 0

IL_0005: /* 0e | 02 */ ldarg.s V_2

IL_0007: /* 58 | */ add

IL_0008: /* 13 | 06 */ stloc.s V_6

IL_000a: /* 20 | 00000001 */ ldc.i4 1

IL_000f: /* 0e | 03 */ ldarg.s V_3

IL_0011: /* 58 | */ add

IL_0012: /* 13 | 07 */ stloc.s V_7

IL_0014: /* 0e | 01 */ ldarg.s V_1

IL_0016: /* 11 | 06 */ ldloc.s V_6

IL_0018: /* 11 | 07 */ ldloc.s V_7

IL_001a: /* 6f | 0A000002 */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_001f: /* 13 | 04 */ stloc.s V_4

IL_0021: /* 11 | 04 */ ldloc.s V_4

IL_0023: /* 2c | 0F */ brfalse.s IL_0034

IL_0025: /* 11 | 04 */ ldloc.s V_4

IL_0027: /* 0e | 01 */ ldarg.s V_1

IL_0029: /* 11 | 06 */ ldloc.s V_6

IL_002b: /* 11 | 07 */ ldloc.s V_7

IL_002d: /* 6f | 0A000003 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_0032: /* 2b | 01 */ br.s IL_0035

IL_0034: /* 14 | */ ldnull

IL_0035: /* 13 | 05 */ stloc.s V_5

IL_0037: /* 11 | 05 */ ldloc.s V_5

IL_0039: /* 75 | 02000004 */ isinst TinyCalc.NumberValue

IL_003e: /* 0c | */ stloc.2

IL_003f: /* 20 | 00000000 */ ldc.i4 0

IL_0044: /* 0e | 02 */ ldarg.s V_2

IL_0046: /* 58 | */ add

IL_0047: /* 13 | 0A */ stloc.s V_10

IL_0049: /* 20 | 00000002 */ ldc.i4 2

IL_004e: /* 0e | 03 */ ldarg.s V_3

IL_0050: /* 58 | */ add

IL_0051: /* 13 | 0B */ stloc.s V_11

IL_0053: /* 0e | 01 */ ldarg.s V_1

IL_0055: /* 11 | 0A */ ldloc.s V_10

IL_0057: /* 11 | 0B */ ldloc.s V_11

IL_0059: /* 6f | 0A000005 */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_005e: /* 13 | 08 */ stloc.s V_8

IL_0060: /* 11 | 08 */ ldloc.s V_8

IL_0062: /* 2c | 0F */ brfalse.s IL_0073

IL_0064: /* 11 | 08 */ ldloc.s V_8

IL_0066: /* 0e | 01 */ ldarg.s V_1

IL_0068: /* 11 | 0A */ ldloc.s V_10

IL_006a: /* 11 | 0B */ ldloc.s V_11

IL_006c: /* 6f | 0A000006 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_0071: /* 2b | 01 */ br.s IL_0074

IL_0073: /* 14 | */ ldnull

IL_0074: /* 13 | 09 */ stloc.s V_9

IL_0076: /* 11 | 09 */ ldloc.s V_9

IL_0078: /* 75 | 02000007 */ isinst TinyCalc.NumberValue

98

IL_007d: /* 0d | */ stloc.3

IL_007e: /* 08 | */ ldloc.2

IL_007f: /* 39 | 0000001A */ brfalse IL_009e

IL_0084: /* 09 | */ ldloc.3

IL_0085: /* 39 | 00000014 */ brfalse IL_009e

IL_008a: /* 08 | */ ldloc.2

IL_008b: /* 7b | 04000008 */ ldfld Double value/TinyCalc.NumberValue

IL_0090: /* 09 | */ ldloc.3

IL_0091: /* 7b | 04000009 */ ldfld Double value/TinyCalc.NumberValue

IL_0096: /* 58 | */ add

IL_0097: /* 73 | 0600000A */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_009c: /* 2b | 0A */ br.s IL_00a8

IL_009e: /* 72 | 7000000B */ ldstr "ARGTYPE"

IL_00a3: /* 73 | 0600000C */ newobj Void .ctor(System.String)/TinyCalc.ErrorValue

IL_00a8: /* 75 | 0200000D */ isinst TinyCalc.NumberValue

IL_00ad: /* 0a | */ stloc.0

IL_00ae: /* 20 | 00000000 */ ldc.i4 0

IL_00b3: /* 0e | 02 */ ldarg.s V_2

IL_00b5: /* 58 | */ add

IL_00b6: /* 13 | 0E */ stloc.s V_14

IL_00b8: /* 20 | 00000003 */ ldc.i4 3

IL_00bd: /* 0e | 03 */ ldarg.s V_3

IL_00bf: /* 58 | */ add

IL_00c0: /* 13 | 0F */ stloc.s V_15

IL_00c2: /* 0e | 01 */ ldarg.s V_1

IL_00c4: /* 11 | 0E */ ldloc.s V_14

IL_00c6: /* 11 | 0F */ ldloc.s V_15

IL_00c8: /* 6f | 0A00000E */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_00cd: /* 13 | 0C */ stloc.s V_12

IL_00cf: /* 11 | 0C */ ldloc.s V_12

IL_00d1: /* 2c | 0F */ brfalse.s IL_00e2

IL_00d3: /* 11 | 0C */ ldloc.s V_12

IL_00d5: /* 0e | 01 */ ldarg.s V_1

IL_00d7: /* 11 | 0E */ ldloc.s V_14

IL_00d9: /* 11 | 0F */ ldloc.s V_15

IL_00db: /* 6f | 0A00000F */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_00e0: /* 2b | 01 */ br.s IL_00e3

IL_00e2: /* 14 | */ ldnull

IL_00e3: /* 13 | 0D */ stloc.s V_13

IL_00e5: /* 11 | 0D */ ldloc.s V_13

IL_00e7: /* 75 | 02000010 */ isinst TinyCalc.NumberValue

IL_00ec: /* 0b | */ stloc.1

IL_00ed: /* 06 | */ ldloc.0

IL_00ee: /* 39 | 0000001A */ brfalse IL_010d

IL_00f3: /* 07 | */ ldloc.1

IL_00f4: /* 39 | 00000014 */ brfalse IL_010d

IL_00f9: /* 06 | */ ldloc.0

IL_00fa: /* 7b | 04000011 */ ldfld Double value/TinyCalc.NumberValue

IL_00ff: /* 07 | */ ldloc.1

IL_0100: /* 7b | 04000012 */ ldfld Double value/TinyCalc.NumberValue

IL_0105: /* 58 | */ add

IL_0106: /* 73 | 06000013 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

99

IL_010b: /* 2b | 0A */ br.s IL_0117

IL_010d: /* 72 | 70000014 */ ldstr "ARGTYPE"

IL_0112: /* 73 | 06000015 */ newobj Void .ctor(System.String)/TinyCalc.ErrorValue

IL_0117: /* 2a | */ ret

A.5.8 Level 4-5 for A1=A2+A3+A4

IL_0000: /* 20 | 00000000 */ ldc.i4 0

IL_0005: /* 0e | 02 */ ldarg.s V_2

IL_0007: /* 58 | */ add

IL_0008: /* 13 | 0A */ stloc.s V_10

IL_000a: /* 20 | 00000001 */ ldc.i4 1

IL_000f: /* 0e | 03 */ ldarg.s V_3

IL_0011: /* 58 | */ add

IL_0012: /* 13 | 0B */ stloc.s V_11

IL_0014: /* 0e | 01 */ ldarg.s V_1

IL_0016: /* 11 | 0A */ ldloc.s V_10

IL_0018: /* 11 | 0B */ ldloc.s V_11

IL_001a: /* 6f | 0A000002 */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_001f: /* 13 | 08 */ stloc.s V_8

IL_0021: /* 11 | 08 */ ldloc.s V_8

IL_0023: /* 2c | 0F */ brfalse.s IL_0034

IL_0025: /* 11 | 08 */ ldloc.s V_8

IL_0027: /* 0e | 01 */ ldarg.s V_1

IL_0029: /* 11 | 0A */ ldloc.s V_10

IL_002b: /* 11 | 0B */ ldloc.s V_11

IL_002d: /* 6f | 0A000003 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_0032: /* 2b | 01 */ br.s IL_0035

IL_0034: /* 14 | */ ldnull

IL_0035: /* 13 | 09 */ stloc.s V_9

IL_0037: /* 11 | 09 */ ldloc.s V_9

IL_0039: /* 75 | 02000004 */ isinst TinyCalc.NumberValue

IL_003e: /* 13 | 04 */ stloc.s V_4

IL_0040: /* 20 | 00000000 */ ldc.i4 0

IL_0045: /* 0e | 02 */ ldarg.s V_2

IL_0047: /* 58 | */ add

IL_0048: /* 13 | 0E */ stloc.s V_14

IL_004a: /* 20 | 00000002 */ ldc.i4 2

IL_004f: /* 0e | 03 */ ldarg.s V_3

IL_0051: /* 58 | */ add

IL_0052: /* 13 | 0F */ stloc.s V_15

IL_0054: /* 0e | 01 */ ldarg.s V_1

IL_0056: /* 11 | 0E */ ldloc.s V_14

IL_0058: /* 11 | 0F */ ldloc.s V_15

IL_005a: /* 6f | 0A000005 */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_005f: /* 13 | 0C */ stloc.s V_12

IL_0061: /* 11 | 0C */ ldloc.s V_12

IL_0063: /* 2c | 0F */ brfalse.s IL_0074

IL_0065: /* 11 | 0C */ ldloc.s V_12

IL_0067: /* 0e | 01 */ ldarg.s V_1

IL_0069: /* 11 | 0E */ ldloc.s V_14

IL_006b: /* 11 | 0F */ ldloc.s V_15

100

IL_006d: /* 6f | 0A000006 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_0072: /* 2b | 01 */ br.s IL_0075

IL_0074: /* 14 | */ ldnull

IL_0075: /* 13 | 0D */ stloc.s V_13

IL_0077: /* 11 | 0D */ ldloc.s V_13

IL_0079: /* 75 | 02000007 */ isinst TinyCalc.NumberValue

IL_007e: /* 13 | 05 */ stloc.s V_5

IL_0080: /* 11 | 04 */ ldloc.s V_4

IL_0082: /* 39 | 0000001D */ brfalse IL_00a4

IL_0087: /* 11 | 05 */ ldloc.s V_5

IL_0089: /* 39 | 00000016 */ brfalse IL_00a4

IL_008e: /* 11 | 04 */ ldloc.s V_4

IL_0090: /* 7b | 04000008 */ ldfld Double value/TinyCalc.NumberValue

IL_0095: /* 11 | 05 */ ldloc.s V_5

IL_0097: /* 7b | 04000009 */ ldfld Double value/TinyCalc.NumberValue

IL_009c: /* 58 | */ add

IL_009d: /* 73 | 0600000A */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_00a2: /* 2b | 0A */ br.s IL_00ae

IL_00a4: /* 72 | 7000000B */ ldstr "ARGTYPE"

IL_00a9: /* 73 | 0600000C */ newobj Void .ctor(System.String)/TinyCalc.ErrorValue

IL_00ae: /* 75 | 0200000D */ isinst TinyCalc.NumberValue

IL_00b3: /* 0a | */ stloc.0

IL_00b4: /* 20 | 00000000 */ ldc.i4 0

IL_00b9: /* 0e | 02 */ ldarg.s V_2

IL_00bb: /* 58 | */ add

IL_00bc: /* 13 | 12 */ stloc.s V_18

IL_00be: /* 20 | 00000003 */ ldc.i4 3

IL_00c3: /* 0e | 03 */ ldarg.s V_3

IL_00c5: /* 58 | */ add

IL_00c6: /* 13 | 13 */ stloc.s V_19

IL_00c8: /* 0e | 01 */ ldarg.s V_1

IL_00ca: /* 11 | 12 */ ldloc.s V_18

IL_00cc: /* 11 | 13 */ ldloc.s V_19

IL_00ce: /* 6f | 0A00000E */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_00d3: /* 13 | 10 */ stloc.s V_16

IL_00d5: /* 11 | 10 */ ldloc.s V_16

IL_00d7: /* 2c | 0F */ brfalse.s IL_00e8

IL_00d9: /* 11 | 10 */ ldloc.s V_16

IL_00db: /* 0e | 01 */ ldarg.s V_1

IL_00dd: /* 11 | 12 */ ldloc.s V_18

IL_00df: /* 11 | 13 */ ldloc.s V_19

IL_00e1: /* 6f | 0A00000F */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_00e6: /* 2b | 01 */ br.s IL_00e9

IL_00e8: /* 14 | */ ldnull

IL_00e9: /* 13 | 11 */ stloc.s V_17

IL_00eb: /* 11 | 11 */ ldloc.s V_17

IL_00ed: /* 75 | 02000010 */ isinst TinyCalc.NumberValue

IL_00f2: /* 0b | */ stloc.1

IL_00f3: /* 06 | */ ldloc.0

IL_00f4: /* 39 | 0000001A */ brfalse IL_0113

IL_00f9: /* 07 | */ ldloc.1

IL_00fa: /* 39 | 00000014 */ brfalse IL_0113

101

IL_00ff: /* 06 | */ ldloc.0

IL_0100: /* 7b | 04000011 */ ldfld Double value/TinyCalc.NumberValue

IL_0105: /* 07 | */ ldloc.1

IL_0106: /* 7b | 04000012 */ ldfld Double value/TinyCalc.NumberValue

IL_010b: /* 58 | */ add

IL_010c: /* 73 | 06000013 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_0111: /* 2b | 0A */ br.s IL_011d

IL_0113: /* 72 | 70000014 */ ldstr "ARGTYPE"

IL_0118: /* 73 | 06000015 */ newobj Void .ctor(System.String)/TinyCalc.ErrorValue

IL_011d: /* 2a | */ ret

A.5.9 Level 6 for A1=A2+A3+A4

IL_0000: /* 20 | 00000000 */ ldc.i4 0

IL_0005: /* 0e | 02 */ ldarg.s V_2

IL_0007: /* 58 | */ add

IL_0008: /* 13 | 06 */ stloc.s V_6

IL_000a: /* 20 | 00000001 */ ldc.i4 1

IL_000f: /* 0e | 03 */ ldarg.s V_3

IL_0011: /* 58 | */ add

IL_0012: /* 13 | 07 */ stloc.s V_7

IL_0014: /* 0e | 01 */ ldarg.s V_1

IL_0016: /* 11 | 06 */ ldloc.s V_6

IL_0018: /* 11 | 07 */ ldloc.s V_7

IL_001a: /* 6f | 0A000002 */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_001f: /* 13 | 04 */ stloc.s V_4

IL_0021: /* 11 | 04 */ ldloc.s V_4

IL_0023: /* 2c | 0F */ brfalse.s IL_0034

IL_0025: /* 11 | 04 */ ldloc.s V_4

IL_0027: /* 0e | 01 */ ldarg.s V_1

IL_0029: /* 11 | 06 */ ldloc.s V_6

IL_002b: /* 11 | 07 */ ldloc.s V_7

IL_002d: /* 6f | 0A000003 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_0032: /* 2b | 01 */ br.s IL_0035

IL_0034: /* 14 | */ ldnull

IL_0035: /* 13 | 05 */ stloc.s V_5

IL_0037: /* 11 | 05 */ ldloc.s V_5

IL_0039: /* 75 | 02000004 */ isinst TinyCalc.NumberValue

IL_003e: /* 0c | */ stloc.2

IL_003f: /* 08 | */ ldloc.2

IL_0040: /* 39 | 0000005A */ brfalse IL_009f

IL_0045: /* 08 | */ ldloc.2

IL_0046: /* 7b | 04000005 */ ldfld Double value/TinyCalc.NumberValue

IL_004b: /* 20 | 00000000 */ ldc.i4 0

IL_0050: /* 0e | 02 */ ldarg.s V_2

IL_0052: /* 58 | */ add

IL_0053: /* 13 | 0A */ stloc.s V_10

IL_0055: /* 20 | 00000002 */ ldc.i4 2

IL_005a: /* 0e | 03 */ ldarg.s V_3

IL_005c: /* 58 | */ add

IL_005d: /* 13 | 0B */ stloc.s V_11

IL_005f: /* 0e | 01 */ ldarg.s V_1

102

IL_0061: /* 11 | 0A */ ldloc.s V_10

IL_0063: /* 11 | 0B */ ldloc.s V_11

IL_0065: /* 6f | 0A000006 */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_006a: /* 13 | 08 */ stloc.s V_8

IL_006c: /* 11 | 08 */ ldloc.s V_8

IL_006e: /* 2c | 0F */ brfalse.s IL_007f

IL_0070: /* 11 | 08 */ ldloc.s V_8

IL_0072: /* 0e | 01 */ ldarg.s V_1

IL_0074: /* 11 | 0A */ ldloc.s V_10

IL_0076: /* 11 | 0B */ ldloc.s V_11

IL_0078: /* 6f | 0A000007 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_007d: /* 2b | 01 */ br.s IL_0080

IL_007f: /* 14 | */ ldnull

IL_0080: /* 13 | 09 */ stloc.s V_9

IL_0082: /* 11 | 09 */ ldloc.s V_9

IL_0084: /* 75 | 02000008 */ isinst TinyCalc.NumberValue

IL_0089: /* 0d | */ stloc.3

IL_008a: /* 09 | */ ldloc.3

IL_008b: /* 39 | 0000000E */ brfalse IL_009e

IL_0090: /* 09 | */ ldloc.3

IL_0091: /* 7b | 04000009 */ ldfld Double value/TinyCalc.NumberValue

IL_0096: /* 58 | */ add

IL_0097: /* 73 | 0600000A */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_009c: /* 2b | 0B */ br.s IL_00a9

IL_009e: /* 26 | */ pop

IL_009f: /* 72 | 7000000B */ ldstr "ARGTYPE"

IL_00a4: /* 73 | 0600000C */ newobj Void .ctor(System.String)/TinyCalc.ErrorValue

IL_00a9: /* 75 | 0200000D */ isinst TinyCalc.NumberValue

IL_00ae: /* 0a | */ stloc.0

IL_00af: /* 06 | */ ldloc.0

IL_00b0: /* 39 | 0000005A */ brfalse IL_010f

IL_00b5: /* 06 | */ ldloc.0

IL_00b6: /* 7b | 0400000E */ ldfld Double value/TinyCalc.NumberValue

IL_00bb: /* 20 | 00000000 */ ldc.i4 0

IL_00c0: /* 0e | 02 */ ldarg.s V_2

IL_00c2: /* 58 | */ add

IL_00c3: /* 13 | 0E */ stloc.s V_14

IL_00c5: /* 20 | 00000003 */ ldc.i4 3

IL_00ca: /* 0e | 03 */ ldarg.s V_3

IL_00cc: /* 58 | */ add

IL_00cd: /* 13 | 0F */ stloc.s V_15

IL_00cf: /* 0e | 01 */ ldarg.s V_1

IL_00d1: /* 11 | 0E */ ldloc.s V_14

IL_00d3: /* 11 | 0F */ ldloc.s V_15

IL_00d5: /* 6f | 0A00000F */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_00da: /* 13 | 0C */ stloc.s V_12

IL_00dc: /* 11 | 0C */ ldloc.s V_12

IL_00de: /* 2c | 0F */ brfalse.s IL_00ef

IL_00e0: /* 11 | 0C */ ldloc.s V_12

IL_00e2: /* 0e | 01 */ ldarg.s V_1

IL_00e4: /* 11 | 0E */ ldloc.s V_14

IL_00e6: /* 11 | 0F */ ldloc.s V_15

103

IL_00e8: /* 6f | 0A000010 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_00ed: /* 2b | 01 */ br.s IL_00f0

IL_00ef: /* 14 | */ ldnull

IL_00f0: /* 13 | 0D */ stloc.s V_13

IL_00f2: /* 11 | 0D */ ldloc.s V_13

IL_00f4: /* 75 | 02000011 */ isinst TinyCalc.NumberValue

IL_00f9: /* 0b | */ stloc.1

IL_00fa: /* 07 | */ ldloc.1

IL_00fb: /* 39 | 0000000E */ brfalse IL_010e

IL_0100: /* 07 | */ ldloc.1

IL_0101: /* 7b | 04000012 */ ldfld Double value/TinyCalc.NumberValue

IL_0106: /* 58 | */ add

IL_0107: /* 73 | 06000013 */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_010c: /* 2b | 0B */ br.s IL_0119

IL_010e: /* 26 | */ pop

IL_010f: /* 72 | 70000014 */ ldstr "ARGTYPE"

IL_0114: /* 73 | 06000015 */ newobj Void .ctor(System.String)/TinyCalc.ErrorValue

IL_0119: /* 2a | */ ret

A.5.10 Level 7 for A1=A2+A3+A4

IL_0000: /* 20 | 00000000 */ ldc.i4 0

IL_0005: /* 0e | 02 */ ldarg.s V_2

IL_0007: /* 58 | */ add

IL_0008: /* 13 | 0A */ stloc.s V_10

IL_000a: /* 20 | 00000001 */ ldc.i4 1

IL_000f: /* 0e | 03 */ ldarg.s V_3

IL_0011: /* 58 | */ add

IL_0012: /* 13 | 0B */ stloc.s V_11

IL_0014: /* 0e | 01 */ ldarg.s V_1

IL_0016: /* 11 | 0A */ ldloc.s V_10

IL_0018: /* 11 | 0B */ ldloc.s V_11

IL_001a: /* 6f | 0A000002 */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_001f: /* 13 | 08 */ stloc.s V_8

IL_0021: /* 11 | 08 */ ldloc.s V_8

IL_0023: /* 2c | 0F */ brfalse.s IL_0034

IL_0025: /* 11 | 08 */ ldloc.s V_8

IL_0027: /* 0e | 01 */ ldarg.s V_1

IL_0029: /* 11 | 0A */ ldloc.s V_10

IL_002b: /* 11 | 0B */ ldloc.s V_11

IL_002d: /* 6f | 0A000003 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_0032: /* 2b | 01 */ br.s IL_0035

IL_0034: /* 14 | */ ldnull

IL_0035: /* 13 | 09 */ stloc.s V_9

IL_0037: /* 11 | 09 */ ldloc.s V_9

IL_0039: /* 7b | 04000004 */ ldfld Double value/TinyCalc.NumberValue

IL_003e: /* 13 | 06 */ stloc.s V_6

IL_0040: /* 20 | 00000000 */ ldc.i4 0

IL_0045: /* 0e | 02 */ ldarg.s V_2

IL_0047: /* 58 | */ add

IL_0048: /* 13 | 0E */ stloc.s V_14

IL_004a: /* 20 | 00000002 */ ldc.i4 2

104

IL_004f: /* 0e | 03 */ ldarg.s V_3

IL_0051: /* 58 | */ add

IL_0052: /* 13 | 0F */ stloc.s V_15

IL_0054: /* 0e | 01 */ ldarg.s V_1

IL_0056: /* 11 | 0E */ ldloc.s V_14

IL_0058: /* 11 | 0F */ ldloc.s V_15

IL_005a: /* 6f | 0A000005 */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_005f: /* 13 | 0C */ stloc.s V_12

IL_0061: /* 11 | 0C */ ldloc.s V_12

IL_0063: /* 2c | 0F */ brfalse.s IL_0074

IL_0065: /* 11 | 0C */ ldloc.s V_12

IL_0067: /* 0e | 01 */ ldarg.s V_1

IL_0069: /* 11 | 0E */ ldloc.s V_14

IL_006b: /* 11 | 0F */ ldloc.s V_15

IL_006d: /* 6f | 0A000006 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_0072: /* 2b | 01 */ br.s IL_0075

IL_0074: /* 14 | */ ldnull

IL_0075: /* 13 | 0D */ stloc.s V_13

IL_0077: /* 11 | 0D */ ldloc.s V_13

IL_0079: /* 7b | 04000007 */ ldfld Double value/TinyCalc.NumberValue

IL_007e: /* 13 | 07 */ stloc.s V_7

IL_0080: /* 11 | 06 */ ldloc.s V_6

IL_0082: /* 11 | 07 */ ldloc.s V_7

IL_0084: /* 58 | */ add

IL_0085: /* 0c | */ stloc.2

IL_0086: /* 20 | 00000000 */ ldc.i4 0

IL_008b: /* 0e | 02 */ ldarg.s V_2

IL_008d: /* 58 | */ add

IL_008e: /* 13 | 12 */ stloc.s V_18

IL_0090: /* 20 | 00000003 */ ldc.i4 3

IL_0095: /* 0e | 03 */ ldarg.s V_3

IL_0097: /* 58 | */ add

IL_0098: /* 13 | 13 */ stloc.s V_19

IL_009a: /* 0e | 01 */ ldarg.s V_1

IL_009c: /* 11 | 12 */ ldloc.s V_18

IL_009e: /* 11 | 13 */ ldloc.s V_19

IL_00a0: /* 6f | 0A000008 */ callvirt TinyCalc.Cell get_Item(Int32, Int32)/TinyCalc.Sheet

IL_00a5: /* 13 | 10 */ stloc.s V_16

IL_00a7: /* 11 | 10 */ ldloc.s V_16

IL_00a9: /* 2c | 0F */ brfalse.s IL_00ba

IL_00ab: /* 11 | 10 */ ldloc.s V_16

IL_00ad: /* 0e | 01 */ ldarg.s V_1

IL_00af: /* 11 | 12 */ ldloc.s V_18

IL_00b1: /* 11 | 13 */ ldloc.s V_19

IL_00b3: /* 6f | 0A000009 */ callvirt TinyCalc.Value Eval(TinyCalc.Sheet, Int32, Int32)/TinyCalc.Cell

IL_00b8: /* 2b | 01 */ br.s IL_00bb

IL_00ba: /* 14 | */ ldnull

IL_00bb: /* 13 | 11 */ stloc.s V_17

IL_00bd: /* 11 | 11 */ ldloc.s V_17

IL_00bf: /* 7b | 0400000A */ ldfld Double value/TinyCalc.NumberValue

IL_00c4: /* 0d | */ stloc.3

IL_00c5: /* 08 | */ ldloc.2

105

IL_00c6: /* 09 | */ ldloc.3

IL_00c7: /* 58 | */ add

IL_00c8: /* 73 | 0600000B */ newobj Void .ctor(Double)/TinyCalc.NumberValue

IL_00cd: /* 2a | */ ret

106

A.6 TinyScript - API and examples

A.6.1 API, classes and methods

Classes

Workbook Class that represents workbooks.

Sheet Class that represents a sheet.

WorkbookIO Class that can perform IO on a WorkBook.

FormatOptions Class that controls the way formulas are shown.

GeneratorOptions Class that controls how recalculations are per-

formed.

WorkbookIO methods

Workbook Read(String

filename)

Reads the spreadsheet referenced by

filename if possible. Returns the

corresponding Workbook if possible.

Returns Null if it can not be done.

Spreadsheet formats accepted can

be found in section 4.6.

Boolean Write(Workbook wb,

String filename)

Writes the spreadsheet wb to

filename. The format is deduced

by the filename extension if possi-

ble. Otherwise the default format

XMLSS is used. Returns true upon

success. False upon failure.

Editing spreadsheets

Cell Sheet.CutCell(int col,

int row

Cuts the cell identified by col and

row out of the sheet.

Cell Sheet.CopyCell(int col,

int row

Copies the cell identified by col and

row.

Sheet.DelCell(int col, int

row

removes the cell identified by col

and row if any exists.

Sheet.PasteCell(Cell cell,

int col, int row

Inserts cell at col and row in the

sheet.

107

Constructing spreadsheets

Workbook wb = new Workbook() Creates an empty Workbook.

Sheet sheet = new

Sheet(Workbook wb, String

sheetname, int cols, int

rows)

Creates an empty Sheet called

sheetname in the workbook wb con-

taining cols columns and rows

rows.

Sheet sheet = new

Sheet(Workbook wb, int cols,

int rows)

Creates an empty Sheet and names

it using deduction on the already ex-

isting sheets. If none exists the de-

fault name ”Sheet1” is used.

Sheet Workbook[String

sheetname]

Returns the Sheet called sheetname

if it exists. Otherwise it throws and

exception of type SheetName.

Sheet.AddCell(String formula,

int col, int row)

Inserts a formula in the sheet

at column col and row row if a

valid formula can be parsed from

formula. Otherwise it throws an ex-

ception of type Exception.

Recalculations

GeneratorOptions Class that controls how code is

generated/evaluated, see section for

futher details.

GeneratorOptions.level Method that sets the optimiza-

tion level of the generated/evaluated

code.

Workbook.Recompute() The Recompute Method recomputes

the current workbook at the level re-

quired by the global GeneratorOp-

tion class.

108

A.6.2 First Script and its output

Example 16 First test script displaying how TinyScript is used

using System;

using System.Collections.Generic;

using System.Text;

namespace TinyScript {

static class program {

static void Main(String[] args) {

TinyCalc.WorkBookIO workbookio = new TinyCalc.WorkBookIO();

TinyCalc.Workbook wb = new TinyCalc.Workbook();

TinyCalc.Sheet sheet1 = new TinyCalc.Sheet(wb, "Sheet1", 7, 7);

TinyCalc.Sheet sheet2 = new TinyCalc.Sheet(wb, "Sheet2", 7, 7);

// FormatOptions are used to control how things are displayed in ShowXXX-Methods.

TinyCalc.FormatOptions fo = new TinyCalc.FormatOptions();

sheet1.AddCell("=5",0,0); //A1

sheet1.AddCell("=7",0,1); //A2

sheet2.AddCell("8", 0, 1); //A2

sheet1.AddCell("=A1+Sheet2!A$2", 0, 2); //A3 = 5+8 = 13

TinyCalc.Cell cell = sheet1.CopyCell(0,2); //A3 = A1+Sheet2!A2

sheet1.PasteCell(cell, 0,3); //A4 = A2+Sheet2!A2

sheet1.PasteCell(cell, 0,4); //A5

sheet1.PasteCell(cell, 0,5); //A6

sheet1.PasteCell(cell, 0,6); //A7

wb.Recompute();

Console.WriteLine("Value of Sheet1.A1: {0}", sheet1.ShowValue(0, 0));

Console.WriteLine("Value of Sheet1.A2: {0}", sheet1.ShowValue(0, 1));

Console.WriteLine("Value of Sheet2.A2: {0}", sheet2.ShowValue(0, 1));

Console.WriteLine("Value of Sheet1.{0}: {1}", sheet1.Show(0, 2, fo), sheet1.ShowValue(0, 2));

Console.WriteLine("Value of Sheet1.{0}: {1}", sheet1.Show(0, 5, fo), sheet1.ShowValue(0, 5));

}

}

}

Example 17 The output of running the first testscript with the command: TinyCalc -f FirstTestScript.cs

Script built.

Main method found (with arguments).

Running script.

No arguments given, providing dummy

Value of Sheet1.A1: 5

Value of Sheet1.A2: 7

Value of Sheet2.A2: 8

Value of Sheet1.=A1+Sheet2!A2: 13

Value of Sheet1.=A5+Sheet2!A6: #ERR: ARGTYPE

Script terminated

109

A.6.3 Second Script and its output

Example 18 Second test script displaying how TinyScript is used

using System;

using System.Collections.Generic;

using System.Text;

using System.Diagnostics; // Stopwatch

namespace TinyScript {

static class program {

static void Main(String[] args) {

TinyCalc.WorkBookIO workbookio = new TinyCalc.WorkBookIO();

TinyCalc.Workbook wb1 = new TinyCalc.Workbook();

TinyCalc.Sheet sheet1 = new TinyCalc.Sheet(wb1, "Sheet1", 7, 7);

TinyCalc.Sheet sheet2 = new TinyCalc.Sheet(wb1, "Sheet2", 7, 7);

// FormatOptions are used to control how things are displayed in ShowXXX-Methods.

TinyCalc.FormatOptions fo = new TinyCalc.FormatOptions();

sheet1.AddCell("=5",0,0);

sheet1.AddCell("=7",0,1);

sheet2.AddCell("8", 0, 1);

sheet1.AddCell("=A1+Sheet2!A2", 0, 2);

TinyCalc.Cell cell = sheet1.CopyCell(0,2);

sheet1.PasteCell(cell, 0,3);

sheet1.PasteCell(cell, 0,4);

sheet1.PasteCell(cell, 0,5);

sheet1.PasteCell(cell, 0,6);

Boolean saved = workbookio.Write(wb1, "c:/tmptest.xml");

if(!saved) {

Console.WriteLine("Could not save workbook");

} else {

TinyCalc.Workbook wb2 = workbookio.Read("c:/tmptest.xml");

go.level = TinyCalc.GeneratorLevel.Level0;

wb1.Recompute(go);

Stopwatch watch = new Stopwatch();

watch.Reset();

watch.Start();

go.level = TinyCalc.GeneratorLevel.Level1;

wb2.Recompute(go);

watch.Stop();

Console.WriteLine("Took {0} ms to Recompute at Level1", watch.ElapsedMilliseconds.ToString());

Console.WriteLine("Value of wb1.Sheet1.A1: {0}", sheet1.ShowValue(0, 0));

Console.WriteLine("Value of wb1.Sheet1.A2: {0}", sheet1.ShowValue(0, 1));

110

Console.WriteLine("Value of wb1.Sheet2.A2: {0}", sheet2.ShowValue(0, 1));

Console.WriteLine("Value of wb1.Sheet1.A3: {0}: {1}", sheet1.Show(0, 2, fo),

sheet1.ShowValue(0, 2));

Console.WriteLine("Value of wb1.Sheet1.A7: {0}: {1}", sheet1.Show(0, 6, fo),

sheet1.ShowValue(0, 6));

TinyCalc.Sheet wb2sheet1 = wb2["Sheet1"];

TinyCalc.Sheet wb2sheet2 = wb2["Sheet2"];

Console.WriteLine("Value of wb2.Sheet1.A1: {0}", wb2sheet1.ShowValue(0, 0));

Console.WriteLine("Value of wb2.Sheet1.A2: {0}", wb2sheet1.ShowValue(0, 1));

Console.WriteLine("Value of wb2.Sheet2.A2: {0}", wb2sheet2.ShowValue(0, 1));

Console.WriteLine("Value of wb2.Sheet1.A3: {0}: {1}", wb2sheet1.Show(0, 2, fo),

wb2sheet1.ShowValue(0, 2));

Console.WriteLine("Value of wb2.Sheet1.A7: {0}: {1}", wb2sheet1.Show(0, 6, fo),

wb2sheet1.ShowValue(0, 6));

if(wb2sheet1.ShowValue(0, 2).Equals(sheet1.ShowValue(0, 2)) &&

wb2sheet1.ShowValue(0, 6).Equals(sheet1.ShowValue(0, 6)))

{

Console.WriteLine("Comparison: OK");

} else {

Console.WriteLine("Comparison: failed");

}

}

}

}

}

Example 19 The output of running the first testscript with the command: TinyCalc -f SecondTestScript.cs

Script built.

Main method found (with arguments).

Running script.

No arguments given, providing dummy

Took 43 ms to Recompute at Level1

Value of wb1.Sheet1.A1: 5

Value of wb1.Sheet1.A2: 7

Value of wb1.Sheet2.A2: 8

Value of wb1.Sheet1.A3: =A1+Sheet2!A2: 13

Value of wb1.Sheet1.A7: =A5+Sheet2!A6: #ERR: ARGTYPE

Value of wb2.Sheet1.A1: 5

Value of wb2.Sheet1.A2: 7

Value of wb2.Sheet2.A2: 8

Value of wb2.Sheet1.A3: =A1+Sheet2!A2: 13

Value of wb2.Sheet1.A7: =A5+Sheet2!A6: #ERR: ARGTYPE

Comparison: OK

Script terminated

111

A.7 Test Examples

Examples of selected regression tests can be seen below.

//

// Tests expressions.

//

// Follows this format (not implemented as grammar, need to learn

// what the C# String API can acomplish!):

//

// Test = Formulas ’%’ Results [’%’ Options]

// Formulas = Formula {’@’ Formula}

// Results = Result {’@’ Result}

// Options = Option {’@’ Option}

//

// Formula = Cell ’=’ formula expression

// Result = Cell ’=’ Expected string value

// | Cell ’=’ Exception(String)

//

// Option = "skip" ’=’ "Level0".."Level7"

// | "cols" ’=’ Integer

// | "rows" ’=’ Integer

// | "numberofsheets" ’=’ Integer

// | "startlevel" ’=’ "Level0".."Level7"

//

// NB All skip, cols, rows... options can be substituted with

// globalskip, globalcols, globalrows, which makes the options

// global from that point onwards.

//

// Comments can appear with // and # in this file

// Empty lines are allowed too

//

// Thomas S. Iversen, 2006.

// *************** Addition

A1=5%A1=5

A1=5@A2=6@A3=A1+A2%A3=11

A1=5+6%A1=11

A1=5@A2=6@A3=7@A4=A1+A2+A3%A4=18

A1=5+6+7%A1=18

A1=5.5%A1=5.5

A1=5.5@A2=6.6@A3=A1+A2%A3=12.1

A1=5.5+6.6%A1=12.1

A1=5.5@A2=6@A3=A1+A2%A3=11.5

A1=5.5+6%A1=11.5

A1=2+-2%A1=0

A1=2+IF()%A1=#ERR: ARGTYPE

A1=2+"Thomas"%A1=#ERR: ARGTYPE

A2=5@A3=6@A1=2+A2:A3%A1=#ERR: ARGTYPE

// *************** Multiplication

A1=5@A2=6@A3=A1*A2%A3=30

A1=5*6%A1=30

A1=5.6@A2=7.8@A3=A1*A2%A3=43.68

A1=5.6*7.8%A1=43.68

A1=5.6@A2=1@A3=A1*A2%A3=5.6

A1=5.6*1%A1=5.6

A1=5.6@A2=0@A3=A1*A2%A3=0

A1=5.6*0%A1=0

A1=2*IF()%A1=#ERR: ARGTYPE

A1=2*"Thomas"%A1=#ERR: ARGTYPE

A2=5@A3=6@A1=2*A2:A3%A1=#ERR: ARGTYPE

112

// *************** Subtraction

A1=5@A2=6@A3=A1-A2%A3=-1

A1=6@A2=5@A3=A1-A2%A3=1

A1=-5@A2=-6@A3=A1-A2%A3=1

A1=6@A2=-5@A3=A1-A2%A3=11

A1=-6@A2=5@A3=A1-A2%A3=-11

A1=6@A2=0@A3=A1-A2%A3=6

A1=6.5@A2=5.6@A3=A1-A2%A3=0.9

A1=2--2%A1=4

A1=2-IF()%A1=#ERR: ARGTYPE

A1=2-"Thomas"%A1=#ERR: ARGTYPE

A2=5@A3=6@A1=2-A2:A3%A1=#ERR: ARGTYPE

// *************** Division

A1=5@A2=1@A3=A1/A2%A3=5

A1=5@A2=5@A3=A1/A2%A3=1

A1=5@A2=0@A3=A1/A2%A3=Infinity

A1=5@A2=0.1@A3=A1/A2%A3=50

A1=5@A2=10@A3=A1/A2%A3=0.5

A1=5.5@A2=5.5@A3=A1/A2%A3=1

A1=5.5@A2=55@A3=A1/A2%A3=0.1

A1=5.5@A2=1@A3=A1/A2%A3=5.5

A1=5.5@A2=-1@A3=A1/A2%A3=-5.5

A1=-5.5@A2=1@A3=A1/A2%A3=-5.5

A1=-5.5@A2=10@A3=A1/A2%A3=-0.55

A1=-5.5@A2=0.1@A3=A1/A2%A3=-55

A1=-5.5@A2=0@A3=A1/A2%A3=-Infinity

A1=2/IF()%A1=#ERR: ARGTYPE

A1=2/"Thomas"%A1=#ERR: ARGTYPE

A2=5@A3=6@A1=2/A2:A3%A1=#ERR: ARGTYPE

// *************** String concatenation

A1="Thomas"@A2="Maibritt"@A3=A1&A2%A3=ThomasMaibritt

A1="Thomas"@A2=5@A3=A1&A2%A3=#ERR: ARGTYPE%skip=Level7

A1="Thomas"@A3=A1&A2%A3=#ERR: ARGTYPE%skip=Level7

A1="Thomas"@A2="Maibritt"@A3="Mathias"@A4=A1&A2&A3%A4=ThomasMaibrittMathias

A1="Thomas"&"Maibritt"%A1=ThomasMaibritt

A1="Thomas"&5%A1=#ERR: ARGTYPE

A1=2&IF()%A1=#ERR: ARGTYPE

A2=5@A3=6@A1=2&A2:A3%A1=#ERR: ARGTYPE

113

A.8 TinyBench - API and examples

This appendix will briefly describe the XML file format used for TinyBench and

show and example of how TinyBench are used from a TinyScript script. TinyBench

exports a single class called Benchmark. This class has the following API:

Benchmark methods

public Benchmark(String

title, String author)

Constructs a Benchmark class.

The benchmarks are denoted title

and performed by author. Dates

and hardware information are col-

lected automatically by the Bench-

mark class.

XmlElement AddDataSet(String

name, String units)

Adds a DataSet to the benchmark

identified by name. Measurements

are done in units units.

XmlElement AddData(XmlElement

xmldataset, String name)

Adds data identified by name to a

DataSet

XmlElement

AddSubData(XmlElement

xmldata, String name, String

units, int numberOfRuns)

Adds subdata to data. Data are

identified by name, measured in

units and contains numberOfRuns

subdataset on which an average time

are computed.

void AddRun(XmlElement

xmlsubdata, int runNumber,

String runData)

Adds data from a run to a SubData

section.

Boolean Save(String filename) Saves the benchmarkdata to

filename. Returns true on success

and false on error.

An example of using the Benchmark class in a TinyScript:

Example 20 Example of using TinyBench in a TinyScript

Benchmark benchmark = new Benchmark("My benchmark", "Thomas S. Iversen");

XmlElement dataset = benchmark.AddDataSet("Evaluation time", "ms");

GeneratorOptions.UseFormulaSharing = true;

for (GeneratorLevel level = GeneratorLevel.Level0; level <= GeneratorLevel.Level7; level++)

{

// Skip Level1

114

if (level == GeneratorLevel.Level1)

continue;

GeneratorOptions.Level = level;

XmlElement data = benchmark.AddData(dataset, level.ToString());

XmlElement subdata1 = benchmark.AddSubData(data, "Evaluation time", "ms", runs);

for (int run = 1; run <= runs; run++)

{

watch.Reset();

watch.Start();

wb.Recompute();

watch.Stop();

benchmark.AddRun(subdata1, run, watch.ElapsedMilliseconds.ToString());

}

}

benchmark.Save("c:/mybenchmark.xml");

This will produce a mybenchmark.xml file containing (from which the XML format

should be easily deductable):

Example 21 Example output of using TinyBench in a TinyScript

<?xml version="1.0"?>

<Root>

<MetaData>

<Title>Taylorexpansion of exp(0.5), no cellreferences</Title>

<Author>Thomas S. Iversen</Author>

<Date>10-06-2006 20:41:21</Date>

<OperatingSystem>Microsoft Windows NT 5.0.2195 Service Pack 4</OperatingSystem>

<MemoryInstalled Units="MB">768</MemoryInstalled>

<CPU>Intel(R) Pentium(R) M processor 1.50GHz</CPU>

<CurrentClockSpeed Units="MHz">600</CurrentClockSpeed>

<MaxClockSpeed Units="MHz">1493</MaxClockSpeed>

</MetaData>

<DataSet Name="Evaluation time" Units="ms">

<Data Name="Level0">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">10308</Run>

<Run RunNumber="2">10523</Run>

<Run RunNumber="3">10051</Run>

</SubData>

</Data>

<Data Name="Level2">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">7521</Run>

<Run RunNumber="2">7332</Run>

<Run RunNumber="3">7809</Run>

</SubData>

</Data>

115

<Data Name="Level3">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">5367</Run>

<Run RunNumber="2">5729</Run>

<Run RunNumber="3">5352</Run>

</SubData>

</Data>

<Data Name="Level4">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">712</Run>

<Run RunNumber="2">878</Run>

<Run RunNumber="3">777</Run>

</SubData>

</Data>

<Data Name="Level5">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">578</Run>

<Run RunNumber="2">633</Run>

<Run RunNumber="3">675</Run>

</SubData>

</Data>

<Data Name="Level6">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">183</Run>

<Run RunNumber="2">292</Run>

<Run RunNumber="3">176</Run>

</SubData>

</Data>

<Data Name="Level7">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">567</Run>

<Run RunNumber="2">661</Run>

<Run RunNumber="3">649</Run>

</SubData>

</Data>

</DataSet>

</Root>

A TinyBench created .xml file can be turned into a ploticus plotfile by using

the utility TinyBench2ploticus written for this sole purpose. A ploticus plotfile can

then be turned into an actual image file containing an chart. This can ofcourse be

scripted:

Example 22 Example a script, executing a Benchmark and generating a chart

REM Very very simple batch script to help me

REM generate benchmarks and pictures automaticly

REM

REM Thomas S. Iversen 2006-06-11

set filename=TaylorNoReferences

116

REM Generate new benchmark data?

if not "%1"=="redobenchmark" goto skipbenchmark

TinyCalc -f="%filename%.cs" -a="%filename%.xml"

:skipbenchmark

REM Generate ploticus plot script

TinyBench2ploticus "%filename%.xml" "hbars.ploticus.template.txt" %filename%.ploticus %filename%-3party-addons.xml

REM Generate gif picture

pl -gif %filename%.ploticus

del %filename%.gif

ren out %filename%.gif

REM Generate eps file.

pl -eps %filename%.ploticus

del %filename%.eps

ren out %filename%.eps

117

A.9 Benchmarks - An example

To save paper only one benchmark and one result file is included in the thesis. The

rest can be found on the CD-ROM in the Benchmark directory and subdirectories.

A.9.1 Long reference chains

Example 23 The long reference chains benchmark

// Generate a long series of references

using System;

using System.Collections.Generic;

using System.Text;

using System.Xml;

using System.Diagnostics; // Stopwatch

namespace TinyCalc {

static class program {

static void Main(String[] args)

{

String filename = null;

if (args != null && args.Length > 0)

{

if (args.Length > 1)

{

Console.WriteLine("Only one argument is allowed (filename for the XML output");

return;

}

else

{

filename = args[0];

}

}

Stopwatch watch = new Stopwatch();

String title = "LongReferenceChains";

String author = "Thomas S. Iversen";

// Number of Instances: 12288 * 2 = 24576

int rows = 12288; int cols = 2;

int startcol = 0;

int runs = 3;

GeneratorLevel startlevel = GeneratorLevel.Level0;

GeneratorLevel endlevel = GeneratorLevel.Level7;

Workbook wb = new Workbook();

Sheet sheet = new Sheet(wb, cols + startcol, rows);

118

// A1;

sheet.AddCell("0.5", 0, 0);

// A2

sheet.AddCell("=A1*1.00001", 0, 1);

// A3..A<rows>

Cell cellA2 = sheet.CopyCell(0, 1);

for (int row = 2; row < rows; row++)

{

sheet.PasteCell(cellA2, 0, row);

}

// B1;

sheet.AddCell("=SUM(A$1:A1)", 1, 0);

// B2 .. B<rows>

Cell cellB1 = sheet.CopyCell(1, 0);

for (int row = 1; row < rows; row++)

{

sheet.PasteCell(cellB1, 1, row);

}

Benchmark benchmark = new Benchmark(title, author);

XmlElement dataset = benchmark.AddDataSet("Evaluation time", "ms");

GeneratorOptions.UseFormulaSharing = true;

for (GeneratorLevel level = startlevel; level <= endlevel; level++)

{

// Skip Level1

if (level == GeneratorLevel.Level1)

continue;

GeneratorOptions.Level = level;

XmlElement data = benchmark.AddData(dataset, "TinyCalc SUM -- " + level.ToString());

XmlElement subdata1 = benchmark.AddSubData(data, "Evaluation time", "ms", runs);

for (int run = 1; run <= runs; run++)

{

watch.Reset();

watch.Start();

wb.Recompute();

watch.Stop();

benchmark.AddRun(subdata1, run, watch.ElapsedMilliseconds.ToString());

}

Console.WriteLine("Value: {0}", sheet.ShowValue(1, 0));

Console.WriteLine("Value: {0}", sheet.ShowValue(0, 1));

119

Console.WriteLine("Value: {0}", sheet.ShowValue(0, rows-1));

Console.WriteLine("Value: {0}", sheet.ShowValue(1, rows-1));

}

if (filename != null)

{

benchmark.Save(filename);

}

}

}

}

Example 24 Output of the long reference chains benchmark

<?xml version="1.0"?>

<Root>

<MetaData>

<Title>LongReferenceChains</Title>

<Author>Thomas S. Iversen</Author>

<Date>10-07-2006 12:34:39</Date>

<OperatingSystem>Microsoft Windows NT 5.0.2195 Service Pack 4</OperatingSystem>

<MemoryInstalled Units="MB">768</MemoryInstalled>

<CPU>Intel(R) Pentium(R) M processor 1.50GHz</CPU>

<CurrentClockSpeed Units="MHz">600</CurrentClockSpeed>

<MaxClockSpeed Units="MHz">1493</MaxClockSpeed>

</MetaData>

<DataSet Name="Evaluation time" Units="ms">

<Data Name="TinyCalc SUM -- Level0">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">57879</Run>

<Run RunNumber="2">59064</Run>

<Run RunNumber="3">58950</Run>

</SubData>

</Data>

<Data Name="TinyCalc SUM -- Level2">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">56773</Run>

<Run RunNumber="2">56132</Run>

<Run RunNumber="3">56328</Run>

</SubData>

</Data>

<Data Name="TinyCalc SUM -- Level3">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">55821</Run>

<Run RunNumber="2">55351</Run>

<Run RunNumber="3">54732</Run>

</SubData>

</Data>

<Data Name="TinyCalc SUM -- Level4">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">54754</Run>

120

<Run RunNumber="2">55020</Run>

<Run RunNumber="3">54640</Run>

</SubData>

</Data>

<Data Name="TinyCalc SUM -- Level5">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">54594</Run>

<Run RunNumber="2">54457</Run>

<Run RunNumber="3">54997</Run>

</SubData>

</Data>

<Data Name="TinyCalc SUM -- Level6">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">54642</Run>

<Run RunNumber="2">54969</Run>

<Run RunNumber="3">54511</Run>

</SubData>

</Data>

<Data Name="TinyCalc SUM -- Level7">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="3">

<Run RunNumber="1">54640</Run>

<Run RunNumber="2">54426</Run>

<Run RunNumber="3">54922</Run>

</SubData>

</Data>

</DataSet>

</Root>

Example 25 Third party add-on for the long reference chains benchmark

<?xml version="1.0"?>

<Root>

<MetaData>

<Title>Taylorexpansion of exp(A1), Both enumerator (A1) and denominator (factorial) are referenced</Title>

<Author>Thomas S. Iversen</Author>

<Date>07-06-2006 20:41:00</Date>

<OperatingSystem>Microsoft Windows NT 5.0.2195 Service Pack 4</OperatingSystem>

<MemoryInstalled Units="MB">768</MemoryInstalled>

<CPU>Intel(R) Pentium(R) M processor 1.50GHz</CPU>

<CurrentClockSpeed Units="MHz">600</CurrentClockSpeed>

<MaxClockSpeed Units="MHz">1493</MaxClockSpeed>

</MetaData>

<DataSet Name="Evaluation time" Units="ms">

<Data Name="Excel (FullCalculationRebuild)">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="1">

<Run RunNumber="1">323054</Run>

</SubData>

</Data>

<Data Name="Excel (FullCalculation)">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="1">

<Run RunNumber="1">4285</Run>

</SubData>

121

</Data>

<Data Name="Gnumeric">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="1">

<Run RunNumber="1">107000</Run>

</SubData>

</Data>

<Data Name="OOCalc">

<SubData Name="Evaluation time" Units="ms" NumberOfRuns="1">

<Run RunNumber="1">17000</Run>

</SubData>

</Data>

</DataSet>

</Root>

122

A.10 Class diagrams

A.10.1 Classes representing Expressions

A.10.2 Classes used for Values.

A.10.3 Classes representing Cells

123

A.10.4 Classes used for type deduction

A.10.5 IOFormat classes

124

A.10.6 The rest

125

A.11 Structure of the files on the CD-ROM

The thesis is structured into three top folders: TinyCalc, thesis and RegressionTests.

An overview over the structure of the files/directories in the TinyCalc directory on

the CD-ROM is given below.
TinyCalc/ Toplevel directory containing the TinyCalc application

AppProperties/AppProperties.cs Contains code for loading and saving permanent application properties.

DOM/ Document Object Model for Workbooks. Core of TinyCalc.

WorkBook.cs Implementation of workbooks

Value.cs Implementation of values

Adjusted.cs

Expr.cs Implementation of expressions.

Cell.cs Implementation of cells

RARef.cs Implementation of references.

WorkbookMetaInfo.cs Implementation of meta information regarding workbooks.

Function.cs Implementation of spreadsheet functions.

Sheet.cs Implementation of Sheets.

CellAddr.cs Implementation of methods for obtaining cell addresses.

Coco/ Grammar files.

Spreadsheet.ATG COCO/R grammar for formula expressions.

Parser.cs COCO/R generated C# source for the parser.

Scanner.cs COCO/R generated C# source for the scanner.

Main/Program.cs Main entry point for TinyCalc.

XML Analysis Testsheets used for investigating the XMLSS, ODF and GNUMERIC spreadsheet formats.

IO/WorkBookIO.cs I/O Routines (XMLSS and GNUMERIC).

GUI/ Implementation of the Graphical User Interface

MyTabPage.cs TabPages used to display sheets. Derived from Forms.TabPages.

Form1.cs Main form.

OptionForm.cs Form used for changing persistent options in TinyCalc.

AboutBox1.cs AboutBox displaying who made TinyCalc possible.

Statistics/Statistics.cs Class used for collecting information about a workbook. Most notably how many (possible)
formulas that can be/are shared.

RTCG The generating extension implementing RTCG in TinyCalc

RTCGSetup/RTCG.cs Code for obtaining ILGenerators and collecting parameter information and setup code for
the DynamicMethod and Interface Method.

RTCGFunction.cs Spreadsheet functions implemented is ILAsm with and without RTCG.

RTCGAM.cs Abstract machine used for type analysis.

RTCGType.cs Type hierarchy used for type analysis.

RTCGDict.cs Sharing of formulas is implemented in this file using an generic Dictionary.

AppRuntimeOptions Options that can be changed at runtime in TinyCalc.

GeneratorOptions.cs Controls how the generator behaves. Holds the global generatorlevel.

FormatOptions.cs Controls how formulas are shown.

RARefView.cs Controls how references are shown: A1, R1C1 or internal.

TinyCalc/Types Types used in TinyCalc.

ExceptionTypes.cs Exception types used in TinyCalc.

DelegateTypes.cs Delegate types used in TinyCalc.

EnumTypes.cs Enumeration types used in TinyCalc.

CLI/ Command Line Interface for TinyCalc.

Arguments.cs Simple parsing of command line parameters.

Cli.cs Class implementing the command line interface.

TinyCalc/OverheadBenchmark/Scripts Scripts performing the overhead benchmark.

RTCG Overhead.bat Batch file used for executing the benchmark.

RTCG Overhead.cs C# benchmark file.

TinyScript/TinyScript.cs Implementation of TinyScript. Consists mainly of getting the script compiled and executed.

BenchmarkUtils Class used for generating XML Benchmark data.

MachineInfo.cs Obtains information on the hardware the benchmark is run.

Benchmark.cs API for doing benchmarks.

Benchmarks/Scripts Benchmarks run in this thesis. A Readme file on the actual CD-ROM will give an overview.

CollectPictures.bat Used for collecting pictures from the benchmarks.

EPStothesis.bat Copies the EPS files to the thesis/ directory

dobenchmarks.bat Performs all the benchmarks.

126

A.12 Source code

The source code for TinyCalc has been put on the CD-ROM in the TinyCalc direc-

tory. A PDF document with a “ready to print” version of the source can also be

found on the CD-ROM. In the directory called Readymade PDF files. Furthermore

it can be found on the web at:

http://www.dina.kvl.dk/~thomassi/thesis/

127

http://www.dina.kvl.dk/~thomassi/thesis/

	Contents
	List of Figures
	Foreword
	Background
	Thesis, goals and priorities
	Building a spreadsheet system
	Anatomy of spreadsheets
	Cell references
	Cell reference styles, A1 vs R1C1
	Updating references

	Implementing a spreadsheet system
	Features
	Equivalence of formulas
	Representing spreadsheets
	Recalculation times and strategies
	Structure of a workbook in TinyCalc
	Cell references
	Formula grammar

	Graphical User Interface
	Implementation
	Problems and notes

	Command line interface
	Support for scripts with TinyScript
	Loading and saving spreadsheets
	Test sheet for XML investigation
	Gnumeric Format used by Gnumeric
	XMLSS Format used by Excel
	ODF Format used by OOCalc 2.0
	Selection of format for TinyCalc
	Implementation

	Localization issues

	Augmenting spreadsheets with RTCG
	What is RTCG?
	Possibilities for RTCG in a spreadsheet
	RTCG Level 0 - Interpretation
	RTCG Level 1 - Distinct RTCG for subexpression
	RTCG Level 2 - Inlining
	RTCG Level 3 - Type check removal
	RTCG Level 4 - Avoid intermediate Value's
	RTCG Level 5 - Embed constants in IL code
	RTCG Level 6 - CLR calculation
	RTCG Level 7 - Speculative type deduction
	RTCG Level 8 - Value optimizations
	RTCG Level 9 - Function specialization

	Imposed limits on RTCG in TinyCalc
	Sharing of RTCG for formula expressions
	Implementing RTCG in TinyCalc
	Evaluation of call overhead of doing RTCG in .NET
	Thorough investigation of the interface method (.NET 1.1)
	Implementation Overview
	RTCGAM --- type analysis
	Generating Eval methods --- parameter differences.
	RTCGExprFieldInfo (parameters)

	Debugging, development aids and ILasm notes
	Conclusion on augmenting TinyCalc with RTCG

	Tests
	Testing the evaluation/RTCG engine
	Testing the additions to the grammar
	Testing the I/O methods
	Test conclusion

	Performance Evaluation
	Benchmark setup
	Taylor benchmarks
	Taylor benchmark --- no references
	Taylor benchmark --- Argument is referenced
	Taylor benchmark --- All references
	Taylor benchmark --- All references optimized

	Simple Math function
	Long reference chains
	Performance conclusion

	Evaluation
	Evaluation of the process
	Prior art
	Where to go from here

	Conclusion
	References
	Appendix
	About this thesis
	Recalculation loop expressed as pseudocode
	BNF grammar for formula expressions in TinyCalc
	Overhead of doing RTCG
	The general power function in C#
	The general power function in IL

	IL Examples
	Level 2 for A1=5+6+7
	Level 3 for A1=5+6+7
	Level 4 for A1=5+6+7
	Level 5 for A1=5+6+7
	Level 6 for A1=5+6+7
	Level 7 for A1=5+6+7
	Level 2-3 for A1=A2+A3+A4
	Level 4-5 for A1=A2+A3+A4
	Level 6 for A1=A2+A3+A4
	Level 7 for A1=A2+A3+A4

	TinyScript - API and examples
	API, classes and methods
	First Script and its output
	Second Script and its output

	Test Examples
	TinyBench - API and examples
	Benchmarks - An example
	Long reference chains

	Class diagrams
	Classes representing Expressions
	Classes used for Values.
	Classes representing Cells
	Classes used for type deduction
	IOFormat classes
	The rest

	Structure of the files on the CD-ROM
	Source code

