
c© 2004 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced inany form by any electronic or mechanical
means (including photocopying, recording, or informationstorage and retrieval) without permission in
writing from the publisher.

This book was set in Times by the authors using LATEX.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Sestoft, Peter.
C# precisely / Peter Sestoft and Henrik I. Hansen.
p. cm.

Includes bibliographic references and index.
ISBN 0-262-69317-8 (pbk.: alk. paper)
1. C# (Computer program language) I. Hansen, Henrik I. II. Title.
QA76.73.C154S47 2004
005.13′3—dc22
2004048288

10 9 8 7 6 5 4 3 2

viii Contents

23 Generic Types and Methods (C# 2.0) 144
23.1 Generics: Safety, Generality and Efficiency 144
23.2 Generic Types, Type Parameters, and Constructed Types. 144
23.3 Generic Classes 146
23.4 Constraints on Type Parameters 148
23.5 Generic Interfaces 150
23.6 How Can Type Parameters Be Used? 150
23.7 Generic Methods 152
23.8 Generic Delegate Types 154
23.9 Abbreviations for Constructed Types 154
23.10 Generic Struct Types 156
23.11 The Implementation of Generic Types and Methods 156

24 Generic Collections: Lists and Dictionaries (C# 2.0) 158
24.1 The ICollection<T> Interface 158
24.2 Enumerators and Enumerables 160
24.3 Comparables, Equatables, Comparers and EqualityComparers 162
24.4 The IList<T> Interface 164
24.5 The IDictionary<K,V> Interface 164
24.6 The List<T> Class 166
24.7 The Dictionary<K,V> Class 168
24.8 The KeyValuePair<K,V> Struct Type 168
24.9 The SortedDictionary<K,V> and SortedList<K,V> Classes 168
24.10 The Queue<T> Class 170
24.11 The Stack<T> Class 170

25 Namespaces 172
25.1 Theusing Directive . 172

26 Partial Type Declarations (C# 2.0) 174

27 Assertions and the Debug.Assert Method 176

28 Attributes 178
28.1 Some Predefined Attributes 178
28.2 Declaring and Using Custom Attributes 178

29 Main Differences Between C# and Java 180

30 References 182

Index 183

Preface

This book describes the programming language C# (pronounced “c sharp”), version 2.0. It is a quick
reference for the reader who has already learnt or is learning C# from a standard textbook and who wants
to know the language in more detail. It should be particularly useful for readers who know the Java
programming language and who want to learn C#.

C# is a class-based single-inheritance object-oriented programming language designed for the Com-
mon Language Runtime of Microsoft’s .Net platform, a managed execution environment with a typesafe
intermediate language and automatic memory management. Thus C# is similar to the Java programming
language in many respects, but it is different in almost all details. In general, C# favors programmer
convenience over language simplicity. It was designed by Anders Hejlsberg, Scott Wiltamuth and Peter
Golde from Microsoft Corporation.

C# includes many useful features not found in Java: struct types, operator overloading, reference pa-
rameters, rectangular multi-dimensional arrays, user-definable conversions, properties and indexers (styl-
ized methods) and delegates (methods as values), but omits Java’s inner classes. See section 29 for a
summary of the main differences.

C# may appear similar to C++, but its type safety is much better and its machine model is very different
because of managed execution. In particular, there is no need to write destructors and finalizers, nor to
aggressively copy objects or keep track of object ownership.

This book presents C# version 2.0 as used in Microsoft VisualStudio 2005, including generics, itera-
tors, anonymous methods and partial type declarations, butexcluding most of Microsoft’s .Net Framework
class libraries except threads, input-output, and genericcollection classes. The book does not cover un-
safe code, destructors, finalization, reflection, pre-processing directives (#define, #if, . . .) or details of
IEEE754 floating-point numbers.

General rules of the language are given on left-hand pages, and corresponding examples are shown
on the facing right-hand page for easy reference. All examples are fragments of legal C# programs,
available from<http://www.itu.dk/people/sestoft/csharpprecisely/>. For instance, you will find the code
for example 17 in fileExample17.cs.

This second printing has been updated for the November 2005 final release of Microsoft Visual Studio.

Acknowledgements: Thanks to a stay at Microsoft Research in Cambridge, England, we could exper-
iment with a very early version of Generic C#. Later, the .NetFramework Alpha Program provided an
implementation of all the new C# 2.0 features, and Ecma International provided C# standards documents.
Special thanks to Andrew Kennedy, Don Syme, Claudio Russo and Simon Peyton Jones for directly or
indirectly making this possible. The Mono project developers provided another neat C# compiler and
run-time environment, and rapid bug fixes. Thanks to Hans Dybkjær, Jørgen Steensgaard-Madsen, Jon
Jagger and Niels Peter Svenningsen for comments and suggestions on draft manuscripts, and to Carsten
Jørgensen, Lawrence Berg and Ken Friis Larsen for corrections to the published book. It was a pleasure to
work with Robert Prior, Valerie Geary and Deborah Cantor-Adams at The MIT Press. Thanks also to the
Royal Veterinary and Agricultural University, Denmark andthe IT University of Copenhagen, Denmark,
for their support.

ix

6 Data and Types

5 Data and Types

A typeis a set of data values and operations on them. Every variable, parameter, and field has a declared
type, every method has a declared return type, and so on. The compiler will infer a type for every expres-
sion based on this information. Thiscompile-time typedetermines which operations can be performed on
the value of the expression.

Types are used in declarations of local variables; in declarations of classes, interfaces, struct types,
and their members; in delegate types; in object and array creation expressions (sections 9 and 12.9); in
type cast expressions (section 12.18); and in instance testexpressions (section 12.11).

A type is either a value type (section 5.1) or a reference type(section 5.2).

5.1 Value Types and Simple Types

A value typeis either a simple type (this section), a struct type (section 14), or an enum type (section 16).
A variable of value type directly contains a value of that type, not just a reference to it. Assigning a value
of value type to a variable or field or array element of value type makes a copy of the value.

A simple typeis eitherbool or one of the numeric types. Anumerictype is a signed or unsigned
integer type, including the character type, or a floating-point type, or the fixed-point typedecimal which
is useful for exact calculations such as financial accounting. The tables opposite show the simple types,
some example constants, value range, kind, and size (in bytes). For escape sequences such as\u0000 in
character constants, see page 16. Integer constants may be written in decimal or hexadecimal notation:

Notation Base Distinction Example Integer Constants
Decimal 10 1234567890, 0127, -127
Hexadecimal 16 Leading0x 0x12ABCDEF, 0x7F, -0x7F

Two’s complement representation is used for the signed integer types (sbyte, short, int, andlong).
The integer types are exact. The floating-point types are inexact and follow theIEEE754 floating point
standard, with the number of significant digits indicated opposite.

For each simple type there is a predefined struct type (in the System namespace), also shown opposite.
The simple type is an alias for the struct type and therefore has members:

• int.Parse(String s) of typeint is the integer obtained by parsings; see example 1. It throws
ArgumentNullException ifs is null, FormatException ifs cannot be parsed as an integer, and
OverflowException if the parsed number cannot be represented as anint. All simple types have
similarParse methods. The floating-pointParse methods are culture sensitive; see section 7.2.

• The smallest and greatest possible values of each numeric type are represented by constant fields
MinValue andMaxValue, such asint.MinValue andint.MaxValue.

• The float anddouble types define several constants:double.Epsilon is the smallest number
of typedouble greater than zero,double.PositiveInfinity anddouble.NegativeInfinity
represent positive and negative infinity, anddouble.NaN is a double value that is not a number.
These values are determined by theIEEE754 standard.

• The decimal type defines the constantsMinusOne, Zero, andOne of type decimal along with
methods for computing with and converting numbers of typedecimal.

Data and Types 7

Example 7 Three Equivalent Declarations of an Integer Variable

using System;
...
int i1;
Int32 i2;
System.Int32 i3;

Simple Types: Constants, Default Value, and Range

Type Example Constants Default Value Range (MinValue. . .MaxValue)
bool true false false, true
char ’A’, ’\u0041’ ’\u0000’ ’\u0000’ . . .’\uFFFF’
sbyte -119 0 −128. . .127
byte 219 0 0. . .255
short -30319 0 −32768. . .32767
ushort 60319 0 0. . .65535
int -2111222319 0 −2147483648. . .2147483647
uint 4111222319 0 0. . .4294967295
long -411122319L 0 −9223372036854775808. . .9223372036854775807
ulong 411122319UL 0 0. . .18446744073709551615

float -1.99F, 3E8F 0.0 ±10−44
. . .±1038, 7 significant digits

double -1.99, 3E8 0.0 ±10−323
. . .±10308, 15–16 significant digits

decimal -1.99M 0.0 ±10−28
. . .±1028, 28–29 significant digits (*)

(*) May be changed to range±10−6143
. . .±106144 and 34 significant digits (IEEE754 decimal128).

Simple Types: Kind, Size, and Struct Name

Type Alias Kind Size Struct Type
bool logical 1 System.Boolean
char unsigned integer 2 System.Char
sbyte integer 1 System.SByte
byte unsigned integer 1 System.Byte
short integer 2 System.Int16
ushort unsigned integer 2 System.UInt16
int integer 4 System.Int32
uint unsigned integer 4 System.UInt32
long integer 8 System.Int64
ulong unsigned integer 8 System.UInt64
float floating-point 4 System.Single
double floating-point 8 System.Double
decimal fixed-point 16 System.Decimal

Whent is one of these types, thensizeof(t) is a compile-time constant expression whose value is Size.

30 Arrays

9.3 Class Array

All array types are derived from class Array, and the membersof an array type are those inherited from
class Array. Leta be a reference of array type,o an object of any type, andi, i1, . . . ,in integers. Then:

• a.Length of typeint is the length ofa, that is, the total number of elements ina, if a is a one-
dimensional or a rectangular multi-dimensional array, or the number of elements in the first dimen-
sion ofa, if a is a jagged array.

• a.Rank of typeint is the rank ofa; see sections 9 and 9.2.2.

• a.GetEnumerator() of type IEnumerator is a non-generic enumerator (section 24.2) for iterating
througha. This enables theforeach statement to iterate over an array; see section 13.6.2 and
example 37. Ifa is a one-dimensional array of typet[], one can get a type-safe generic enumerator
of type IEnumerator<t> by computing((IList<t>)a).GetEnumerator().

• a.GetLength(i) of typeint is the number of elements in dimensioni; see examples 24 and 36.

• a.SetValue(o, i1,..,in) of typevoid performs the same assignment asa[i1,...,in] = o
whena has rankn; anda.GetValue(i1,...,in) of type Object is the same asa[i1,...,in].
More precisely, ifa[i1,...,in] has reference type, thenGetValue returns the same reference;
otherwise it returns a boxed copy of the value ofa[i1,...,in].

• a.Equals(o) of typebool returns true ifa ando refer to the same array object, otherwise false.

Class Array provides static utility methods, some of which are listed below. These methods can be used on
the ordinary array typest[] which derive from class Array. The methods throw ArgumentNullException
if the given arraya is null, and throw RankException ifa is not one-dimensional.

• static int BinarySearch(Array a, Object k) searches the one-dimensional arraya for k
using binary search. Returns an indexi>=0 for which a[i].CompareTo(k) == 0, if any; other-
wise returnsi<0 such that~i would be the proper position fork. The arraya must be sorted, as by
Sort(a), or else the result is undefined; and its elements must implement IComparable.

• static int BinarySearch(Array a, Object k, IComparer cmp) works as above, but com-
pares array elements using the methodcmp.Compare; see section 24.3. The array must be sorted,
as bySort(a, cmp), or else the result is undefined.

• static void Reverse(Array a) reverses the contents of one-dimensional arraya.

• static void Reverse(Array a, int i, int n) reverses the contents ofa[i..(i+n-1)].

• static void Sort(Array a) sorts the one-dimensional arraya using quicksort, comparing array
elements using theirCompareTo method; see section 24.3. The array elements must implement
IComparable. The sort is not stable: elements that are equalmay be swapped.

• static void Sort(Array a, IComparer cmp) works as above, but compares array elements
using the methodcmp.Compare; see section 24.3.

• static void Sort(Array a, int i, int n) works as above but sortsa[i..(i+n-1)].

• static void Sort(Array a, int i, int n, IComparer cmp) sortsa[i..(i+n-1)] using
cmp.Compare.

Expressions 57

Expression Meaning Section Assoc’ty Argument(s) Result type
a[...] array access 9 t[], integer t
o[...] indexer access 12.17 object t
o.f field or property access 12.13, 12.16 object type off
C.f static field or property 12.13, 12.16 class/struct type off
o.M(...) method call 12.15 object return type ofM
C.M(...) static method call 12.15 class/struct return type ofM
new t[...] create array 9 type t[]
new t(...) create object/struct/delegate 12.9, 17 class/struct/delegate t
default(t) default value for typet 6.2 type t
sizeof(t) size in bytes 5.1 (simple) type int
typeof(t) type determination 12.19 type/void System.Type
checked(e) overflow checking 12.3 integer integer
unchecked(e) no overflow checking 12.3 integer integer
delegate ... anonymous method 12.20 delegate
x++ postincrement 12.2 numeric numeric
x-- postdecrement 12.2 numeric numeric
++x preincrement 12.2 numeric numeric
--x predecrement 12.2 numeric numeric
-x negation (minus sign) 12.2 right numeric int/long
~e bitwise complement 12.5 right integer (u)int/(u)long
!e logical negation 12.4 right bool bool
(t)e type cast 12.18 type, any t
e1 * e2 multiplication 12.2 left numeric, numeric numeric
e1 / e2 division 12.2 left numeric, numeric numeric
e1 % e2 remainder 12.2 left numeric, numeric numeric
e1 + e2 addition 12.2 left numeric, numeric numeric
e1 + e2 string concatenation 7 left String, any String
e1 + e2 string concatenation 7 left any, String String
e1 + e2 delegate combination 17 left delegate, delegate delegate
e1 - e2 subtraction 12.2 left numeric numeric
e1 - e2 delegate removal 17 left delegates delegate
e1 << e2 left shift 12.5 left integer,int (u)int/(u)long
e1 >> e2 right shift 12.5 left integer,int (u)int/(u)long
e1 < e2 less than 12.6 numeric bool
e1 <= e2 less than or equal to 12.6 numeric bool
e1 >= e2 greater than or equal to 12.6 numeric bool
e1 > e2 greater than 12.6 numeric bool
e is t instance test 12.11 any, type bool
e as t instance test and cast 12.12 any, type t
e1 == e2 equal 12.6 left compatible bool
e1 != e2 not equal 12.6 left compatible bool
e1 & e2 bitwise and 12.5 left integer, integer (u)int/(u)long
e1 & e2 logical strict and 12.4 left bool, bool bool
e1 ^ e2 bitwise exclusive-or 12.5 left integer, integer (u)int/(u)long
e1 ^ e2 logical strict exclusive-or 12.4 left bool, bool bool
e1 | e2 bitwise or 12.5 left integer (u)int/(u)long
e1 | e2 logical strict or 12.4 left bool bool
e1 && e2 logical and 12.4 left bool bool
e1 || e2 logical or 12.4 left bool bool
e1 ?? e2 null-coalescing 18 right nullable/reftype, any any
e1 ? e2 : e3 conditional 12.8 right bool, any, any any
x = e assignment 12.7 right e impl. conv. tox type ofx
x += e compound assignment 12.7 right compatible type ofx
x += e event assignment 10.17 right event, delegate void
x -= e event assignment 10.17 right event, delegate void

60 Expressions

12.5 Bitwise Operators and Shift Operators

The operators~ (bitwise complement) and& (bitwise and) and̂ (bitwise exclusive-or) and| (bitwise or)
may be used on operands of enum type or integer type. The operators work in parallel on all bits of the
operands and never cause overflow, not even in a checked context. The two’s complement representation
is used for signed integer types, so~n equals(-n)-1 and also equals(-1)^n.

The shift operators<< and>> shift the bits of the two’s complement representation of thefirst argu-
ment; they never cause overflow, not even in a checked context. The two operands are promoted (page 56)
separately, and the result type is the promotion type of the first argument.

Thus the shift operation is always performed on a 32-bit (int or uint) or a 64-bit (long or ulong)
value. In the former case, the length of the shift is between 0and 31 as determined by the 5 least significant
bits of the second argument; in the latter case, the length ofthe shift is between 0 and 63 as determined by
the 6 least significant bits of the second argument. This holds also when the second argument is negative:
the length of the shift is the non-negative number determined by the 5 or 6 least significant bits of its two’s
complement representation.

Thus the left shiftn<<s equalsn*2*2*...*2 where the number of multiplications is determined by
the 5 or 6 least significant bits ofs, according asn was promoted to a 32-bit value or to a 64-bit value.

For signed integer types, the operator>> performs right shift with sign-bit extension: the right shift
n>>s of a non-negativen equalsn/2/2/.../2 where the number of divisions is determined by the 5 or 6
least significant bits ofs. The right shift of a negativen equals~((~n)>>s). In other words, the low-order
s bits of n are discarded, the remaining bits are shifted right, and thehigh-order empty bit positions are
set to zero ifn is non-negative and set to one ifn is negative.

For unsigned integer types, the operator>> performs right shift with zero extension: the right shift
n>>s equalsn/2/2/.../2 where the number of divisions is determined by the 5 or 6 leastsignificant bits
of s. In other words, the low-order bits ofn are discarded, the remaining bits are shifted right, and the
high-order empty bit positions are set to zero.

See example 205 for clever and intricate use of bitwise operators. This may be efficient and good style
on a tiny embedded processor, but not in general programming.

12.6 Comparison Operators

Thecomparison operators== and!= require the operand types to becompatible: one must be implicitly
convertible to the other. Operand types that are generic type parameters must be constrained to be refer-
ence types (section 23.4), unless one operand isnull. Two values of simple type are equal (by==) if they
represent the same value after conversion. For instance, 10and 10.0 are equal. Two values of a reference
type that does not override the default implementation of the operators are equal (by==) if both arenull,
or both are references to the same object or array, created bythe same execution of thenew-operator.

Class String redefines the== and != operators so that they compare the characters in the strings.
Hence two stringss1 ands2 may be equal bys1==s2, yet be distinct objects and therefore unequal by
(Object)s1==(Object)s2; see example 15.

Values of struct type can be compared using== and!= only if the operators have been explicitly
defined for that struct type. The defaultEquals method (section 5.2) compares struct values field by field.

The operators< <= >= > can be used on numeric types (and on user-defined types; section 10.15).
They perform signed comparison on signed integer types, andunsigned comparison on unsigned ones.

98 Statements

13.9 The checked and unchecked Statements

An operation on integral numeric values may produce a resultthat is too large. In achecked context, run-
time integer overflow will throw an OverflowException, and compile-time integer overflow will produce
a compile-time error. In anunchecked context, both compile-time and run-time integer overflow will wrap
around (discard the most significant bits), not throw any exception nor produce a compile-time error.

A checked statement creates a checked context for ablock-statementand has the form

checked
block-statement

An unchecked statement creates an unchecked context for ablock-statementand has the form

unchecked
block-statement

In both cases, only arithmetic operations textually insidetheblock-statementare affected. Thus arithmetic
operations performed in methods called from theblock-statementare not affected, whereas arithmetic
operations in anonymous delegate expressions textually inside theblock-statementare affected. Checked
and unchecked statements are analogous to checked and unchecked expressions; see section 12.3.

13.10 The using Statement

The purpose of theusing statement is to ensure that a resource, such as a file handle ordatabase connec-
tion, is released as soon as possible after its use. Theusing statement may have the form

using (t res = initializer)
body

This declares variableres to have typet which must be implicitly convertible to IDisposable, initial-
izesres with the result of evaluating theinitializer expression, and executes thebody. Finally method
Dispose() is called onres, regardless of whetherbodyterminates normally, throws an exception, or exits
by return or break or continue or goto. Thebodymust be a statement but not a declaration statement
or a labeled statement. Variableres is read-only; its scope isbodywhere it cannot be assigned to, nor
used as a ref or out argument. Theusing statement is equivalent to this block statement:

{
t res = initializer;
try { body }
finally { if (res != null) ((IDisposable)res).Dispose(); }

}

The IDisposable interface from namespace System describesa single method:

• void Dispose() is called to close or release resources, such as files, streams or database connec-
tions, held by an object. Calling this method multiple timesmust not throw an exception; all calls
after the first one may just do nothing.

13.11 The lock Statement

Thelock statement is described in section 20.2.

114 Nullable Types over Value Types (C# 2.0)

18 Nullable Types over Value Types (C# 2.0)

A nullable typet? is used to represent possibly missing values of typet, wheret is a value type such
asint, a non-nullable struct type, or a type parameter that has astruct constraint. A value of typet?
either is non-null and contains a proper value of typet, or is the unique null value. The default value of a
nullable type is null. The nullable typet? is an alias for System.Nullable<t> and is itself a value type.

A nullable type such asint? is useful because the custom of usingnull to represent a missing value
of reference type does not carry over to value types:null is not a legal value of the plain value typeint.

Valuesv1 andv2 of nullable type support the following operations:

• Read-only propertyv1.HasValue of typebool returns true ifv1 is non-null; false if it is null.
• Read-only propertyv1.Value of typet returns a copy of the proper value inv1 if v1 is non-null

and has typet?; it throws InvalidOperationException ifv1 is null.
• Standard implicit conversions: The implicit conversion fromv of typet to t? gives a non-null value

containing a copy ofv. The implicit coercion fromnull to t? gives the null value.
• Standard explicit conversions:(t)v1 coerces fromt? to t and is equivalent tov1.Value.
• Lifted conversions: Whenever there is an implicit (or explicit) coercion from value typets to value

typett, there is an implicit (or explicit) coercion fromts? to tt?.
• Boxing and unboxing conversions: Boxing of a non-nullt? value gives a boxedt value (not a

boxedt? value), and boxing of a nullt? value gives anull reference. Unboxing of a non-null t
reference gives a non-nullt? value; and unboxing of anull reference gives a nullt? value.

• Lifted unary operators+ ++ - -- ! ~ : If argument type and result type of an existing operator
are non-nullable value types, then an additional lifted operator is automatically defined for the
corresponding nullable types. If the argument is null, the result is null; otherwise the underlying
operator is applied to the proper value in the argument.

• Lifted binary operators+ - * / % & | ^ << >> : If the argument types and the result type of
an existing operator are non-nullable value types, then an additional lifted operator is automatically
defined for the corresponding nullable types. If any argument is null, the result is null; otherwise the
underlying operator is applied to the proper values in the arguments. The corresponding compound
assignment operator, such as+=, is automatically defined for nullable types also.

• Equality comparisons:v1==v2 is true if bothv1 andv2 are null or both are non-null and contain
the same value, false otherwise;v1!=v2 is the negation ofv1==v2. Unless other definitions are
applicable,v1!=null meansv1.HasValue andv1==null means!v1.HasValue,

• Ordering comparisons:v1<v2 andv1<=v2 andv1>v2 andv1>=v2 have typebool. A comparison
evaluates to false ifv1 or v2 is null; otherwise it compares the proper values inv1 andv2.

• Thenull-coalescingoperatorv1 ?? v2 evaluates to the proper value inv1 if it has one; otherwise
evaluatesv2. It can be used on reference types also, and then is equivalent tov1!=null ? v1 : v2.

The nullable typebool? has values null, false and true as in the three-valued logic of the SQL query
language. The operators& and| have special definitions that compute a proper truth value when possible:

x&y null false true
null null false null
false false false false
true null false true

x|y null false true
null null null true
false null false true
true true true true

Nullable Types over Value Types (C# 2.0)115

Example 138 Partial Function with Nullable Return Type
Instead of throwing an exception, a computation that fails may return the null value of a nullable type.

public static int? Sqrt(int? x) {
if (x.HasValue && x.Value >= 0)

return (int)(Math.Sqrt(x.Value));
else

return null;
}
...
Console.WriteLine(":{0}:{1}:{2}:", Sqrt(5), Sqrt(null), Sqrt(-5)); // Prints :2:::

Example 139 Computing with Nullable Integers
Arithmetic operators such as+ and+= are automatically lifted to nullable numbers. Ordering comparisons
such as> are false if any argument is null; the equality comparisons are not. The null-coalescing operator
?? gets the proper value or provides a default: note that variable sum has plain typeint.

int? i1 = 11, i2 = 22, i3 = null, i4 = i1+i2, i5 = i1+i3;
// Values: 11 22 null 33 null
int i6 = (int)i1; // Legal
// int i7 = (int)i5; // Legal but fails at run-time
// int i8 = i1; // Illegal
Object o1 = i1, o3 = i3; // Boxing of int? gives boxed int
Console.WriteLine(o1.GetType()); // System.Int32
int? ii1 = (int?)o1, ii3 = (int?)o3; // Unboxing of boxed int gives int?
Console.WriteLine("[{0}] [{1}]", ii1, ii3); // [11] [null]
int?[] iarr = { i1, i2, i3, i4, i5 };
i2 += i1;
i2 += i4;
Console.WriteLine("i2 = {0}", i2); // 66 = 11+22+33
int sum = 0;
for (int i=0; i<iarr.Length; i++)
sum += iarr[i] ?? 0;

Console.WriteLine("sum = {0}", sum); // 66 = 11+22+33
for (int i=0; i<iarr.Length; i++)
if (iarr[i] > 11)

Console.Write("[{0}] ", iarr[i]); // 22 33
for (int i=0; i<iarr.Length; i++)
if (iarr[i] != i1)

Console.Write("[{0}] ", iarr[i]); // 22 null 33 null

Example 140 The Nullable Bool Type
Like other lifted operators, thebool? operators! and^ return null when an argument is null. The opera-
tors& and| are special and can produce a non-null result although one argument is null.

bool? b1 = null, b2 = false, b3 = true;
bool? b4 = b1^b2, b5 = b1&b2, b6 = b1|b2; // null false null
bool? b7 = b1^b3, b8 = b1&b3, b9 = b1|b3; // null null true

Generic Types and Methods (C# 2.0)147

Example 168 Declaration of a Generic Class
An object of generic class LinkedList<T> is a linked list whose elements have type T; it implements
interface IMyList<T> from example 173. The generic class declaration has a nested class, an indexer
with result type T, methods that take arguments of type T, anEquals method that checks that its argument
can be cast to IMyList<T>, an explicit conversion from arrayof T to LinkedList<T>, an overloaded
operator (+) for list concatenation, and methods that return enumerators. See also examples 177 and 188.

public class LinkedList<T> : IMyList<T> {
protected int size; // Number of elements in the list
protected Node first, last; // Invariant: first==null iff last==null
protected class Node {

public Node prev, next;
public T item;
...

}
public LinkedList() { first = last = null; size = 0; }
public LinkedList(params T[] elems) : this() { ... }
public int Count { get { return size; } }
public T this[int i] { get { ... } set { ... } }
public void Add(T item) { Insert(size, item); }
public void Insert(int i, T item) { ... }
public void RemoveAt(int i) { ... }
public override bool Equals(Object that) {

if (that is IMyList<T> && this.size == ((IMyList<T>)that).Count) ...
}
public override int GetHashCode() { ... }
public static explicit operator LinkedList<T>(T[] arr) { ... }
public static LinkedList<T> operator +(LinkedList<T> xs1, LinkedList<T> xs2) { ... }
public IEnumerator<T> GetEnumerator() { return new LinkedListEnumerator(this); }
IEnumerator IEnumerable.GetEnumerator() { return GetEnumerator(); }

}

Example 169 Subclass Relations between Generic Classes and Interfaces
The constructed type Point<String> is implicitly convertible to IMovable, and both ColorPoint<String,uint>
and ColorPoint<String,Color> are implicitly convertibleto Point<String> and IMovable.

interface IMovable { void Move(int dx, int dy); }
class Point<Label> : IMovable {
protected internal int x, y;
private Label lab;
public Point(int x, int y, Label lab) { this.x = x; this.y = y; this.lab = lab; }
public void Move(int dx, int dy) { x += dx; y += dy; }

}
class ColorPoint<Label, Color> : Point<Label> {
private Color c;
public ColorPoint(int x, int y, Label lab, Color c) : base(x, y, lab) { ... }

}

148 Generic Types and Methods (C# 2.0)

23.4 Constraints on Type Parameters

A declaration of a generic classC<T1,...,Tn> may have type parameter constraints:

class-modifiersclass C<T1,...,Tn> subtype-clause parameter-constraints
class-body

Theparameter-constraintsis a list ofconstraint-clauses, each of this form:

where T : c1, c2, ..., cm

In the constraint clause,T is one of the type parametersT1,...,Tn and eachci is aconstraint. A given
type parameterTi can have at most one constraint clause; that clause may involve one or more constraints
c1, c2, ..., cm. The order of the constraint clauses forT1,...,Tn does not matter.

A constraintc must have one of these four forms:

• c is a type expression: a non-sealed class or an interface or a type parameter. The type expres-
sion may be a constructed type and involve the type parametersT1,...,Tn and type parameters of
enclosing generic classes and struct types. An array type, or a type parameter that has astruct
constraint, cannot be used as a constraint. Nor can the classes Object, System.ValueType, Sys-
tem.Delegate, System.Array, or System.Enum. At most one ofthe constraints on a type parameter
can be a class, and that constraint must appear first. There can be any number of constraints that are
interfaces or type parameters.

• c is the specialclass constraint. This means that the type parameter must be instantiated by a
reference type. The specialclass constraint can appear only first in a constraint list, and cannot
appear together with a constraint that is a class or togetherwith the specialstruct constraint.

• c is the specialstruct constraint. This means that the type parameter must be instantiated by a non-
nullable value type: a simple type such asint, or a non-nullable struct type. The specialstruct
constraint can appear only first in a constraint list, and cannot appear together with a constraint that
is a class or together with the specialclass constraint.

• c is the specialnew() constraint. This means that the type parameter must be instantiated by a
type that has an argumentless constructor. If a type parameter has astruct constraint it is thereby
guaranteed to have an argumentless constructor; in that case thenew() constraint is redundant and
illegal. Example 174 illustrates the use of thenew() constraint.

It is illegal for constraints to be circular as inclass C<T,U> where T : U where U : T { ... }.
The typest1,...,tn used when constructing a type must satisfy theparameter-constraints: if type

parameterTi is replaced by typeti throughout in theparameter-constraints, then for each resulting
constraintt : c wherec is a type expression, it must hold thatt is convertible toc by an implicit
reference conversion or a boxing conversion.

An override method or explicit interface implementation method gets its constraints from the base
class method or the interface method, and cannot have explicit constraints of its own. A generic method
that implements a method described by a base interface must have the same constraints as the interface
method.

Generic Types and Methods (C# 2.0)149

Example 170 Type Parameter Constraints
Interface IPrintable describes a methodPrint that will print an object on a TextWriter. The generic
PrintableLinkedList<T> can implement IPrintable provided the list elements (of type T) do.

class PrintableLinkedList<T> : LinkedList<T>, IPrintable where T : IPrintable {
public void Print(TextWriter fs) {

foreach (T x in this)
x.Print(fs);

}
}
interface IPrintable { void Print(TextWriter fs); }

Example 171 Constraints Involving Type Parameters. Multiple Constraints
The elements of a type T are mutually comparable if any T-value x can be compared to any T-valuey
usingx.CompareTo(y). This is the case if type T implements IComparable<T>; see section 24.3. The
requirement that T implements IComparable<T> is expressible by the constraintT : IComparable<T>.

Type ComparablePair<T,U> is a type of ordered pairs of (T,U)-values. For (T,U)-pairs to support
comparison, both T and U must support comparison, so constraints are required on both T and U.

struct ComparablePair<T,U> : IComparable<ComparablePair<T,U>>
where T : IComparable<T>
where U : IComparable<U>

{
public readonly T Fst;
public readonly U Snd;
public int CompareTo(ComparablePair<T,U> that) { // Lexicographic ordering

int firstCmp = this.Fst.CompareTo(that.Fst);
return firstCmp != 0 ? firstCmp : this.Snd.CompareTo(that.Snd);

}
...

}

Example 172 Theclass andstruct Constraints
Without theclass constraint, type parameter T inC1 might be instantiated with a value type, and then
null would not be a legal value of fieldf. Conversely, without thestruct constraint, type parameter U
in D1 might be instantiated with a reference type or with a nullable value type, and then the nullable type
U? would be illegal. Thus either class declaration would be rejected by the compiler if its constraint were
left out.

class C1<T> where T : class {
T f = null; // Legal: T is a reference type

}
class D1<U> where U : struct {
U? f; // Legal: U is a non-nullable value type

}

158 Generic Collections: Lists and Dictionaries (C# 2.0)

24 Generic Collections: Lists and Dictionaries (C# 2.0)

Namespace System.Collections.Generic provides efficient, convenient and typesafe data structures for
representing collections of related data. These data structures include lists, stacks, queues, and dictionaries
(also called maps). A list is an ordered sequence where elements can be added and removed at any
position; a stack is an ordered sequence where elements can be added and removed only at one end; a
queue is an ordered sequence where elements can be added at one end and removed at the other end;
and a dictionary associates values with keys. The collection classes are not thread-safe; using the same
collection instance from two concurrent threads produces unpredictable results.

The most important generic collection interfaces and classes are related as follows:

IEnumerable<T>

In
te

rf
ac

es
In

te
rf

ac
es

C
on

st
ru

ct
ed

C
la

ss
es

Dictionary<K,V> SortedDictionary<K,V> SortedList<K,V>

IEnumerable<KeyValuePair<K,V>>

ICollection<KeyValuePair<K,V>>

IDictionary<K,V>

ICollection<T>

IList<T>

Queue<T> Stack<T> List<T> LinkedList<T>

24.1 The ICollection<T> Interface

The generic interface ICollection<T> extends IEnumerable<T>, so its elements can be enumerated. In
addition, it describes the following members:

• Read-only propertyint Count returns the number of elements in the collection.

• Read-only propertybool IsReadOnly returns true if the collection is read-only and cannot be
modified; otherwise false.

• void Add(T x) adds elementx to the collection. Throws NotSupportedException if the collection
is read-only.

• void Clear() removes all elements from the collection. Throws NotSupportedException if the
collection is read-only.

• bool Contains(T x) returns true if elementx is in the collection; false otherwise.

• void CopyTo(T[] arr, int i) copies the collection’s members to arrayarr, starting at ar-
ray indexi. Throws ArgumentOutOfRangeException ifi<0, and throws ArgumentException if
i+Count>arr.Length. Throws InvalidCastException if some collection element is not convertible
to the array’s element type.

• bool Remove(T x) removes an occurrence of elementx from the collection. Returns true if an
element was removed, else false. Throws NotSupportedException if the collection is read-only.

Generic Collections: Lists and Dictionaries (C# 2.0)159

Example 185 Using Generic Collections
ThePrint methods are defined in examples 186 and 187.

using System.Collections.Generic; // IList, IDictionary, List, Dictionary, ...
...
IList<bool> list1 = new List<bool>();
list1.Add(true); list1.Add(false); list1.Add(true); list1.Add(false);
Print(list1); // Must print: true false true false
bool b1 = list1[3]; // false
IDictionary<String, int> dict1 = new Dictionary<String, int>();
dict1.Add("Sweden", 46); dict1.Add("Germany", 49); dict1.Add("Japan", 81);
Print(dict1.Keys); // May print: Japan Sweden Germany
Print(dict1.Values); // May print: 81 46 49
int i1 = dict1["Japan"]; // 81
Print(dict1); // Print key/value pairs in some order
IDictionary<String, int> dict2 = new SortedDictionary<String, int>();
dict2.Add("Sweden", 46); dict2.Add("Germany", 49); dict2.Add("Japan", 81);
Print(dict2.Keys); // Must print: Germany Japan Sweden
Print(dict2.Values); // Must print: 49 81 46
Print(dict2); // Print key/value pairs in sorted key order

Choosing an Appropriate Collection Class The running time or time complexity of an operation on a
collection is usually given inO notation, as a function of the sizen of the collection. ThusO(1) means
constant time, O(logn) meanslogarithmic time(time at most proportional to the logarithm ofn), andO(n)
meanslinear time(time at most proportional ton). For accessing, adding, or removing an element, these
roughly correspond tovery fast, fast, andslow.

In the table,n is the number of elements in the collection andi is an integer index. Thus adding or
removing an element of a List is fast only near the end of the list, wheren−i is small. The subscript
a indicatesamortized complexity: over a long sequence of operations, the average time per operation is
O(1), although any single operation could take timeO(n).

Operation List Dictionary SortedDictionary SortedList
Add(o) O(1)a

Insert(i,o) O(n−i)a

Add(k, v) O(1)a O(logn) O(n)

Remove(o) O(n) O(1) O(logn) O(n)
RemoveAt(i) O(n−i) O(n−i)
Contains(o) O(n)
ContainsKey(o) O(1) O(logn) O(logn)
ContainsValue(o) O(n) O(n) O(n)

IndexOf(o) O(n)
IndexOfKey(k) O(logn)

this[i] O(1)
Keys[i] O(1)
Values[i] O(1)
this[k] get/set O(1) O(logn) O(logn) / O(n)

160 Generic Collections: Lists and Dictionaries (C# 2.0)

24.2 Enumerators and Enumerables

24.2.1 The IEnumerator and IEnumerator<T> Interfaces

An enumerator is an object that enumerates (produces) a stream of elements, such as the elements of a
collection. A class or struct type that has a methodGetEnumerator with return type IEnumerator or
IEnumerator<T> can be used in aforeach statement (section 13.6.2).

Interface System.Collections.IEnumerator describes these members:

• Read-only propertyObject Current returns the enumerator’s current value, or throws Invalid-
OperationException if the enumerator has not reached the first element or is beyond the last element.

• bool MoveNext() advances the enumerator to the next (or first) element, if possible; returns true
if it succeeded so thatCurrent is valid; false otherwise. Throws InvalidOperationException if the
underlying collection has been modified since the enumerator was created.

• void Reset() resets the enumerator so that the next call toMoveNext will advance it to the first
element, if any. Should throw NotSupportedException if notsupported.

The generic interface System.Collections.Generic.IEnumerator<T> extends interfaces IEnumerator and
IDisposable (section 13.10) and describes these members:

• Read-only propertyT Current returns the enumerator’s current value, or throws InvalidOpera-
tionException if the enumerator has not reached the first element or is beyond the last element.

• bool MoveNext() is just as for IEnumerator above.

• void Dispose() is called by the consumer (for instance, aforeach statement) when the enumer-
ator is no longer needed. It should release the resources held by the enumerator. Subsequently,
Current should throw InvalidOperationException andMoveNext should return false.

A user type that implements IEnumerator<T> must also implement IEnumerator, using explicit interface
member implementation (section 15.3) to declare theCurrent property twice as in example 188.

24.2.2 The IEnumerable and IEnumerable<T> Interfaces

An enumerable type is one that implements interface IEnumerable or IEnumerable<T>. This means that
it has a methodGetEnumerator that can produce an enumerator; see example 168.

Interface System.Collections.IEnumerable describes this method:

• IEnumerator GetEnumerator() returns a non-generic enumerator.

The generic interface System.Collections.Generic.IEnumerable<T> describes this method:

• IEnumerator<T> GetEnumerator() returns a generic enumerator.

A collection type with element type T implements IEnumerable<T> and IEnumerable. Type Array (sec-
tion 9.3) implements IEnumerable. For a given typet, array typet[] also implements IList<t> and
therefore IEnumerable<t> and IEnumerable. A user type that implements IEnumerable<T> must also
implement IEnumerable, using explicit interface member implementation (section 15.3) to declare the
GetEnumerator method twice with different return types, as in example 168.

Generic Collections: Lists and Dictionaries (C# 2.0)161

Example 186 Traversing a Collection
The prototypical traversal of a collectioncoll (which implements IEnumerable<T>) uses aforeach
statement:

public static void Print<T>(ICollection<T> coll) {
foreach (T x in coll)

Console.Write("{0} ", x);
Console.WriteLine();

}

Example 187 Traversing a Dictionary
A dictionarydict implements IEnumerable<KeyValuePair<K,V>> so its key/value pairs (see section 24.8)
can be printed like this:

public static void Print<K,V>(IDictionary<K,V> dict) {
foreach (KeyValuePair<K,V> entry in dict)

Console.WriteLine("{0} --> {1}", entry.Key, entry.Value);
Console.WriteLine();

}

Example 188 An Enumerator Class for LinkedList<T>
Class LinkedListEnumerator is a member class of and implements an enumerator for class LinkedList<T>
from example 168. TheDispose method releases any data and list nodes reachable through the current
element. The non-genericCurrent property and theReset method are required by interface IEnumerator,
which IEnumerator<T> extends. Theyield statement (section 13.12) provides an alternative simplerway
to define enumerators.

private class LinkedListEnumerator : IEnumerator<T> {
T curr; // The enumerator’s current element
bool valid; // Is the current element valid?
Node next; // Node holding the next element, or null
public LinkedListEnumerator(LinkedList<T> lst) {
next = lst.first; valid = false;

}
public T Current {
get { if (valid) return curr; else throw new InvalidOperationException(); }

}
public bool MoveNext() {
if (next != null) {

curr = next.item; next = next.next; valid = true;
} else

valid = false;
return valid;

}
public void Dispose() { curr = default(T); next = null; valid = false; }
Object IEnumerator.Current { get { return Current; } }
void IEnumerator.Reset() { throw new NotSupportedException(); }

}

162 Generic Collections: Lists and Dictionaries (C# 2.0)

24.3 Comparables, Equatables, Comparers and EqualityComparers

Some values can be compared for ordering (such as less-than), and some values only for equality. A type
may implement interfaces that describe methods for order comparison and equality comparison.

An order comparison method such asCompareTo returns a negative number to indicate less-than, zero
to indicate equality, and a positive number to indicate greater-than. The method must define apartial
ordering: it must be reflexive, anti-symmetric, and transitive. Let us define that negative is the opposite
sign of positive and vice versa, and that zero is the oppositesign of zero. Then the requirements are:

• x.CompareTo(x) must be zero.

• x.CompareTo(y) andy.CompareTo(x) must be have opposite signs.

• If one of x.CompareTo(y) andy.CompareTo(z) is zero, thenx.CompareTo(z) must have the
sign of the other one; and if both have the same sign thenx.CompareTo(z) must have that sign too.

24.3.1 The IComparable, IComparable<T> and IEquatable<T> Interfaces

The non-generic interface System.IComparable describes this method:

• int CompareTo(Object that) must return a negative number when the current object (this) is
less thanthat, zero when they are equal, and a positive number whenthis is greater thanthat.

The generic interface System.IComparable<T> describes this method:

• int CompareTo(T that) must return a negative number when the current object (this) is less
thanthat, zero when they are equal, and a positive number whenthis is greater thanthat.

The generic interface System.IEquatable<T> describes this method:

• bool Equals(T that) must return true if the current object (this) is equal tothat, else false.

Typeint implements IComparable, IComparable<int> and IEquatable<int>, and similarly for the other
numeric types, for the String class (section 7), and for enumtypes.

24.3.2 The IComparer, IComparer<T>, and IEqualityComparer<T> Interfaces

The non-generic interface System.Collections.IComparerdescribes this method:

• int Compare(Object o1, Object o2) must return a negative number wheno1 is less thano2,
zero when they are equal, and a positive number wheno1 is greater thano2.

The generic interface System.Collections.Generic.IComparer<T> describes these methods:

• int Compare(T v1, T v2) must return a negative number whenv1 is less thanv2, zero when
they are equal, and a positive number whenv1 is greater thanv2.

The generic interface System.Collections.Generic.IEqualityComparer<T> describes these methods:

• bool Equals(T v1, T v2) must return true ifv1 is equal tov2, else false.

• int GetHashCode(T v) must return a hashcode forv; see section 5.2.

Generic Collections: Lists and Dictionaries (C# 2.0)163

Example 189 A Class of Comparable Points in Time
A Time object represents the time of day 00:00–23:59. The method callt1.CompareTo(t2) returns a
negative number ift1 is beforet2, a positive number ift1 is aftert2, and zero if they are the same
time. By defining two overloads ofCompareTo, the class implements both the non-generic IComparable
interface and the constructed interface IComparable<Time>.

using System; // IComparable, IComparable<T>, IEquatable<T>
public class Time : IComparable, IComparable<Time>, IEquatable<Time> {
private readonly int hh, mm; // 24-hour clock
public Time(int hh, int mm) { this.hh = hh; this.mm = mm; }
public int CompareTo(Object that) { // For IComparable

return CompareTo((Time)that);
}
public int CompareTo(Time that) { // For IComparable<T>

return hh != that.hh ? hh - that.hh : mm - that.mm;
}
public bool Equals(Time that) { // For IEquatable<T>

return hh == that.hh && mm == that.mm;
}
public override String ToString() { return String.Format("{0:00}:{1:00}", hh, mm); }

}

Example 190 A Comparer for Integer Pairs
Integer pairs are ordered lexicographically by this comparer, which has features from examples 73 and 189.

using System.Collections; // IComparer
using System.Collections.Generic; // IComparer<T>, IEqualityComparer<T>

public struct IntPair {
public readonly int Fst, Snd;
public IntPair(int fst, int snd) { this.Fst = fst; this.Snd = snd; }

}
public class IntPairComparer : IComparer, IComparer<IntPair>, IEqualityComparer<IntPair> {
public int Compare(Object o1, Object o2) { // For IComparer

return Compare((IntPair)o1, (IntPair)o2);
}
public int Compare(IntPair v1, IntPair v2) { // For IComparer<T>

return v1.Fst<v2.Fst ? -1 : v1.Fst>v2.Fst ? +1
: v1.Snd<v2.Snd ? -1 : v1.Snd>v2.Snd ? +1 : 0;

}
public bool Equals(IntPair v1, IntPair v2) { // For IEqualityComparer<T>

return v1.Fst==v2.Fst && v1.Snd==v2.Snd;
}
public int GetHashCode(IntPair v) { // For IEqualityComparer<T>

return v.Fst ^ v.Snd;
}

}

164 Generic Collections: Lists and Dictionaries (C# 2.0)

24.4 The IList<T> Interface

The generic interface IList<T> extends ICollection<T> anddescribes lists with elements of type T. It has
the following members in addition to those of ICollection<T>:

• Read-write indexerT this[int i] returns or sets list element numberi, counting from 0. Throws
ArgumentOutOfRangeException ifi<0 or i>=Count. Throws NotSupportedException if used to
set an element on a read-only list.

• void Add(T x) adds elementx at the end of the list.

• int IndexOf(T x) returns the least position whose element equalsx, if any; otherwise−1.

• void Insert(int i, T x) insertsx at positioni. Existing elements at positioni and higher have
their position incremented by one. Throws ArgumentOutOfRangeException ifi<0 or i>Count.
Throws NotSupportedException if the list is read-only.

• bool Remove(T x) removes the first element of the list that equalsx, if any. Returns true if an
element was removed. All elements at higher positions have their position decremented by one.
Throws NotSupportedException if the list is read-only.

• void RemoveAt(int i) removes the element at indexi. All elements at higher positions have
their position decremented by one. Throws ArgumentOutOfRangeException ifi<0 or i>=Count.
Throws NotSupportedException if the list is read-only.

Interface IList<T> is implemented by class List<T> which represents a list using an array; see sec-
tion 24.6. The .Net collection library also includes a classLinkedList<T> of doubly-linked lists, but
it does not implement IList<T>, so class LinkedList<T> is not further described here.

24.5 The IDictionary<K,V> Interface

The generic interface IDictionary<K,V> extends ICollection<KeyValuePair<K,V>>, so it can be seen as
a collection of key/value pairs (entries), where the keys have type K and the values have type V. Since a
dictionary implements also IEnumerable<KeyValuePair<K,V>>, the key/value pairs can be enumerated.

There can be no two entries with the same key, and a key of reference type cannot benull.
The interface describes these members in addition to those of ICollection<KeyValuePair<K,V>>:

• Read-only propertyICollection<K> Keys returns a collection of the keys in the dictionary.

• Read-only propertyICollection<V> Values returns a collection of the values in the dictionary.

• Read-write indexerV this[K k] gets or sets the value at dictionary keyk. Throws ArgumentEx-
ception when getting (but not when setting) if keyk is not in the dictionary. Throws NotSupported-
Exception if used to set an element in a read-only dictionary.

• void Add(K k, V v) inserts valuev at keyk in the dictionary. Throws ArgumentException if key
k is already in the dictionary. Throws NotSupportedException if the dictionary is read-only .

• bool ContainsKey(K k) returns true if the dictionary contains an entry for keyk, else false.

• bool Remove(K k) removes the entry for keyk, if any. Returns true if a key was removed.

168 Generic Collections: Lists and Dictionaries (C# 2.0)

24.7 The Dictionary<K,V> Class

The generic class Dictionary<K,V> implements IDictionary<K,V> and is used to represent dictionaries
or maps with keys of type K and associated values of type V. A dictionary is implemented as a hash table,
so the keys should have a goodGetHashCode method but need not be ordered. In an unordered dictionary
any key can be looked up, inserted, updated, or deleted in amortized constant time.

Objects used as dictionary keys should be treated as immutable, or else subtle errors may be encoun-
tered. If an object is used as key in a dictionary, and the object is subsequently modified so that its
hashcode changes, then the key and its entry may be lost in thedictionary.

Class Dictionary<K,V> has the members described by IDictionary<K,V> as well as these:

• ConstructorDictionary() creates an empty dictionary.

• ConstructorDictionary(int capacity) creates an empty dictionary with given initial capacity.

• ConstructorDictionary(int capacity, IEqualityComparer<K> cmp) creates an empty dic-
tionary with the given initial capacity and the given equality comparer.

• ConstructorDictionary(IDictionary<K,V> dict) creates a new dictionary that containsdict’s
key/value pairs.

• ConstructorDictionary(IDictionary<K,V> dict, IEqualityComparer<K> cmp) creates a new
dictionary fromdict’s key/value pairs, using the given equality comparer.

• bool ContainsValue(V v) returns true if the dictionary contains an entry with valuev. In con-
trast toContainsKey(k), this is slow: it requires a linear search of all key/value pairs.

• bool TryGetValue(K k, out V v) bindsv to the value associated with keyk and returns true if
the dictionary contains an entry fork; otherwise bindsv to default(V) and returns false.

24.8 The KeyValuePair<K,V> Struct Type

A struct of generic type KeyValuePair<K,V> is used to hold a key/value pair, or entry, from a dictio-
nary (sections 24.5 and 24.7). See example 187. The KeyValuePair<K,V> struct type has the following
members:

• ConstructorKeyValuePair(K k, V v) creates a pair of keyk and valuev.

• Read-only propertyK Key returns the key in the key/value pair.

• Read-only propertyV Value returns the value in the key/value pair.

24.9 The SortedDictionary<K,V> and SortedList<K,V> Classes

The generic classes SortedDictionary<K,V> and SortedList<K,V> implement IDictionary<K,V> and rep-
resent a dictionary with ordered keys of type K and associated values of type V. The former dictionary
class is implemented by a binary tree and the latter by a sorted array. The key type K must implement
IComparable<K> or IComparable (section 24.3) or else an IComparer<K> or an IComparer must be pro-
vided when the dictionary is created. This determines the key order and the enumeration order.

These classes have the same methods as Dictionary<K,V>, buttheir constructors take nocapacity
argument and take an IComparer<K> argument instead of an IEqualityComparer<K> argument.

182 References

30 References

• The C# 2.0 programming language, including generic types and methods, iterators, anonymous
methods, partial types, nullable types, and so on, has been standardized by Ecma International in
June 2005. Download theC# Language Specification, adopted as Ecma Standard ECMA-334, 3rd
edition, from<http://www.ecma-international.org/publications/standards/Ecma-334.htm>

• Anders Hejlsberg, Scott Wiltamuth and Peter Golde:The C# Programming Language, Addison-
Wesley November 2003, contains a version of the C# Language Specification, including a descrip-
tion of most C# 2.0 features.

• The Microsoft Windows .Net Framework Software DevelopmentKit (SDK), including a C# com-
piler and run-time system, is available from<http://msdn.microsoft.com/netframework/>

• The Mono implementation of C# and run-time system is available for Microsoft Windows, Linux,
MacOS X, Solaris and other platforms from<http://www.mono-project.com/>

• The Microsoft .Net Framework class reference documentation is included with the .Net Framework
SDK and is also available online at<http://msdn.microsoft.com/library/>

• The design and implementation of generics in C# and .Net is described in Don Syme and Andrew
Kennedy: Design and Implementation of Generics for the .NETCommon Language Runtime. In
Programming Language Design and Implementation (PLDI), Snowbird, Utah, 2001.
Download from<http://research.microsoft.com/~dsyme/papers/generics.pdf>

• A comprehensive library of collection classes for C# is provided by the library C5, available at
<http://www.itu.dk/research/c5/> under a liberal license.

• The Unicode character encoding (<http://www.unicode.org/>) corresponds to part of the Universal
Character Set (UCS), which is international standard ISO 10646-1:2000. The UTF-8 is a variable-
length encoding of UCS, in which 7-bit ASCII characters are encoded as themselves. It is described
in Annex R of the above-mentioned ISO standard.

• Floating-point arithmetics is described in the ANSI/IEEE Standard for Binary Floating-Point Arith-
metic (IEEE Std 754-1985).

• Advice on writing high-performance C# programs for the .Netplatform can be found in Gregor
Noriskin: Writing High-Performance Managed Applications: A Primer, June 2003; and in Jan
Gray:Writing Faster Managed Code: Know What Things Cost, June 2003. Both are available from
the MSDN Developer Library<http://msdn.microsoft.com/library/>.

192 Index

format specification, 20
FormatException, 6, 20, 116
formatting

code, 22
data as string, 20–23
date as string, 22
number as string, 22
time as string, 22

Frac class (example), 53, 65
frame (in stack), 54
FullName property (FileInfo), 140
function

as delegate (example), 155
member, 32

garbage collector, 54
Gaussian random numbers (example), 125
generic

class, 144, 146–149
constructor (no such thing), 144
delegate type, 154–155
event (no such thing), 144
indexer (no such thing), 144
interface, 150–151
method, 152–153
operator (no such thing), 144
property (no such thing), 144
struct type, 156–157

generics, 144–157
versus C++ templates, 156
implementation, 156
versus Java language generics, 156

get-accessor
of indexer, 48
of property, 48

GetCurrentDirectoryproperty (Directory), 140
GetDirectories method (DirectoryInfo), 140
GetEnumerator method

Array, 30
IEnumerator (example), 89
IEnumerator<T>, 160

GetHashCode method
IEqualityComparer<T>, 162
Object, 8

simple type, 8
String, 8
ValueType, 8

GetLength method (Array), 30
GetType method (Object), 8
GetValue method (Array), 30
goto statement, 94

example, 85
governing type, 86
graph traversal (example), 171
greater than operator (>), 57, 60
greater than or equal to operator (>=), 57, 60

hash code, 8
andEquals method, 8

hash table.Seedictionary
heap, 8, 54
hexadecimal integer constant, 6

example, 61
hiding

base class’s indexer (example), 79
field, 38
indexer, 36
member, 36
method, 36

horizontal tab escape code (\t), 16
HTML output (example), 133

ICollection<T> interface, 158
IComparable interface, 162
IComparable<T> interface, 162

example, 149
IComparer interface, 162
IComparer<T> interface, 162
IDictionary<K,V> class, 164
IDisposable interface, 98

example, 89, 161
IEEE754 floating-point standard, 6, 7, 124, 182
IEEERemainder method (Math), 124
IEnumerable interface, 160
IEnumerable<T> interface, 160
IEnumerator interface, 160
IEnumerator<T> interface, 160
IEqualityComparer<T> interface, 162

Index 193

IEquatable<T> interface, 162
if statement, 86
if-else statement, 86
IList<T> interface, 164

implemented by array type T[], 88
illegal type cast, 80
implementation of interface, 108
implicit, 52
implicit conversion, 10

example, 63
user-defined, 52

IMyList interface (example), 151
increment operator (++), 57, 58
index

into array, 26
into string, 16

indexer, 48
access, 57

expression, 78–79
compound assignment, 78
declaration, 48
description, 106
formal parameter, 48
generic (no such thing), 144
get-access, 78
hiding, 36

example, 79
IDictionary<K,V>, 164
IList<T>, 164
overloading, 48

example, 109
set-access, 78
String, 16
StringBuilder, 24
type, 48

indexer-description, 106
IndexOf method

IList<T>, 164
List<T>, 166

IndexOutOfRangeException, 16, 24, 26, 97, 116
inefficiency.Seeefficiency
infinity constant, 6
inheritance, 36

example, 35, 43

initialization
of array, 26
of instance fields, 38, 44
of static fields, 38
of struct values, 102

initializer of field, 38
inner class (Java), 46
input, 126–144

binary, 134
byte-oriented, 136
character-oriented, 130
from keyboard (example), 119
sequential, 130

input-output, 126–144
byte stream, 136–139
character stream, 130–133
examples, 129
socket, 142–144
thread-safety, 128

Insert method
IList<T>, 164
StringBuilder, 24

InsertRange method (List<T>), 166
instance

field, 38
access, 66

member, 32
method, 42
of struct type, 54
test expression, 64

example, 65
int (simple type), 7, 10
Int16 struct type (short), 7
Int32 struct type (int), 7
Int64 struct type (long), 7
integer

constant, 6
division, 58
overflow, 58

checking, 58
remainder, 58
sequences (example), 47, 51, 101, 109
square root (example), 177
type, 6

194 Index

interface, 106–110
base, 108
declaration, 106

partial, 174
explicit member implementation, 108
generic, 150
implementation, 108

explicit, 40
member, 106

interface-declaration, 106
interface-modifier, 106
intermediate code, 2
internal

class, 46
member, 34

InternalBufferOverflowException, 116
Interrupt method (Thread), 122
intersection closure (example), 171
InvalidCastException, 12, 80, 88, 116, 158
InvalidOperationException, 114, 116, 160, 170
InvalidProgramException, 116
invariant, 177
invocation list of delegate, 112
invocation of method.Seemethod call
IOException, 116, 128, 130, 132, 134, 138
IPEndPoint, 142
IPrintable interface (example), 149
is (instance test), 57, 64

example, 103
ISeq interface (example), 109
ISO 8601 date format, 22
ISO week number (example), 111
IsReadOnly property (ICollection<T>), 158
iterating over array (example), 31
iterator block, 100

jagged array, 28
Java language, 180

differences to C#, 180–181
generics, versus C# generics, 156
inner class, 46
multi-dimensional array, 28
protected member, 34

Join method (Thread), 122

Joining (thread state), 118, 119
justification, 20

Key property (KeyValuePair<K,V>), 168
keyboard input (example), 119
Keys property (IDictionary<K,V>), 164
KeyValuePair<K,V> struct, 168
keyword, 4

as identifier (example), 5
recognizing (example), 169

label, 94
labeled statement, 94
lambda (Scheme language), 82
LastIndexOf method (List<T>), 166
layout of program, 4
leap year (example), 59
left associative, 56
left shift operator (<<), 57, 60

overloading, 50
length of array, 26
Length property

Array, 30
FileInfo, 140
Stream, 136
String, 16
StringBuilder, 24

less than operator (<), 57, 60
less than or equal to operator (<=), 57, 60
lexicographic ordering

pairs
example, 149, 163

strings, 18
library, 2
line counting (example), 127
LinkedList<T> class (example), 147

enumerator, 161
list, 164–167
List<T> class, 166
Listen method (Socket), 142
loaded die (example), 43
loading of class, 2, 38, 44, 54
local variable declaration, 84
lock, 120

200 Index

SByte struct type (sbyte), 7
scope, 14

of label, 94
of member, 14, 32
of parameter, 14, 40
of variable, 14

sealed
class, 34

example, 175
method, 36, 42

sealed (class modifier), 34
sealed override (method modifier), 42
search

for empty string (example), 93
for substring (example), 95
in array, 30

SecurityException, 132, 140
Seek method

BinaryWriter, 134
Stream, 136

SeekOrigin enum, 134, 136
segment swapping (example), 31
semicolon, 84

in delegate type declaration, 112
misplaced (example), 91

Send method (Socket), 142
Seq struct type (example), 47, 51, 101, 109
SeqEnumerator class (example), 47
sequence

enumerator (example), 47
iterator (example), 101
of integers (example), 47, 51, 101, 109

sequential
input, 130
output, 132

Serializable (attribute), 178
serialization, 178

example, 179
Serialize method

BinaryFormatter, 128
SoapFormatter, 128

server socket, 142
set intersection closure (example), 171
set-accessor

of indexer, 48
of property, 48

Set<T> class (example), 165
SetLength method

MemoryStream, 139
Stream, 136

SetValue method (Array), 30
shadowing a field, 14

example, 67
shared state, 118
shift operators, 60
short (simple type), 7, 10
short-cut evaluation, 58
Sign method (Math), 124
signature, 40

best, 68
better, 68
of constructor, 44

signed integer type, 6
significant digits of numeric type, 7
simple type, 6

member, 6
variable, 14

Sin method (Math), 124
single quote (’) escape code (\’), 16
Single struct type (float), 7
sizeof operator, 7, 57
Sleep method (Thread), 122
Sleeping (thread state), 118, 119
SoapFormatter class, 179
socket, 142

communication (example), 143
Socket class, 142
SocketException, 142
Sort method

Array, 30
List<T>, 166

sort of array, 30
SortedDictionary<K,V> class, 168
SortedList<K,V> class, 168
sortedness check (example), 19
source file, 2

example, 175
sparse matrix (example), 49, 79

