
User-defined functions in spreadsheets

Daniel S. Cortes

Morten W. Hansen

Supervisor: Peter Sestoft

Master’s thesis in Software Development

IT University of Copenhagen, September 2006

Foreword

This Master’s thesis is written by Daniel S. Cortes and Morten W. Hansen in the period
from February to August 2006. With this thesis we finish our Master degree in software
development on the IT University of Copenhagen.

Both of us have a Master degree in actuarial science from Copenhagen University and have
been employed in the Danish pension and insurance business for several years. With this
background we wanted to combine our knowledge from ’the real world’ with our knowledge
on software development. And what would be more obvious than to focus on the most
used software application in the financial sector - the spreadsheet application.

We wish to thank our supervisor Peter Sestoft for giving us the idea for this thesis and
for the very committed supervising.

1st September 2006

Daniel S. Cortes & Morten W. Hansen

i

Resume

I dette afsluttende projekt p̊a Masteruddannelsen i softwareudvikling implementerer vi
udvidelser til regneark, som integrerer brugerdefinerede funktioner i regnearkets gitter.
Målet er at validere, om de foresl̊aede ideer i ’A User-Centred Approach to Functions in
Excel’ af Blackwell, Burnett and Peyton Jones [JBB03] kan implementeres, og i givet fald
i hvilken udstrækning og hvem der kan drage fordel heraf. Herunder diskuteres artiklen
af Blackwell, Burnett and Peyton Jones med fokus p̊a en egentlig implementering. Denne
diskussion bruges som vores teoretiske grundlag.

Vi implementerer de brugerdefinerede funktioner over fire prototyper ved hjælp af en
evolutionær udviklingsmetode med iterative udvidelser. De fire prototype er:

1. Simpel funktion

2. Avanceret funktion

3. Matrix funktion

4. Rekursiv og højere-ordens funktion

I hver prototype præsenterer vi en case, hvor vi anvender regneark, der bruges i pensions-
og forsikringsbranchen i Danmark. Disse fire cases udgør vores praktiske grundlag.

Efter fire succesfulde implementeringer af de brugerdefinerede funktioner konkluderer vi,
at de foresl̊aede ideer - med visse modifikationer og ændringer - kan implementeres. Der-
udover har vi, ved at udvide funktionaliteten til at inkludere rekursive og højere-ordens
funktioner, forøget den oprindelige målgruppe. Dette er lykkes uden væsentligt at p̊avirke
brugerens oplevelse.

Med vores modifikationer, ændringer og udvidelser tror vi p̊a, at mange slut-brugere vil
f̊a betydelig fordel af disse brugerdefinerede funktioner, og at potentialet for en s̊adan
udvidelse af regneark er stort.

ii

Summary

In this Master’s thesis we implement extensions to spreadsheets that integrate user-defined
functions into the spreadsheet grid. The purpose is to validate whether the proposed ideas
described in ’A User-Centred Approach to Functions in Excel’ by Blackwell, Burnett and
Peyton Jones [JBB03] can be implemented or not, and to which extent and benefit it can
be used in practice. In doing so we discuss the paper by Blackwell, Burnett and Peyton
Jones with focus on implementation and technical design and use this as our theoretical
basis.

Using an evolutionary development via an iterative enhancement method we implement
the user-defined functions over four prototypes:

1. Simple function

2. Advanced function

3. Matrix function

4. Recursive and higher-order function

In each prototype we present a case where we use spreadsheets that are currently used in
the pension and insurance business in Denmark. These four cases represent our practical
basis.

After having successfully implemented the user-defined functions in all four prototypes
we conclude that - with some modifications and changes - the proposed ideas presented
by Blackwell, Burnett and Peyton Jones can be implemented. Furthermore by extending
the functionality to include recursive and higher-order functions we broaden the initially
proposed target audience without significantly damaging the usability of the solution.

With our modifications, changes and extensions we strongly believe that many end-users
will benefit from the user-defined function extension and that the potential of this is
significant.

iii

Contents

1 Introduction 1

1.1 Purpose and problem formulation . 1

1.2 Practical details and limitations . 2

1.3 This paper . 2

1.4 Related work . 3

2 About spreadsheets 4

2.1 What is a spreadsheet? . 4

2.2 Definition of terms . 5

3 Theory and analysis of user-defined functions 7

3.1 Theoretical basis . 7

3.1.1 The need for user-defined functions 7

3.1.2 User-defined functions in Excel . 10

3.2 Analysis and use of the theory . 14

3.2.1 The need and the target audience 14

3.2.2 User-orientated design versus technical design 15

4 Methodological approach 21

5 Prototype 1: Simple functions 23

5.1 Setting-up and designing a spreadsheet . 23

5.1.1 Representation of cell reference . 26

5.1.2 Absolute and relative sheet references 26

5.1.3 Recomputation . 26

iv

5.1.4 Cyclic references . 27

5.1.5 Functions with multiple arguments 27

5.1.6 Functions with matrix-valued results 27

5.1.7 Parsing of spreadsheet formulas . 27

5.2 Importing from other spreadsheets . 28

5.3 Implementation of a simple user-defined function 28

5.3.1 Defining function signatures . 29

5.3.2 Representing the function instance 32

5.3.3 Invocation list . 33

5.4 Case: Calculation Age . 35

6 Prototype 2: Advanced functions 38

6.1 Instance copy . 38

6.2 Invocation list revised . 38

6.2.1 Function arguments . 39

6.2.2 Recomputation . 40

6.2.3 Non-strict arguments . 41

6.3 Supporting variable number of arguments 41

6.4 Referring outside the function sheet . 42

6.5 Case: Risk premium calculation on a waiver of premium 43

7 Prototype 3: Matrix functions 46

7.1 Designing a matrix structure . 46

7.1.1 Expansion of matrices . 47

7.1.2 Matrices as first-class values . 48

v

7.1.3 The matrix design . 50

7.2 Table Evolution Calculus . 51

7.3 Implementation of matrix user-defined functions 52

7.3.1 Performance . 53

7.3.2 CTRL+SHIFT+ENTER in Excel 54

7.4 Case: Value calculation in Unit Link . 54

8 Prototype 4: Recursive and higher-order functions 58

8.1 Recursive functions . 58

8.2 Higher-order functions . 59

8.2.1 Introducing a new type . 59

8.2.2 Built-in higher-order functions . 60

8.3 Partial application and partial evaluation 61

8.4 Optimizations . 64

8.5 Case: Calculating passives . 64

9 Conclusion 68

9.1 The approach . 68

9.2 The prototypes . 69

9.3 The cases . 69

9.4 Test group . 69

9.5 Putting it all into perspective . 70

A References, listings, figures and the project progress 71

B Selected source code 74

vi

1 Introduction

One of the most successful software applications ever invented is the spreadsheet. The
number of spreadsheet users is several million worldwide and still increasing. The success
is based on the fact that spreadsheets have high usability and are easy to learn but can
still be used for a very broad range of tasks including very complex ones. But even
though spreadsheets can be used for complex tasks it lacks the ability to define re-usable
abstractions which is one of the most fundamental mechanisms for handling complex and
elaborate models. The consequence of this is well-known, spreadsheets with thousands of
cells and formulas.

As an attempt to solve this problem many spreadsheet applications have added the pos-
sibility for the user to access an attached programming language (e.g. Visual Basic for
Applications (VBA) in Excel). Here the user can define re-usable abstractions such as
functions and macros. But this has been without great success since only a fraction of the
spreadsheet users are able to understand and use these languages.

1.1 Purpose and problem formulation

In the paper ’A User-Centred Approach to Functions in Excel’ by Blackwell, Burnett,
Peyton Jones (2003) [JBB03] a theoretical basis is described that proposes changes to the
Excel spreadsheet application which integrates user-defined functions into the spreadsheet
grid. The theory is not concretized into an actual implementation though. This paper
will therefore try to answer the following question:

With the ideas described in [JBB03] as a theoretical basis and with a practical basis from
used spreadsheets is it then possible to implement and benefit from the user-defined func-
tions in spreadsheets?

We are both actuaries currently employed in, respectively, a life insurance company and
a software company making solutions for insurance companies. We use this in answering
the question and take real commercially used spreadsheets and try to redefine them using
the user-defined functions.

We use an iterative approach where we through four prototypes will implement the user-
defined functions. For every prototype we will discuss the design (technical and user-
orientated), the usability and the solution compared to the theoretical basis.

1

1.2 Practical details and limitations

Since we naturally do not have access to Excel source code we have to make our own
spreadsheet application and implement the user-defined functions there. Alternatively we
could have used Gnumerics or OpenOffice Calc which are open source spreadsheets, but
these are major software packages and often not very well documented when it comes to
their inner workings. Understanding these packages would have been a major part of the
project. Instead we extend the basic spreadsheet application developed by Peter Sestoft
(see [Ses05], a forthcoming ITU tech report). The development environment is Microsoft
Visual Studio C#.

In this paper we are focusing on answering the question above and the goal is therefore not
to deliver an end-user ready spreadsheet application but to discuss the problems/issues
concerning the implementation. We will therefore not implement many of the ’standard’
features found in spreadsheet applications such as menus, formats, printing options, etc.

Likewise we will not implement many of the user-orientated features presented in [JBB03].
This includes:

• The ’function-entry wizard’.

• The automatic creation of user-defined functions via formulas.

• Pop-up box asking whether or not to modify an instance of a function or all instances
of the function.

In general we only implement the parts of the GUI that is necessary to show and illustrate
the functionality.

1.3 This paper

In the follow section we define what a spreadsheet is and the terms we use throughout the
paper. In section 3 we outline and analyze the theory with focus on real implementation
while Section 4 briefly explains the methodological approach. The next four sections
contain the description of the four prototypes:

• Section 5 : Simple functions

• Section 6 : Advanced functions

• Section 7 : Matrix functions

• Section 8 : Higher-order functions

2

Last, but not least, we conclude by answering the question above in section 9.

1.4 Related work

Like us, others have worked on the core spreadsheet application set out by Peter Sestoft.
Especially we would like to mention Thomas Iversen’s work with runtime compilation of
spreadsheet (see [Ive06]). An interesting study would be to combine his works with the
works in this paper.

The authors of the paper ’A User-Centred Approach to Functions in Excel’ have a patent
pending for the user-defined spreadsheet functions (application number US2004103366).

3

2 About spreadsheets

Almost everyone knows more or less what a spreadsheet is but to get a common baseline of
understanding and to define the concepts and notation used in this paper, we will shortly
explain how we define a spreadsheet and the associated concepts.

2.1 What is a spreadsheet?

A spreadsheet is a type of computer program that displays a group of cells in a 2D graph
pattern and allows for easy mathematical operations and relationships among the cells.
Today’s most popular spreadsheet is Microsoft Excel.

A spreadsheet consists of one or more worksheets (for simplicity sometimes called sheets
in the rest of this work), each of which contains many rows and columns of cells. Each cell
can contain data (a number or a string) or a formula. Cells can be grouped into ranges
containing one or more cells, and ranges can be named and referred to by name. In that
way cells can be compared to variables in a sequential programming model.

A formula in a cell can use the contents of other cells, external variables such as the
current date and time or built-in functions. A spreadsheet can therefore be seen as a
mathematical graph where the nodes are spreadsheet cells and the edges are references to
other cells specified in formulas (dependency graph).

The cells in a spreadsheet will automatically update (recalculate) when the cells on which
they depend have been changed.

Even though many users do not experience it that way, a spreadsheet can be seen as a
functional programming language where the programmer writes simple functions to create
the desired model. Considered as a functional programming language a spreadsheet is quite
limited, e.g.:

• One cannot create new functions but only use the built-in ones.

• Recursive functions do not exist.

• Higher-order functions do not exist.

The above mentioned functionalities can usually be accomplished by using an underlying
programming language (e.g. VBA in Excel), i.e. via the use of another programming
language.

4

2.2 Definition of terms

This subsection shortly defines, in alphabetical order, the most used terms in this paper.
A reference to an example in figure 1 is presented after some of the descriptions.

Arguments (to a function) The input parameters to a function. This can be con-
stants (text strings or floating-point numbers), for-
mulas, matrix formulas or user-defined functions. (2)

Built-in function A predefined function in the spreadsheet application
that cannot be altered. (6)

Cell A small box in a sheet, where the data (a constant
(text string or floating-point number), a formula or a
matrix formula) is stored. (1)

Cell reference A reference to a specific cell in the same sheet or in
another sheet in the spreadsheet. In Excel a cell ref-
erence to a cell in the same sheet is represented as the
intersection of a column letter and a row number. (4)

Error message A dialog box displayed to inform the user that the
particular action is not allowed or can not be done.

Formula A set of instructions which is used to compute the
value of a cell. Can be e.g. a cell reference or function
call. (3)

Function call A initiation of a function by applying the required
arguments. (7)

Function sheet A sheet that contains a user-defined function. It
works just as a normal worksheet but has the one
purpose to hold a user-defined function. (9)

Function signature The definition of which arguments the function takes
and how the result is returned.

Matrix formula A formula that contains matrix values.

Result (of a function) The output of a function. This can be a constant
(text string or floating-point number), a formula, a
matrix formula or a user-defined function. (5)

Sheet A sheet consists of a grid of cells and can either be a
worksheet or a function sheet. (8)

Spreadsheet A spreadsheet consists of one or more sheets.

User (of a spreadsheet) An end-user of the spreadsheet application.

5

User-defined function A function that is created by the user using the fea-
tures presented in this paper. Notice that this term
does not include user-defined functions that is created
in a underlying programming language (e.g. VBA) -
when we refer to these types of user-defined functions
we explicitly state it. (10)

Worksheet A normal sheet. (8)

Figure 1: Example of a spreadsheet.

6

3 Theory and analysis of user-defined functions

In [JBB03] Blackwell, Burnett and Peyton Jones proposes a change to the Excel spread-
sheet application which integrates user-defined functions into the spreadsheet grid. To
design these functions they use a user-centred approach with nine design concepts from
the HCI world as their basis.

In section 3.1 we will outline the theory and main ideas presented in [JBB03].

In section 3.2 we will analyze the theory with focus on real implementation. This requires:

• Clarification of the theory where needed.

• Discussion of the ideas.

• Review of not answered questions.

3.1 Theoretical basis

As explained above this section describes the key points and thoughts in [JBB03]. We
will later (in section 3.2) take a critical view of these points on the basis of the real
implementation.

One can divide the article into two parts, a part that describes why there is a need for
user-defined functions in spreadsheets, and a part that describes the main design ideas of
the user-defined functions.

3.1.1 The need for user-defined functions

To analyze the need for user-defined functions [JBB03] states the main advantages by
having user-defined functions in a spreadsheet seen from the users point of view:

Avoid repetition: By using user-defined functions one can avoid repeating formulas every
time a new spreadsheet needs the same formula. In other words one has the oppor-
tunity to identify, name and reuse code from a previous spreadsheet.

Reduce errors during maintenance: Excel encourages the use of ’copy-paste’ of complex for-
mulas. This might create problems later when the copied formulas must be changed
since one has to not only change the copied formulas but also the places where the
formulas were copied from.

7

With user-defined functions the formula is encapsulated and thereby the risk of these
kinds of errors is reduced. In addition one only has to change one place to change
all the formulas in the spreadsheet.

Real estate management: To call a user-defined function one only needs one cell even
though the definition of the function in terms of space fills up several cells. This is
particularly nice if the calculation requires many intermediate results. In this way
we save a lot of space in the sheet that calls the user-defined function.

Encapsulate and re-use domain-specific expertise: User-defined functions support reuse. Users
that are domain experts can create libraries of functions that are dedicated to special
use or application that can be used by non-expert users.

Intellectual property protection: User-defined functions are easy to encapsulate and thereby
protect your intellectual property rights. Hiding the function implementation from
the function user is a standard way of intellection property protection used by other
branches of software development. The encapsulation increases security on distribu-
tion of spreadsheets.

Performance: A function that are represented wisely can be compiled to byte code, JIT’s
(JIT = Just-In-Time compilation) to machine code or whatever, with performance
benefits.

These general advantages of having user-defined functions are well known and it is not a
brand new idea that users can define their own functions, e.g. in Excel users can use VBA
(Visual Basic for Application). The problem here is that the ordinary user of Excel does
not know VBA and the costs that are related to educating these users to a level where
they can use VBA are very high. This is mainly because the difference between Excel and
VBA is too big:

• The programming paradigm is different. VBA is a imperative language while Excel
is a declarative language.

• The notation is different. In VBA the notation consists of blocks of text while Excel
has a grid of cells.

• The programming environment is different. VBA uses Visual Studio while Excel
uses a spreadsheet grid.

• The debugging model is different. VBA uses the Visual Studio debugger while Excel
uses a manual cell-to-cell debugger.

8

Target audience

Given the above mentioned problems with the functionality that is available today the
target audience for the user-defined functions is the large group of ordinary users that is
familiar to spreadsheets and has a need for non-trivial formulas but can not use e.g. VBA.
More specifically the assumption is that to be able to use the design of the user-defined
functions one has to be able to:

1. Use several different built-in functions and not only infix operators.

2. Use ’copy-paste’ or replicate operations so a formula systematically is changed to
operate on the new location.

3. Use more than one worksheet in a spreadsheet.

In other words the target audience consists of users that need to handle more ambitious
and complicated applications than possible today. More advanced users (e.g. users with
good VBA knowledge) will also benefit from the user-defined functions.

The goal is therefore to give the users some tools for handling complex problems that
previously required a programmer.

9

Concepts for measuring good design

For measuring the quality of the design of the user-defined functions [JBB03] uses some
well known design concepts from the HCI (Human-Computer Interaction) world:

Abstraction gradient What are the levels of abstraction? Can
fragments of the design be encapsulated?

Consistency When some of the language has been
learnt, how much of the rest can be in-
ferred?

Error-proneness Does the design of the notation induce
careless mistakes?

Hidden dependencies Is every dependency overtly indicated?
And are the dependencies perceptual or
only symbolic?

Premature commitment Do programmers have to make decisions
before they have the information they
need?

Progressive evaluation Can a partly completed program be exe-
cuted to obtain relevant feedback?

Role-expressiveness Can the reader see how each component of
a program relates to the whole?

Viscosity How much effort is required to perform a
single change?

Visibility and juxtaposability Is every part of the code simultaneously
visible (assuming a large enough display),
or is it at least possible to compare any
two parts side-by-side at will? If the code
is dispersed, is it at least possible to know
in what order to read it?

Together with the above concepts and a simple cost-benefit analysis this gives some indi-
cators for measuring the proposed design.

3.1.2 User-defined functions in Excel

With the stated main goal for the user-defined functions and with the definition of the
target audience [JBB03] sets up the following ground rule:

The implementation of a function must be defined by a spreadsheet, because that is the
only computational paradigm understood by our target audience.

10

With this rule as basis a ’function instance sheet’ (called ’function sheet’ in the rest of
this paper) is defined that contains the actual implementation of a user-defined function.
The idea is that such a function sheet works exactly as a normal worksheet.

The function sheet is integrated in the spreadsheet by containing the user-defined function
with formulas that has references to cells in other sheets in the spreadsheet. The formulas
in the function sheet will thereby have direct references to ’live’ data in other sheets
and should one follow the concept another call to the user-defined function would create
another function sheet equal to the first one but with different data references, i.e. a new
instance of the function. The signature of the user-defined function is fixed predefined
cells in the function sheet, i.e. other instances of the function will use the same cells for
input and output as the first one.

With the idea above a user-defined function will be defined in a sheet that looks like every
other sheet in the spreadsheet. It will also be evaluated the same way, i.e. all values
will be continuously calculated and shown. Does the calling sheet change then so will the
function sheets and vice versa.

Likewise will other spreadsheet functionalities such as formats, column and row width-
s/heights, frames, etc. be available exactly as they are in normal sheets.

See figure 2 for an example of a user-defined function as illustrated in [JBB03] (figure 2).

Figure 2: A user-defined function as illustrated in [JBB03] (figure 2).

11

Good design?

The main idea obviously supports the ground rule but what about the outlined design
concepts?

The consistency is good. A user from the target audience will with a short introduction
be able to use the design since the available functionalities should not be foreign.

The role-expressiveness is good. Excel already does a good job here by indicating related
(top-level) cells with colored frames.

Hidden dependencies are a general problem in Excel if one considers dependencies across
different sheets. Here it is solved by extending Excel’s dataflow arrows to also work across
sheets.

Visibility and juxtaposability is improved in comparison to Excel since the design of a
formula shows both the formula and the result value in a cell.

Premature commitment is solved by given the user the possibility to change his or hers
formulas into user-defined functions. When the user realizes that a user-defined function
might be a good idea he/she can get the user-defined function created automatically via
the cells property window. In this way the user will avoid making a decision whether or
not the formula should be a user-defined function or not before knowing how the formula
will look like.

The abstraction gradient is low since a function sheet is an instance of a function and does
not have a ’definition sheet’ attached to it. In this way the user will never have to consider
the abstract definition of the function.

Apparent problems

Especially regarding the discussion of the abstraction gradient the above produces a couple
of questions that must be answered:

• If there are several thousand calls to a user-defined function, how can one avoid
several thousand function instances?

To avoid that the user has to face a large number of function instances that will be
impossible to handle, an ’instance tree’ is made for every instance of a user-defined
function. With help from such a tree the user can navigate up and down in the

12

function calls that are present in the current cell. Only the relevant instances of the
function will be shown to the user.

• If it is only an instance of the function that is shown, how can one then change the
definition of the function?

This problem is solved by giving the user the possibility to change either all instances
of the function (and thereby indirectly changing the definition of the function) or
only the current one. This possibility is offered to the user in case of changes in a
function sheet.

• What is the possibility for debugging of the user-defined functions?

The possibilities are the same as Excel offers where changes in the source immedi-
ately are reflected in changes in the result. I.e. debugging and programming is so
integrated that one can see it as one process.

Matrices

One cannot imagine a good spreadsheet representation without the ability to handle ma-
trices. In the built-in functions in Excel matrices are supported such that matrices can be
used as arguments, e.g. SUM(A1:D10), and the user-defined functions should therefore
also support matrices.

This decision gives rise to problems defining the input in the function sheets since we will
neither specify the size of the input matrix nor handle multiple input matrices (potentially
of different size) in the same function sheet.

The above is solved by letting the input matrix live in a single cell in the function sheet.
This requires that there is added an extra ’matrix’ run-time type.

Additionally the following basic design choices are made:

• Every formula can have a matrix as result.

• Matrices are two-dimensional.

• A vector is a special case of a matrix (1×n or n×1).

• A scalar is transformed into a 1×1 matrix but only in connection to matrix applica-
tions.

13

3.2 Analysis and use of the theory

With the ideas from [JBB03] as our basis, our goal is to implement the described user-
defined functions. Before we do this it is necessary to go through the paper of [JBB03]
with real implementation in mind.

The design in the paper is described in regard to the user’s experiences and demands but
the paper lacks discussions regarding the more design technical problems which always
pops up when preparing an implementation.

In this section we will therefore analyze the ideas and the basic design of the user-defined
functions with a real implementation in mind.

3.2.1 The need and the target audience

In the day-to-day work with spreadsheets, problems are solved by the available and well
known tools. The majority of the spreadsheet users know the built-in functions but there
are only a small fraction of these who uses the more advanced ones. Partly because they
are too difficult to learn and partly because the users do not think that they will solve their
problem. This group of users does not know that there exist possibilities to define their
own functions (e.g. via VBA in Excel) and can therefore not use this to their advantage.
This often results in very large and slow spreadsheets containing several worksheets that
are almost impossible to keep well-maintained. A lot of these spreadsheet solutions could
be improved by the use of the user-defined functions from [JBB03].

We think that this group of users without doubt will benefit from easily accessible user-
defined functions that can help to solve their problems. Since these functions will be quick
and easy to use we also think that advanced users - users that make use of VBA - will
benefit from these functions.

If the user-defined functions operates well both technically and visually they could most
likely replace some of the built-in and VBA-defined functions. This might especially be the
case in companies where local libraries are created for the companies’ specific functions.
Such functions could be loaded in while starting-up a spreadsheet (e.g. as template sheets)
and thereby be ready for use exactly like the built-in functions today.

In our experience from the practical use of spreadsheets (primarily Excel) there is also a
significant need for easily accessible, easy-to-learn and visually well-defined user-defined
functions. The target audience is - as described in [JBB03] - primarily the large group of
ordinary users but as mentioned earlier we think that also more advanced user will benefit
from these functions.

14

3.2.2 User-orientated design versus technical design

With the ideas and the design from [JBB03] one can easily put up a concrete example
from ’the real world’:

Example: Age calculation

In the life insurance business one has to define exactly how to calculate a person’s age
from his or hers social security number (SSN) or date of birth. This may sound easy but
almost all IT systems used in this business run (calculation wise) in monthly intervals.
This means that the company has to exactly define how to calculate the age.

Figure 3 shows an ’ordinary’ Excel where the age of a person is calculated in months on a
given date from the person’s date of birth. In the version of this spreadsheet that is used in
’the real world’ several ages on several persons on several given dates are calculated but for
simplicity we have modified the spreadsheet to only handling one at a time. As a curiosity
one notice the subtraction of 1, this is due to the fact that insurance companies normally
calculates your age as if your birthday is the first of the month after your actual birthday.
In the figure this means that the birthday used is the first of September 1974.

Figure 3: ’Ordinary’ Excel sheet for age calculation

Figure 4 shows how the user-defined functions could be thought implemented as described
in [JBB03]. Notice, that the ’Edit’ window described in the paper is not on the figure.

15

Figure 4: Excel sheet for age calculation by usage of user-defined functions

Even though the above example is very simple it is easy to see that many of the outlined
benefits of user-defined functions are in play. To visualize good design is one thing but to
actually make it is something else.

In [JBB03] focus is mainly on the user’s experience of the user-defined functions (the
design is actually realized from the user’s demands and needs) but the paper leaves behind
some unanswered questions that must be answered while doing the implementation (the
technical design).

In the following sections we will outline the most obvious ones. A detailed discussion of
the design and the problems/issues created hereby will be taken as they occur through
our iterative approach.

The nine concepts for measuring good design

With the nine concepts for measuring good design (see section 3.1.1) as basis the next
step in the article [JBB03] is to develop their design of the user-defined functions. In this
section we will discuss these concepts and hereby review their importance and influence
on the technical design.

Consistency: With the defined target audience the consistency in the design has to be
good. If not, we will end up in a situation like the one we have today with VBA
versus Excel. It is therefore a critical area both in the overall design but also in

16

every detail. The overall user-orientated design presented in the paper provides us
with a good design and it is therefore important that the technical design does not
spoil it.

Role-expressiveness and hidden dependencies: Like with the consistency it is important that
the user understands how the available components relates to each other and that
these relations are visualized to the user. To visualize the dependencies and relations
[JBB03] proposes to use Excel’s current visual properties, i.e. colored frames and
arrow indicating the dependencies (extended to work across sheets). This solution
might work when we are dealing with few and simple function sheets but one can
easily think of situations with several non-simple function sheets where this results
in a visual chaos of arrows and colored frames.

Visibility and juxtaposability: This area is proposed solved by letting the user see both the
formula and the result in each cell. This is supposed to include all visible cells
and not only the active ones. At first sight this may seem okay but in large sheets
with several non-trivial formulas it will be very unhandy and difficult to distinguish
between results and formulas.

Premature commitment: To give the user the possibility to automatically get a user-defined
function defined from a formula seems like a good and user friendly idea. An imple-
mentation of this is not in scope for this paper though (see section 1.2).

Abstraction gradient: The level of abstraction is kept down by avoiding the user to make
decisions regarding the definition of the user-defined function instead the user only
sees and uses instances of the function. On changes in a function sheet the user will
be prompted whether the change should include all other instances of the function
or only this specific instance. These considerations seem reasonable. As we shall see
later on it is not as easy to implement as it seems.

The next three concepts are not discussed in [JBB03]. We will briefly discuss them here
though.

Viscosity: Since changing a cell in a function sheet is no different than changing a cell in
a normal worksheet the viscosity in the design is not different than normal Excel.

Progressive evaluation: This area is improved in comparison to normal Excel since the
users can encapsulate complex formulas and thereby easier being able to handling
the formulas.

17

Error-proneness: At first sight the tendency to errors is no different than normal Excel but
because of the problems regarding the role-expressiveness and hidden dependencies
there might be areas around situations with several non-simple function sheets where
the user potentially has to handle a large number of instances, function sheets and
the dependencies across these.

A function sheet is an instance

In the proposed design a function sheet is only an instance of the user-defined function.
The user never defines the function but only instances of it. Nevertheless it should be
possible to change the definition of a user-defined function, not only an instance of it.

A good implementation of this is not obvious. One solution could be to define a kind of
default instance in the technical design. All function calls should then have some sort of
copy of this default instance. Thereby a change in the default instance will change all the
functions instances. The problem is not 100% solved because the function is not completely
defined by the default instance: The user must still define the function signature. This
will affect one or more of the outlined design concepts. E.g. what is the affect of letting
the user state the function signature? Will it change the user-oriented design severely or
is it only a negligible detail?

The function signature

An important part of the users experience with a spreadsheet is how intuitive it is to
define the function signature. Naturally we want the signature to be easy to handle and
edit both when working with function sheets, when editing the signature and when using
the function. But it is not straight forward to find a good way to fulfill this wish.

The proposed solution in [JBB03] is to let every function sheet contain an edit button
which shows the function signature in a dialog window. Then it is possible to change,
delete and add arguments, names, documentation, etc. It is here indirectly assumed that
e.g. the arguments to the function are fixed to a specific area in the sheet (e.g. the first
column). This solution is easy to implement and easy for the user to understand, but it
is not plausible for several reasons:

• Allocating a part of the sheet that the user cannot control is generally a bad idea.
Users like to be in control and different users will have different preferences for their
setup. I.e. it limits the user’s real-estate management.

• User input is not removed completely because we are still required to define how
the result is represented in the function sheet. Allocation a part of the spreadsheet

18

as the result area will limit the possible result set of the function by restricting or
eliminating matrix results (see section 7).

• Most built-in functions in Excel are functions with a fixed number of arguments.
Limiting the number of arguments in a predefined column will require user input
and some kind of visual indication that the argument cells are restricted to a certain
area. Since the restriction is most likely to be the default setting this visualization
will be used most of the time.

Every function call is an instance of the function

One of the main ideas in the design is that every function call to a user-defined function
is an instance of the function. But what happens when there is several thousand calls to
a user-defined function and thereby several thousand function instances?

In [JBB03] this question is also asked but only answered/solved seen from the user’s side
(see section 3.1.2) by creating an instance tree. But how about the technical side of the
problem? Consider how several thousand function instances will affect performance, e.g.
recomputation of the spreadsheet, memory usage, etc.

Recursion

In [JBB03] recursive user-defined functions are proposed not to be supported. Three
reasons are stated:

1. Recursive functions are less useful than in mainstream functional languages.

2. Recursion threatens consistency because of the proposed linked-worksheet model
(dataflow arrows across sheets).

3. Recursion leads to deep invocation stacks.

As argued in section 3.2.1 we think that the user-defined functions can be beneficial also to
advanced users. This group of users is used to recursive functions and will assume that a
user-defined function application supports recursion. Further, we see problems concerning
the use of dataflow arrows across sheets (see section 3.2.2) and will not recommend an im-
plementation of it. Lastly, deep invocation stacks may occur in connection with recursion
but as we shall see one can find solutions to handle these situations.

19

Matrices and higher-order functions

As we shall see later on the possible use of matrices in user-defined functions are limited
if we do not support higher-order functions. Higher-order functions are not discussed in
[JBB03] but as we also argued in the previous section, more advanced users will assume
that the application supports higher-order functions.

20

4 Methodological approach

Before developing a spreadsheet with user-defined functions we need to define our method-
ological approach. To define which approach to use we need to consider the following:

1. We do not initially have a 100% clear picture of the detailed design requirements.

2. We prefer a progressive and continuous development since we initially do not know
whether or not the theory works in practice and to be able to have control over the
progress.

3. We wish to uncover essential design aspects and identification of potential risks early
in our development.

To support these considerations we have chosen an evolutionary development via an iter-
ative enhancement method.

By evolutionary development we mean development that requires a sequence of cycles of
design, implementation and evaluation without any attempt to capture a complete set of
requirements in advance. A prototype of partially known requirements is implemented
first. When more understanding of the requirements is gained, new requirements are then
implemented. Each successive prototype explores new needs and refines functionality and
design that has already been implemented. See [Flo84].

To accomplish this we use the iterative enhancement method which [BT75] defines as ’a
practical means of using a top-down, step-wise refinement approach to software develop-
ment. A practical approach to the problem is to start with a simple initial subset of the
problem and iteratively enhance existing versions until a full system is implemented. At
each step of the process, not only extensions but also design modifications can be made.
In fact, each step can make use of stepwise refinement in a more effective way as the sys-
tem becomes better understood through the iterative process.’. The iterative enhancement
method assumes that there is an initial ’project list’ which is achieved in stages beginning
with the implementation of a simple subset and undergoing successive refinements to the
software as the development goes on until a final implementation is developed. While the
software design can undergo modification one should note that the project specifications
themselves do not change ’stepwise’.

The four prototypes

Due to the above considerations and the described method we divide our development
into four prototypes:

21

Prototype 1 Simple function: Includes

• Setting up a spreadsheet.

• Import from other spreadsheets.

• Simple function where we have N known arguments, the parameters are simple
and the result is simple.

Prototype 2 Advanced function: Includes

• Simple function where we have a variable number of arguments and the number
of arguments are known when the function is called.

• Referring function. Function which refer to cells outside the function sheet.

Prototype 3 Matrix function: Includes

• Matrix function where both the argument and the result is a matrix.

Prototype 4 Recursive and higher-order function: Includes

• Recursive function. Function that calls itself.

• Higher-order function. Function that has another function as argument.

The next four sections describe the four prototypes one by one.

22

5 Prototype 1: Simple functions

In the first prototype we set up a spreadsheet design and make it work with a simple
user-defined function.

Our primary objectives are:

1. Setting-up a spreadsheet environment and design.

2. Making import from other spreadsheets possible.

3. Implementation of a simple user-defined function.

To be able to implement any user-defined functions in a spreadsheet we will of course first
have to define and set-up a spreadsheet. This involves exactly defining how each element
of the spreadsheet must be implemented (see section 2.2 for a definition of the terms used).

In order for us to make easy use of the cases from Excel spreadsheets and to avoid hav-
ing to reenter test data we must also have an import functionality that can load these
spreadsheets into our own.

Last but not least we will implement the case spreadsheet described in section 3.2.2.

5.1 Setting-up and designing a spreadsheet

In the following we describe the spreadsheet representation. This will include definition
and description of simple data and objects but also of areas more complex.

Most of the terms in the following tables are based on [Ses05].

23

Term Description

Spreadsheet A collection of sheets.

Sheet A rectangular array whose elements may contain null or
a cell.

Non-null cell May be

• a constant floating-point number or

• a constant text string or

• a formula or

• a matrix formula.

Formula Consists of

• a non-null expression to produce the cell’s value and

• a cached value and

• a spreadsheet reference and

• an up-to-date field and a visited field.

Matrix formula Contains a non-null cached matrix formula shared among
a number of cells. The cached matrix formula produces a
matrix value giving the values of all those cells, so a ma-
trix formula also contains the cell address in the matrix
value of that cell’s value.

Cached matrix formula Consists of

• a formula and

• the address at which that formula was entered and

• the corners of the rectangle sharing the formula.

24

Term Description

Expression May be

• a constant floating-point number or

• a constant text string or

• a cell reference or

• an area reference (two relative/absolute references) or

• a call of an operator or function.

Value Produced by evaluation of an expression and may be

• a floating-point number or

• a text string or

• an error value or

• a matrix value.

Atomic value May be

• a floating-point number or

• a text string.

Matrix value A rectangular array of values, some of which may be null. A matrix
of size 1x1 is distinct from an atomic value.

Cell address The absolute, zero-based location (col, row) of a cell in a sheet.

RARef A relative/absolute reference (colAbs, col, rowAbs, row) used to rep-
resent cell references A1, A1, $A1, A$1 and area references A1:$B2
and so on. If the colAbs field is true, then the column reference col
is absolute ($), otherwise relative (similar for the row references).

Function Represents a built-in function (e.g. SUM, SIN, etc.) or operator (e.g.
+, -, etc.).

25

5.1.1 Representation of cell reference

Absolute references are stored as absolute zero-based cell addresses and relative references
as offsets relative to the address of the containing cell. This is represented by the class
RARef as shown in listing 1.

class RARef
{

public bool colAbs , rowAbs ; // t rue i f r e f e r enc e i s ab so l u t e
public int colRef , rowRef ;
. . .

}

Listing 1: Representation of cell reference

5.1.2 Absolute and relative sheet references

In an expression a reference to a cell is represented by the class CellRef. To enable
references to cells in other sheets (the Sheet1!A1 notation in Excel) a Sheet field is added
to CellRef class as shown in listing 2. If the sheet field is non-null then the reference is
sheet-absolute and refers to a cell in that sheet. If the sheet field is null then the reference
is sheet-relative and refers to a cell in the current sheet.

class Cel lRe f : Expr {
private readonly RARef r a r e f ;
private readonly Sheet sheet ; // nu l l i f sheet−r e l a t i v e , e l s e sheet−ab so l u t e
. . .

}

Listing 2: Determining absolute and relative sheet references

5.1.3 Recomputation

A spreadsheet is recomputed by recomputing every sheet. A sheet is recomputed by
recomputing every cell. A formula cell caches its value and a matrix formula caches the
value of the underlying matrix-valued expression, which is shared between all the cells
participating in the same matrix formula.

Cached expressions has two flags: Visited and uptodate. At the beginning of a recompu-
tation both are set to false.

A cached expression is evaluated as follows:

1. If uptodate is true, return cached value.

26

2. Else, if visited is true, the cell depends on itself, stop and report a cyclic dependency.

3. Else, set visited to true and evaluate the cell’s expression.

4. If the evaluation succeeds, set uptodate to true, cache the result value and return it.

We introduce a spreadsheet-global field ’set’ and maintains the following invariant:

Between recomputations, the visited and uptodate fields of every cached expression equals
the set field of the spreadsheet.

Resetting the visited and uptodate fields of all cached expressions to false is a simple
matter of inverting the global set field.

5.1.4 Cyclic references

The value of a cell may depend on itself. The purpose of a cached expression’s visited

field is to discover such dependencies. After discovery of a cycle, all cached expressions
have their visited and uptodate fields reset to the value of the global set field.

5.1.5 Functions with multiple arguments

Functions such as SUM and AVG take multiple arguments. These are evaluated by ap-
plying a suitable action to all arguments; recursively applying it to the elements of every
matrix-valued argument.

5.1.6 Functions with matrix-valued results

Some functions produce a matrix value as result. The matrix value result is simply a
matrix of values.

5.1.7 Parsing of spreadsheet formulas

Formulas are parsed by a simple parser generated using CoCo/R (see [MWL]).

27

5.2 Importing from other spreadsheets

During development we want be able to easily use the cases from Excel spreadsheets and to
avoid having to reenter test data each time the program is modified. We could define our
own format, but choosing to import data from Excel gives us several advantages. Excel
gives us much richer environment for editing test data and relieves us from the task of
defining and implementing a file format.

Recent versions of Microsoft Office supports an XML file format (see [Mic]), for which
Microsoft publishes the schemas. These schemas make importing from Excel a question
of parsing XML and building the spreadsheet accordingly.

The only major obstacle is the different representations of cell references. As opposed
to our A1 representation (the one used by default in Excel user input), the Excel XML
format uses a R1C1 format (row number and column number). The transition to our A1
representation is handled by a regular expression before parsing formulas. This is slightly
odd since the internal representation of our program is R1C1, but enables us to use the
formula parsing described above without futher modifications.

Since function sheets are not supported in Excel we have defined a naming scheme for
importing functions:

1. Prefixing the name of the sheet with ’@’ implies that the sheet will be imported as
a function sheet. The name of the function will not include the ’@’.

2. Function signatures are represented in a special format inside the sheet. The format
depends on the prototype in question, but is generally a textual representation of
references to the cells where arguments and results can be found.

3. The signature is a range of cells which is located using a named range in Excel. The
name of the range is the name of the function postfixed with the string ‘ signature’.

Calling a user-defined function from a cell in Excel will return #NAME but will be evalu-
ated correctly once imported in our prototype, given the signature is defined as described.

5.3 Implementation of a simple user-defined function

Now that we have a spreadsheet and import functionality defined we focus on the imple-
mentation of a simple user-defined function.

During this process we have to make some design considerations and decisions. In the
following we have described the most important of these.

28

5.3.1 Defining function signatures

To define a function we need to define the signature, i.e. define which arguments it takes
and how the result is returned. In the context of spreadsheets we furthermore need to
define how the arguments and the result are represented in the function sheet. The ease
of defining a function is a very important part of the user experience with function sheets.
If this part is too complex, then it will never be used in practice.

We will discuss three solutions which are familiar to spreadsheet users and choose one for
our implementation.

Predefined cells: To accommodate the mindset of the spreadsheet users we would like to
represent the arguments in the function sheet as values in cells. The simplest solution
involves allocating an area of the sheet for the arguments, say the first column of
the function sheet. But this solution has several drawbacks as stated earlier in
section 3.2.2.

On the other hand this solution has the benefit that representing the arguments in
cells allows for testing of the function by inserting values directly into the function
sheet and checking the result cells as one would do with any other sheet. This is
desirable also in a more complex solution.

User-defined cells: One of the problems with the solution above is that it limits the user’s
possibilities. To solve this issue one can let the user define which cells hold the
arguments of the function. This solution requires only a simple extension to the user
input and keeps the benefits from the predefined cells solution.

The function signature will now be on a form as in the example below.

Price(A3;A5;B8)=C4

Note that the result value also can be a range of cells (e.g. C1:C8).

The number of arguments will automatically be limited to the number of arguments
given by the user (three in the example above). If the user wants a variable number
of arguments he or she will have to select a column for the arguments. Excel already
supports a functionality we can reuse: The formula =SUM(F:F) is valid for the
built-in function SUM that in this case returns the sum of all values in column F.

In this way a function with two mandatory and some optional arguments has the
form as the example below.

Price(A3;A5;B:B)=C4

Note that in most of Excel’s built-in functions with variable number of arguments
the number of arguments are limited to e.g. 30. Also note that there can be only

29

one variable range as argument to a function and that this range has to be the last
argument of the function.

When selecting the location of the function arguments the user can choose to name
the arguments. This can be very useful when the function is used by other sheets
since it gives information about the arguments. In that way it will become quicker
and easier to use the function.

Named arguments: In Excel the user can name a cell or a range of cells and use the name
in formulas instead of using the cell reference. The names are shared between all
sheets which makes it easier to refer to cells in other sheets.

If we introduce local names for each function sheet this feature can be used to handle
the arguments. The user will then define the arguments in a dialogue which will be
familiar to the one used in Excel (see figure 5) just with the possibility to name the
arguments.

Figure 5: Screenshot from Excel (Danish)

Clever naming of arguments will ease the use of the user-defined functions in formulas
but there are some drawbacks connected to this solution. There is an inherited
conflict with the global naming system found in Excel, since defined names are
global. This will require that our target audience can distinguish between local and
global names. One could use a prefix on the function arguments (e.g. %argument1,

30

%argument2, etc.) but to not confuse the user the prefix would have to appear on
the signature. One can not expect the user to key in the names beginning with e.g.
% though. So it is doubtful whether the confusion can be avoided.

To summarize, we have three possible designs for a function signature, predefined cells,
user-defined cells named arguments. We choose the user-defined cells design for three
reasons:

1. Even though the predefined cells design is the design that best satisfies the nine con-
cepts for good design (see section 3.1.1) it conflicts with our ambition to implement
matrix functions in a later prototype.

2. With the user-defined cells design we are able to implement matrix functions later
on and at the same time satisfy the nine concepts. The cost is that the user will
have to define the location of the function arguments but this is considered to be a
rather small addition.

3. The named arguments design is good idea seen from an advanced spreadsheet user’s
point of view but our target audience will definitely run into problems understanding
the design. In other words the abstraction gradient concept would fail with this
solution (Note that even the naming system found in Excel is rarely used by people
that belong to our target audience).

Defining the result value

When a new function sheet is first added to the spreadsheet the user can treat it like any
other normal sheet. In order not to violate the premature commitment concept we do
not want to force the user to make a decision about the function signature until he/she
is ready to do so. Therefore one has to look at how the function behaves before the user
has given any input to the function. An empty function sheet will be a function without
arguments and without a result value. Since a function can exist without arguments there
is no problem in missing arguments, but if there is no result value defined we have a
problem.

We have two options how to define the result value:

1. Define that the result value is always the value in a single predefined cell, e.g. A1.
The predefined cell will be changeable by the user and the function will always have
a result value. This simplifies the definition of the function but claims an area of the
screen at first use, which forces the user to change the signature in order to define
the sheet the way he/she wants it.

31

2. Return an error message or undefined value.
Our target audience will most likely recognize the value #UNDEFINED since it is
used in Excel. The user is this way forced to define the result value for the function, a
step he or she probably would take anyway. Most importantly we delay the decision
to a time when the user is ready to make the decision.

If one chooses the first solution, the default signature will be on the form as the example
below.

Price()=A1

otherwise the form will be, e.g.

Price()=#UNDEFINED

We have chosen the second option since it supports the premature commitment concept
and because our target audience is used to handle error messages from Excel. Moreover
choosing the first solution will conflict with the consistency concept since the predefined
result value conflicts with the thoughts of defining the arguments by user-defined cells
(although the predefined result value is changeable).

5.3.2 Representing the function instance

When a function sheet is invoked we want to represent the instance resulting from the
invocation, preferably in an optimized efficient way. The first representation is rather
naive: When a function sheet is invoked a full copy of the function sheet is made, the
copy is then modified to represent the arguments and then recomputed. The result of the
function can be read from the copy which also contains all intermediate results from the
recomputation.

Copying the function sheet is a safe way to represent the function instance because the
copy is totally separated from the original, but it is hardly efficient. We can improve on
this deficiency by looking at the stability of the data in our function sheet. In a normal
sheet each cell holds one value, represented either as a constant value or as the result of a
computation. Constant cells can be copied by-reference, whereas cells that change need a
deep copy.

We have the following rules for copying a function sheet:

1. A new instance of the function sheet is created to represent the copy.

32

2. Cells are copied by-reference or by-value depending on the cell type.

(a) By definition, constant cells do not change and are thus copied by-reference.

(b) Formula cells change depending on the referenced cells or if the function is
volatile (like Random). One should be able to determine whether a function
is constant or not. Non-constant functions are copied by-reference. Internally
the formula keeps a reference to the parsed expression; this reference does not
change and is reused in the copy.

(c) Cells containing arguments can be treated as constant values in the copy. The
original cell is not copied; instead a new is value is inserted.

This is a more efficient solution than the full deep copy, but it can be further optimized.
However, this solution satisfies our goals for this prototype. We will revisit the instance
copy in later prototypes.

5.3.3 Invocation list

In [JBB03] the possibility for the user to navigate through a so-called ”invocation tree”
is mentioned. This requires that the spreadsheet for each user-defined function stores an
invocation list. This list gives the user the opportunity to examine the function sheet as
it looks at every call to the function. Seen from the user it is possible to navigate through
several sheets via a tree structure but seen from the function sheet’s point of view it is only
a list of calls to functions. In connection to the design of these lists there are a number of
decisions that have to be made.

When a function is called, a new item on the invocation list is created. This item contains
a reference to the calling cell, arguments and a representation of the result of the call. In
the following we discuss how these items look like and for how long they must be ”kept
alive”.

Cell references: A reference to the calling cell is given by a cell reference with information
about the sheet containing the calling cell. This is not necessarily a unique reference
though. One could choose to set a postfix on the name, e.g. F#1, F#2, etc., if there
are multiple calls to F from the same cell. Since it is not clear that it is the call far
to the left in a formula that is considered to be the first call (evaluated first), one
has to make sure that the numbering feels natural for the user. This is especially
important in respect to non-strict functions (e.g. IF) where an argument may not
be evaluated at all. A possible solution is to number the calls in connection to the
parsing of the formula.

Arguments: The arguments to a function can be represented as expressions or as values.
In [JBB03] it is proposed to use expressions but if these exceed a certain size they

33

will not give the user any valuable information, which would be in conflict with the
visibility concept. If on the other hand we represent the arguments as values, the
invocation list will give an overview of how each function evaluates the argument
expressions. With this solution it can still be an advantage to postfix the calling cell
as described above, even though we can distinguish between the arguments, since it
might be difficult for the user to track the call back to the right place in the formula.

Representation of the result: The representation of the result is at first glance a copy of the
function sheet (see section 5.3.2). When the user chooses an item (see figure 6) on
the list the related copy of the sheet is made visible.

Figure 6: Selecting an invocation from the list.

But it can be difficult for the user to see what has been changed when editing the
function sheet. This is not important unless the user changes the cells where the
arguments are placed. To solve this, one could protect these cells or always change
sheet to the function sheet when a edition is in process. This solution is connected
to the life time of the items in the list.

Life time for an item: In [JBB03] there is spend some effort discussing what to do with the
items on the invocation list if there is a change in the function signature. This must
be based on the assumption that the life time of these items are relatively long or
perhaps that the list is only cleared when the user tells it to.

To some extent we agree to this, i.e. we think that the functionality will become too
weak if the invocation list only contains the latest recomputations of the sheet. But
we also realize that it will require a new flag on the items if the user must be able to

34

distinguish between new and old function calls. In this way the list will be updated
with new items if the function signature is changed.

In Excel one can decide that the spreadsheet must only be recomputed at the user’s
command (via the ”F9” button). This feature makes our items useless until a recom-
putation is carried out. To control this we have to require that the necessary cells
are recomputed before one can navigate through the invocation list. For the time
being our implementation is designed to recompute the entire spreadsheet when a
function is changed. This means that it is relatively simple to get an updated invo-
cation list. There are several drawbacks to this solution though as we will see in the
later prototypes.

To represent the invocation list to the user we have added a drop-down list in the top
right corner on the function sheets, as shown in figure 6.

5.4 Case: Calculation Age

In our field of work, one simple but very common calculation is a person’s age in months
on a given date. The input can be the birthday or a social security number. The Danish
social security number (‘CPR number’) was introduced in 1968, long before anyone thought
about the Y2K problem and thus gives the birth year with only 2 digits. To compensate,
the century is encoded in the serial number, e.g. if the year is 00 and the serial number
starts with 0,1,2, or 3 the year of birth is 1900, otherwise it is 2000. This adds complexity
to age calculation formula which can easily be converted into a user-defined function.

Our example calculates the age from a date or from a string assuming that the birth
year is in the 20th century. After importing the original Excel spreadsheet to our own
spreadsheet we can use a user-defined function to do the desired calculation. Figure 7
shows the function in action.

35

Figure 7: Screenshot from the age calculation spreadsheet.

Figure 8 shows the function sheet for the age calculation in months from a date value.
The yellow ribbon in the top of the screen contains the function signature

AgeFromDate(Birthday(B1),Calculation date(B2))=B5.

The signature is imported from Excel by the cells A8:B10. This example contains interme-
diate results, something which is not possible with regular functions. Also notice that the
drop-down in the ribbon shows that the current instance was invoked from Results!C7,
giving a calculation date of 1-3-2005. The screen shows exactly the result (including
intermediates) from this invocation.

Notice that we have showed the formulas used in column B in the respective row in column
D. We will use this representation throughout the cases in the paper. Also notice that
the Danish date format is dd-mm-yyyy.

36

Figure 8: Screenshot from the function sheet for the age calculation.

Apart from the discussed solutions made on the technical design in section 5.3 the visual
interface to the user is slightly different than the one proposed in [JBB03]. This is primarily
caused by two facts:

• The visual representation of multiple sheets in Excel is replaced by a ”sheet tree” in
a separate window to the far left of the screen.

• The visual representation of the invocation list is shown in [JBB03] as colored arrows
(expanding Excel’s existing feature) whereas we visualize the list as a drop-down list.

For both of the above bullets the difference is caused by our limitations in this work (see
section 1.2) but as we shall see later the colored arrows representation of the invocation
list might turn out to be unfortunate.

The differences impact the hidden dependencies and role-expressiveness concepts but it is
difficult to say whether it is a positive or negative impact (depends on the user). Therefore
we regard these impacts to be negligible. Alternatively it should be fairly easy to make
the visual interface as desired but this is beyond the scope of our work.

37

6 Prototype 2: Advanced functions

In this prototype we expand our first prototype to handle more advanced user-defined
functions.

Our primary objectives are:

1. Implementation of a simple function with variable number of arguments. The num-
ber of arguments is known when the function is invoked.

2. Implementation of a referring function, i.e. a function which refers to cells outside
the function sheet.

3. Implementation of a non-strict, lazy evaluation of arguments. Arguments are eval-
uated when used, thus unused arguments are never evaluated.

We will have to modify central parts of our design from prototype 1 in order to incorporate
solutions for the above objectives. But the first major change, which will also facilitate
solutions to future objectives, is due to a drawback in the design of prototype 1. We will
start with a discussion of this drawback.

6.1 Instance copy

Until now we have made a full copy of the function sheet when we had a new call to the
function (see section 5.3.2). A consequence of this is that we will evaluate all data in the
sheet including auxiliary data (i.e. data not used). This is a very inefficient solution since
we only need to evaluate the required values to show the result.

To optimize the instance copy we need to revise the invocation list design in prototype 1
(see section 5.3.3).

6.2 Invocation list revised

When a function call returns, the instance copy of the function sheet is no longer interesting
since the result is already extracted. The copy is only used to show intermediate results
and can be recreated when the user chooses an item on the invocation list. This leads us
to focus on a solution where the representation of the invocations on the invocation list
only contains the calling cell and the evaluated arguments.

Notice that this solution will also be helpful if one wish to implement code generation
since one does not need to get the intermediate results out of the code generated. If one

38

wishes to inspect the calculated sheet, it can easily be recreated as done previously. If, on
the other hand, one wishes to examine the code generated, it can be inspected using an
IL debugger.

Recall that only formula values and arguments change between invocations and these
are the values we need to keep track of. Following the thoughts above we introduce a
CalculationContext which contains a collection of (CellAddr, Value) pairs, where results
are stored when formulas are evaluated in the function call. This is, if e.g. cell A7 contains
a formula which have been evaluated to 42 in this function call, there would exist an entry
(A7, 42) in the context. Each time a function sheet is invoked a new CalculationContext is
created and added to the function’s invocation list. After the sheet has been calculated the
CalculationContext is only used for viewing purposes. If the sheet has not been evaluated
the CalculationContext will be empty. All sheets (both function sheets and worksheets)
have a default context which stores the result of the normal calculation. If the user chooses
to edit the function sheet he or she will edit the default context.

public class Calculat ionContext
{

private Expr [] arguments ;
private Dict ionary<CellAddr , Value> va lues ;

. . .

public Value this [CellAddr ca]
{

get { . . . }
set { . . . }

}
}

Listing 3: Partial class definition of CalculationContext

Listing 3 shows that CalculationContext contains a list of arguments (this is null for the
default context in Worksheet) and a Dictionary with the (CellAddr, Value) values we have
calculated. We change the implementation to pass along the CalculationContext instead
of the instance copy when we recompute sheets. An indexer is introduced to access the
dictionary and handle exception rising from missing values.

6.2.1 Function arguments

The function arguments (together with the function name) are what identifies the function
call and must therefore be part of the CalculationContext. The cells where the arguments
reside are initially (when the function sheet is created or imported) of any type the user
decides, most likely a ConstCell with some default value.

In prototype 1 the arguments were inserted in the chosen cells in the function sheet. We
can no longer replace the cells with the value of the argument because we only have one

39

copy of the sheet. Now we need to support the arguments in the CalculationContext.
When a CalculationContext is initialized the arguments are placed on the internal list of
values. To read the arguments back from the context we introduce a new kind of cell
called ArgumentCell. See subsection 6.2.3 below for more details on ArgumentCell.

6.2.2 Recomputation

The method for recomputation of the spreadsheet described in section 5.1.3 now needs to
operate on CalculationContext. This means that:

• A formula cell reads the result from its CalculationContext, other cells are unaffected.

• To start the recomputation we empty the CalculationContext for results using a
reset method. The reset methods call the method Clear on the internal dictionary ,
so after reset no (CellAddr, Value)-pair exits for the context.

• A formula cell is set to ‘visited’ by placing a special VisitValue (special class inherit-
ing from Value acting as a marker and found as a static property on the Value class)
in the context. This value is only used to detect cycles.

• A formula cell is up-to-date if there exist a Value different from VisitValue for the
given cell. We have a cycle if we encounter the VisitValue during calculations.

For a source code representation of the last two points, refer to listing 4. Notice that a
CyclicException is thrown if we are about to return the special VisitValue marker.

public override Value Eval (Calculat ionContext context , int col , int row)
{

CellAddr ca = new CellAddr (col , row) ;
Value v = context [ca] ;
i f (v == null)
{

context [ca] = Value . V i s i tVa lue ; // i n d i c a t e s t ha t the r e s u l t i s pending
v = expr e s s i on . Eval (context , co l , row) ;
context [ca] = v ;

}
i f (v i s Vis i tVa lue)

throw new Cyc l i cExcept i on () ;
return v ;

}

Listing 4: Evaluation of formulas using CalculationContext

By using CalculationContext this way we have simplified the visited/up-to-date pattern
from section 5.1.3 since we do not need to call every cell to reset the sheet. Now resetting
the sheet is simply a matter of clearing the values in the context.

40

6.2.3 Non-strict arguments

How do we handle the situation where an argument evaluates to an error but may be
unused?

If we do nothing about it we might get an error value in some cell which we will ‘carry
around’. If the error does not affect the result it does not matter. One could think of a
function like e.g. ’if x > 0 then return 1/x else return -1’ which is represented in
a spreadsheet as IF(A1>0, 1/A1, -1). The function will evaluate and give a result even
though x is 0 since the calculation continues with error values. Obviously evaluating all
arguments works, but since dividing with zero is impossiple we need to change this. Also,
this of the clock cycles wasted by calling such a function several times or having cyclic
references involved in such formulas.

To facilitate non-strict arguments we make two changes:

1. When the function must be computed we only evaluate the result cell. It will then
run through its dependencies to evaluate these. Unused cells will not be evaluated,
for instance auxiliary cells the user created for testing the function inside the function
sheet.

2. To avoid evaluating arguments, the ArgumentCell must hold a reference to the ar-
gument expression (including the sheet from where it originates) and only evaluate
the argument when needed, e.g. the expression 1/A1 is only evaluated when A1 is
greater than zero in the formula above. When evaluating an argument the value is
placed on the CalculationContext like the results of a formula cell.

But we must be aware that we might be forced to evaluate the arguments anyway since:

1. Upon displaying a sheet all cells are evaluated. So cells that are not evaluated in
connection with the function call will be evaluated for display.

2. If the arguments are vital for the visual representation of the function call they must
of course be evaluated upon display.

6.3 Supporting variable number of arguments

To support a variable number of arguments we need to change the function signature of
the user-defined functions used in prototype 1. But before we can do that we have to
make sure that we represent a function with a variable number of arguments in a sensible
way. Such a representation can be done in many ways:

41

1. The simplest way is to represent it as a function where one can choose to either set a
fixed number of arguments or set all arguments to optional. The great disadvantage
here is that we limit the user’s opportunities to define flexible and complex functions.

2. Another possibility is to represent a function is one which takes a fixed number of
arguments and a number of optional arguments. This representation allows for more
flexible and complex functions but we are still forcing the user to a certain number
of arguments (both fixed and optional).

3. The third possibility is to represent it as above just with an unbounded number of
optional arguments. This is similar to the ellipsis notation used in C++.

In this prototype we choose to represent the optional arguments as a cell area, thus limiting
the number of optional arguments. The fact that the cell area is limited does not violate or
debase any of the design concepts since standard Excel functions have a limited number of
arguments (a high limit of ∼30 though). Alternatively the user can use an entire column
for the optional arguments (this is also a cell area).

To implement this, the signature will now consist of the list of cell addresses (with individ-
ual names) found in prototype 1 followed by an optional cell area (with one name) defining
the location of the function arguments. The optional argument name will be postfixed
with a number to indicate the number of optional arguments.

When a function is invoked the number of arguments is known and we apply these to the
CalculationContext. Unused arguments will have null values, which will be converted to
zero or empty strings when used in formulas. This is standard behavior of spreadsheets
when no value has been entered into a cell.

Applying the function sheet to the arguments is straightforward. However, when filling
the arguments into the cell area one must either go by rows first or by columns first. This
is a design decision since neither way is favored by the implementation nor has any effect
on any of the design concepts. One could let the decision be up to the user but this will
introduce additional complexity and affect the abstraction gradient concept. After these
considerations we merely took the decision to go by rows first (rows from left to right and
columns from top to bottom) like reading a book (in a western language, that is).

6.4 Referring outside the function sheet

Referring to other sheets from inside a function call should be straightforward and the
user would expect it to work just like any other reference to other sheets. But what about
referring to another function sheet without a function call? To get predictable results we
need some kind of encapsulation.

42

A reasonable restriction will be to disallow other sheets to refer inside (another) function
invocation, so reference to function sheets are only made through function calls. This
would allow us to treat cell values inside the function sheet as local variables. Referring
to the function’s public variables (the default context) could be allowed - this would also
treat Worksheet and FunctionSheet alike (no special implementation needed).

The CalculationContext implementation naturally supports referring outside the func-
tion’s sheet under the above assumptions. No additional changes to the implementation
are required to support this.

Notice that our naming scheme for importing from Excel makes it naturally hard to refer
to cells inside a function sheet because the prefix ’@’ is removed from the name during
import.

6.5 Case: Risk premium calculation on a waiver of premium

In insurance companies and pension funds the insured usually buys a product called waiver
of premium in combination with other risk products (e.g. death insurance). A waiver of
premium is a product where the insurance company pays the premium for the insured if
the insured gets disabled.

To calculate the price the insured has to pay for this product (called risk premium) we
need several pieces of information:

• The age of the insured, x.

• The insured’s age at retirement, n.

• The annual premium paid by the insured, π.

• The insured’s occupation, e.

• The insured’s deferred period, k.

The monthly risk premium of a waiver of premium is calculated by this formula:

RPx =
1

12
· (f · µx · Sx),

where

• µx is the disability intensity at age x (the probability that the insured gets disabled
at age x + dt given that his/hers age is x),

43

• Sx is the sum at risk at age x and is calculated as Sx = π · ā
x:n̄| where ā

x:n̄| is the
life-dependent premium annuity found by a table lookup, and

• f is a factor measuring the risk regarding occupation and/or deferred period and is
calculated as f = p + e + k, where p is a parameter covering different variants of
the product (for simplicity we set p = 1 corresponding to a normal product), e is a
parameter covering the risk of occupation and k is a parameter covering the risk of
the length of the deferred period.

Some insurance companies define three groups of insured, a standard, a medium and a
high risk group. The only difference (ignoring health rating for simplicity) is the factor
f . For an insured in the standard risk group, e and k is not used; for an insured in the
medium risk group, either e or k are used; and for an insured in the high risk group, both
e and k are used. How to calculate the e’s and k’s are complex and are therefore omitted
in this example. In other words we have two optional arguments, e and k. Let us try to
make a user-defined function that calculates the risk premium and handles the optional
arguments.

To begin with we would like a spreadsheet with a worksheet called ’Calculation’ and two
worksheets used for table lookups, ’MortalityTable’ and ’LifeAnnuityTable’. Furthermore
we of course want a function sheet with our user-defined function. See figure 9.

Figure 9: The worksheet ’Calculation’

Notice that the formula in the standard risk group is calling the RiskPremium function

44

with only 4 arguments, while the formulas for the medium and high risk groups are calling
the RiskPremium function with respectively 5 and 6 arguments, namely the e’s and k’s.

The user-defined function is easily set up. The only thing to remember is that the optional
arguments must be represented as a cell area in the function signature. This is done in
cell D5. See figure 10.

Figure 10: A user-defined function that calculates risk premiums with optional arguments.

All in all we were easily able to create a spreadsheet that calculates risk premiums for the
waiver of premium product for all three risk groups using the same function. With the use
of user-defined functions we have encapsulated the important part of the calculation in a
function and thereby avoided repetition, decreased the number of possible errors during
maintenance, saved worksheet space and made it applicable for reuse. The spreadsheet
could have been made without the use of optional arguments but it would not have been
as nice and simple as this spreadsheet.

45

7 Prototype 3: Matrix functions

In this prototype we expand our second prototype to handle matrices in user-defined
functions.

Our primary objectives are:

1. Design a structure that handles matrix values.

2. Implementation of user-defined matrix functions where both the argument and the
result is a matrix.

As mentioned in [JBB03] the user will (according to the consistency concept) expect the
user-defined functions to be able to handle matrices just as Excel does in several built-
in functions (e.g. SUM) via the use of cell areas. It is therefore natural to extend the
user-defined functions to include matrix functions.

7.1 Designing a matrix structure

Before deciding the structure and how to represent matrices in our user-defined functions,
we have to consider the use of matrices in spreadsheets in a more general context.

Matrices are primarily used for handling large amount of data or calculations as regression
analysis but they can also be used as a tool to outline results or statistics, e.g. sales
figures. In Excel one often names cell areas or use several worksheets to obtain these
matrix capabilities. The disadvantage in Excel when using the spreadsheet with matrices
represented as cell areas is that you quickly end up with many (and often large) worksheets,
making the spreadsheet difficult to handle.

When considering the user-defined functions some further problems must be addressed:

• If a user-defined function is given a matrix as argument how do we describe the
function signature? We do not want to specify the size of the matrix as an argument.

• Even though the function sheet is limited in size (i.e. 255 columns), a matrix can
be arbitrarily large.

In the next two subsections we will present two possible designs of a structure that handles
matrix arguments and thereby solve the above problems.

46

7.1.1 Expansion of matrices

A possible solution is to let the cell area representing the arguments expand to be able to
include the given matrix. By doing this one could have several invocations with different
sizes of cell areas as arguments to the function.

At first the solution seems simple and consistent with the design concepts but there are
some problems that need to be dealt with:

• A function sheet will definitely contain formula cells but how must these formulas
react to the expansion of the argument area? Must they be copied or just moved?
We could let the user decide via a right click menu or we could base the decision
on the type of formula or a property of the cell containing the formula. We could
end up writing formulas to find out which formulas to copy and which ones not to,
a kind of conditional format copy.

Solving this problem will most likely result in overruling several of the design con-
cepts, e.g. the abstraction gradient, the consistency, the error-proneness and the
hidden dependencies concept.

• How do we handle multiple matrix arguments? We have only one function sheet
so we have to expand the arguments in the same sheet but how and where? This
will require a set of strict expansion rules that will conflict with e.g. the abstraction
gradient and the consistency concept.

To illustrate the difficulties above we give an example.

Example

Let us consider a very simple function to calculate column sums of a matrix (consisting
of a single column, or vector, in this case). We want to expand the argument area to a
matrix which contains integers, e.g. number of goods.

47

Figure 11: Matrix containing integers.

Here it is obvious that the function must handle a matrix with two columns by copying
the formula cell to the ’new’ column. But what if the matrix not only contains integers
but also string values.

Figure 12: Matrix containing both integers and string values.

Now we somehow need to define that the formula must be copied from the second column
and not from the first in the case where we are dealing with a matrix with more than one
column of numbers.

7.1.2 Matrices as first-class values

[JBB03] proposes another solution for handling a matrix argument in the user-defined
functions. By letting the input matrix live in a single cell and treating matrices as first-
class values (of a new run-time type ’matrix’), the major problems from section 7.1.1 are
automatically dealt with. In doing this [JBB03] defines four ground rules:

• Any formula can have a matrix as its value.

48

• Matrices are two-dimensional.

• A vector is just a special case of a matrix.

• A scalar is implicitly promoted to be a 1x1 matrix in any context where a matrix is
required.

These rules are obviously needed to respect the consistency and error proneness concepts.

By making matrices first-class values in line with integer, string, etc. the user will most
likely expect some operations to follow naturally, e.g.:

• Obtain a specific element, row or column from a matrix.

• Add a column/row to a matrix.

• Obtain the number of rows/columns of a matrix.

• Make the transpose of a matrix.

• Multiplying matrices.

• Inverting matrices.

These must be implemented to respect the consistency and role expressiveness concepts.

The problems get more serious if we consider matrices containing other matrices. How
shall a function or operation handle this situation? The function SUM can address the
problem by applying SUM on the inner matrices before summing the outer matrix, but
what if SUM is applied to two or more matrices, e.g. SUM(A1:A3) where there is a matrix
in all of A1, A2 and A3? Should SUM operate like + and thereby result in an error if the
matrices are of different dimensions or should it be redefined as a special matrix SUM?

It is impossible to give a general answer, covering all functions and operations, to these
questions. Depending on the function and operation one could think of several ways
to deal with the problems. It could be an iterative/recursive approach or a top down
approach, but one could also only consider the outer level and ignore the lower levels (this
would be the preferred solution with the transpose function). The conclusion is that one
has to go through every function/operation to find the optimal solution for that specific
function/operation.

To use matrices to the desired extent, the user needs to be able to define and use functions
on matrices that operate on each value (or specific values) of the matrices, that is, a map
function on a matrix. This requires the presence of higher order functions and recursion
which we will focus on the prototype 4, see section 8.

49

7.1.3 The matrix design

When considering the pros and cons of the two structures above we agree with [JBB03]
that defining matrices as first-class objects (section 7.1.2) is the best way. By choosing
this structure the problem regarding matrices as result values are automatically solved.
The user-defined function just returns a matrix as a matrix type.

The structures do not automatically determine the visual representation of matrices.
[JBB03] proposes to show a cell that contains a matrix as a visual queue of its first
few values. Furthermore the user can hover the mouse over a cell and hereby bring up a
scrollable floating panel that shows the entire matrix. See figure 13.

Figure 13: [JBB03]’s visual representation of matrices ([JBB03]’s figure 4)

This way to visually represent matrices might work on small matrices but will be unwieldy
for larger matrices. As mentioned in section 7.1 matrices are primarily used for handling
large amount of data. [JBB03] responds to this fact by allowing matrix values to be spread
over a range of cells. But seen from our point of view this will only make things worse
and one could end up with a visual chaos of matrices. All in all we think that the solution
conflicts heavily with the visibility and juxtaposability concept.

Instead of trying to show all in the same window/sheet we just show what can be shown
in the cell. To accommodate the visibility and juxtaposability concept and the premature
commitment concept we add the feature to show a matrix in a separate window/sheet by
pressing F12 when focus is on a cell containing a matrix. In figure 14 we have pressed F12
while focus was on a cell containing the matrix [10 12; 14 16].

50

Figure 14: Matrix shown in a separate window/sheet.

It might conflict with the consistency concept to add a feature that is not already known
by the users but we think it is the best way to do it.

7.2 Table Evolution Calculus

A paper by Martin Erwig, Robin Abraham, Steve Kollmansberger and Irene Cooperstein
[EACK06] provides a possible alternative approach. It attempts to create a generator
for correct spreadsheets, but also touches on the subject of matrix expansion. The table
evolution calculus is a formal way to expand a cell area, referred to as a table. The
template consists of a header, footer and an expandable group as shown in figure 15.

Values . . . Total

0
∑

(l)

...
...

∑
(u)

∑
(u)

Figure 15: Horizontally expandable group template

These groups can be expanded horizontally and vertically and are referred to as hex groups
and vex groups respectively. The footer could be a summation of an expanded group, and
thus the notation for the formulas in the template are made relative to the group, e.g.∑

(u) means
∑

(”up”) where up refers the group above. Similarly the notation
∑

(l)
or

∑
(”left”) is using vex groups. An exponent k can be attached to k-fold repeated

references, e.g. u2 means two cells above. See the notation in the example in figure 16
where multiple vex groups are shown. The ∆(u5, u2) represents the difference between the
sum of the income (u5) and the sum of the sum of the expenses (u2). This notation holds
for different number of entries for incomes and expenses.

51

Income

0

...
∑

(u)

Expenses

0

...
∑

(u)

Net Earnings

∆(u5, u2)

Figure 16: Template containing multiple vex groups

The template can contain any number of hex groups, and vex groups can be nested inside
hex groups. To keep the expansion in one dimension, nesting is limited to having vex
groups inside hex groups.

The template approach has the advantage of being a generator program and hence has its
own user interface. Using the template approach with user-defined functions will mix the
template interface with a normal spreadsheet interface, thus threatening the consistency
concept adversely. Also, with this new notation for referencing groups we would mix
two kinds of notation and thereby disregard the abstraction gradient concept. For our
implementation we will explore this calculus no further and continue with the decision
to use matrices as first-class values, but it is truly something to consider if one wants to
implement some kind of expansion of matrix values.

7.3 Implementation of matrix user-defined functions

To implement the design structure found in the previous section we define a new ‘matrix’
type, raising matrices to first-class values. The ‘matrix’ type is called MatrixValue and
is implemented as a 2-dimensional array. In the spreadsheet, matrices are indicated with
the use of []-brackets, e.g. [10 12; 14 16] represents a 2x2 matrix with first row containing
10 and 12 and with first column containing 10 and 14 (see figure 14).

In the following we have listed the matrix operations we have implemented.

MLookup: Obtains a specific value from a matrix M at a given row and column (this

52

function is much like the build in function but work in absolute indices with the
matrix).

CBIND and RBIND: Adds a column/row to a matrix. These are implemented rather in-
efficiently since all values from the original matrix are copied to a new array and a
MatrixValue is returned. The running time depends linearly on the number of cells
in the matrix.

CDIM and RDIM: Obtains the number of rows/columns of a matrix.

TRANSPOSE: Makes the transpose of a matrix. Implemented very much like CBIND and
RBIND and has a running time of O(cols · rows). One could have made a solution
where the MatrixValue class kept track of the row and column order of the values.
Then it would only be a matter of changing this order when making the transpose
and give a running time of O(1).

MMULT: Multiplying matrices. Again we have a rather inefficiently implementation, but
this time it is because the values in MatrixValue are located in a 2-dimensional
array of Values and must be cast to NumberValue to retrieve the values from it.
It would be an optimization to raise matrices to ’NumberMatrixValue’ when they
should be used to mathematics (see section 7.3.1). The running time is of the order
O(R1 · C1 · C2).

Furthermore it is relatively easy to modify +, - and * to be able to handle matrices. We
have chosen these functions as a proof of concept. A complete implementation would
require a much longer list of matrix function.

7.3.1 Performance

As indicated we have not gone deeply into the performance issues and our implementation
does not represent optimal performance, even for a spreadsheet representation. The main
reason for this is the MatrixValue representation. We will take a look at our options.

A normal cell area in Excel can represent a matrix containing values of different types
but many of the matrix functions require the types to be convertible to numbers. If we
are strict about the types we could guarantee that the resulting matrix only contained
number values. The strictness can be introduced by returning an error value if any value
in the matrix cannot be converted into a number. This is an alternative solution to just
returning error values for the corresponding indices.

With this guarantee we could reduce one performance hindrance from the implementation.
This could be achieved by introducing a special NumberMatrixValue which is the result
of many of the matrix functions we would build into the spreadsheet. When a function
encounters a NumberMatrixValue it is clear that all values are numbers and that all easily

53

can be represented by doubles, which leaves us with a representation of the mathematical
matrix.

Thomas Iversen explores further performance optimization in his thesis [Ive06].

7.3.2 CTRL+SHIFT+ENTER in Excel

Some functions in Excel returns a matrix, for instance linear regression (LINEST in Excel).
In order to see the entire result one has to enter the formula in a special way. A result cell
area must be selected before the formula is entered, and upon completion of the formula
the user must hit Ctrl+Shift+Enter instead of hitting the Enter key. Then Excel fits the
result or part of it into the selected area. This approach should be extended in Excel for
any user-defined functions that return matrices.

7.4 Case: Value calculation in Unit Link

In the recent an insurance type called Unit Link has become very popular. Opposed to
traditional insurance Unit Link gives the insured the possibility to place his/hers savings in
predefined funds. These funds could be e.g. Danish stocks, US stocks, Danish short-term
bonds, European bonds, etc. On a pure Unit Link contract the insured has no guaranteed
interest rate, meaning that the value of the insured’s savings fluctuate with the prices of
the funds the insured has chosen to invest in. In other words the insured’s savings are
placed in units of the funds he/she has chosen.

The insurance companies have to closely follow the development of both the total number
of units in each fund, the price and the development of the total value. Seen from an
actuary’s point of view the interesting problem here is the development of the total value
in the portfolio.

Let us consider a simple example where we want to follow the development of the total
value for five funds in three weeks. Data consists of the prices each week and the total
number of units per fund. See figure 17.

54

Figure 17: Prices and total number of units for each of the three weeks.

With the matrix features available we can calculate the total value each week. This is
done by

1. Defining the two tables as matrices,

2. Transposing the units matrix and

3. Matrix multiplying the transposed units matrix with the price matrix.

This results in a 1x3-matrix of the total value each week. See figure 18.

55

Figure 18: Value calculation in Unit Link.

By pressing F12 while having focus on the value matrix we get figure 19.

56

Figure 19: Value calculation in Unit Link.

These calculations could of course have been done without the use of the matrix functional-
ities but it would not have been as nice and easy as with them. Besides from mathematical
uses of matrices the introduction of matrix functions are not really impressive until we
introduce higher-order function in the next chapter.

57

8 Prototype 4: Recursive and higher-order functions

In this prototype we expand our third prototype to handle recursive and higher-order
user-defined functions.

Our primary objectives are:

1. Implementation of recursive functionality for the user-defined functions.

2. Design a structure that handles higher-order functions.

3. Implementation of higher-order user-defined functions.

As mentioned in section 3.2.2, more advanced users will expect and benefit from allow-
ing user-defined functions to be recursive. Even though it is argued in [JBB03] not to
allow recursive functions we find it natural to extend the user-defined functions to include
recursive capabilities. See section 8.1.

In the case presented in prototype 3 (section 7.4) we realized that to be able to really use
the potential of matrices in user-defined functions we needed higher-order functions. See
section 8.2.

8.1 Recursive functions

As mentioned in section 2.1 a spreadsheet can be considered as an odd functional program-
ming language. In functional languages, recursion is very common and thus a natural thing
to explore in regard to spreadsheets. Recursive functions let the users define functions that
invoke themselves, allowing the functions to be calculated over and over again.

Implementing recursive functions in our model is a relatively easy task. We have con-
structed the CalculationContext to represent the needed separation of data and formulas.
Thus a function call to the function itself is no different from a call to any other function -
except for the possibility of infinite recursion. To guard against infinite recursion we have
two options:

1. We can wait for the runtime system (CLR) to throw a stack overflow exception.
This will eventually happen, but is not a nice way to handle infinite recursion and
it is very difficult to recover nicely from.

2. Alternatively we add a stack count to the CalculationContext which is incremented
upon each call. If the counter exceeds a certain threshold we stop calculations.
Microsoft Excel already has a threshold for iterations which we could reuse.

58

If we increment the stack count for all calls to user-defined function we can prevent
infinite calls that also involves other functions, e.g. function f calls function g which
in turn calls function f .

In [JBB03] it is argued that recursive functions should not be implemented because of the
possible confusion that arises from the representation of the calls and thereby threatens
the consistency concept. If you decide to use arrows between sheets to represent the order
of calls, a recursive call is either represented with an arrow back to the same sheet or a
new representation of the same sheet. This can very easily create a blur of information on
the screen.

Instead we propose that a call stack approach is used, which is more like traditional
debuggers. When inspecting an instance of the function call we propose that the user is
allowed to see the different levels of the recursion and jump to specific levels by replacing
the current instance or opening a new instance. This solution is not perfect in regard to
the consistency concept but it is simpler and visually far better than the linked-worksheet
solution. We think, unlike [JBB03], that there is significant benefit for the users by having
recursive user-defined functions available, but as discussed in section 3.2.1 we aim for a
broader target audience.

8.2 Higher-order functions

To use the matrix functionality for something more than data collection one needs more
advanced functions than just the trivial matrix functions. More specifically one needs well
known functions as MAP and FOLD. The problem in prototype 3 was that both these
functions took a function as argument and we therefore needed higher-order functions
which we could not handle at that time. To make it up for that (among other things of
course) we will in this section implement higher-order user-defined functions.

A higher-order function satisfies at least one of the following two criteria

1. The function takes one or more functions as arguments.

2. The function returns a function as the result.

To support these criteria we need to introduce another type of value.

8.2.1 Introducing a new type

The first step toward supporting higher-order functions in our framework is to introduce
the function as a value. We introduce a new type, FunctionRefValue, which derives from

59

Value. The internal value of FunctionRefValue is a reference to an internal function or a
user-defined function, represented by the type Function as shown in listing 5.

class FunctionRefValue : Value
{

private Function f unc t i on ;
. . .

}

Listing 5: Partial class definition of FunctionRefValue

The simplest formula which returns a FunctionRefValue is of the form

=AgeFromDate

which returns a reference to the user-defined function AgeFromDate. We just have to
decide how the reference is presented to the user.

Representing just the function name will confuse function references with normal text and
representing it with something more in Excel style, like #FUNCTION(AgeFromDate),
might lead to the user confusing it with errors (like #VALUE! or #NAME?). Alternatively
a simple symbol (fx:AgeFromDate) might suffice. The fx symbol is already used in Excel
as an icon bringing up the insert function menu so we are not introducing something
completely new to the user and thereby maintaining the consistency concept.

In the case of AgeFromDate we know the name of the function that we refer to, but as
we shall see later some functions create new functions as their result. These functions are
anonymous functions which we represent with just #FUNCTION or fx. Most functional
languages do not display anonymous functions either. The SML notation would give us
something on the form val a = fn: int → bool, where the variable a corresponds to a cell
reference in our model. One could try to give more clever names to anonymous functions
but we have not explored this any further.

8.2.2 Built-in higher-order functions

We propose a set of built-in higher-order functions inspired by many of the functional
languages around.

MAP f m: Applies f to each cell in the matrix m, from left to right and top to bottom,
and returns the matrix of f ’s results.

FOLDL f x m: Applies f to x and the first element in m, then applies f to the result and
the second element, and so on.

60

FOLDR f x m: Applies f to x and the last element in m, then applies f to the second
last element and the result, and so on.

These functions are inspired by their SML counterparts but are extended to use matrices
instead of arrays. The array concept is not really present in spreadsheets, but we treat
the matrix m as an array by concatenating rows top to bottom. However, when using
matrices we have several other options to expand the number of functions available:

MAPROW f m: Applies f to each row in the matrix m and returns the one-dimensional
matrix of f ’s results. The function f must take a number of arguments equal to the
number of columns in m.

MAPCOL f m: Applies f to each column in the matrix m and returns the one-dimensional
matrix of f ’s results. The function f must take a number of arguments equal to the
number of rows in m.

For instance, using MAPROW(SUM, A1:D10) would give a 1 × 10 matrix with the sum
of the rows. Any function taking 4 arguments and any function with variable number of
arguments can be used instead of SUM.

Likewise we can define variants of functions like FOLDL and FOLDR.

8.3 Partial application and partial evaluation

One of the uses of higher-order functions is the use of partial application. We want to be
able to bind arguments to a function to create a new function, but before we go into the
details we will find a notation that is intuitive for spreadsheet users. In some functional
languages (e.g. SML) we could have something like this, e.g.

fun add x y = x + y

fun add3 y => add 3 y

Here we bind the argument 3 to x in the function add to create the function add3. This
notation is very unlike all other Excel notation and spreadsheet notation in general and
would spoil the consistency concept. Instead we use a function like this, e.g.

BIND(function, arguments...)

In the example above we should write BIND(Add, 3) to create an anonymous function in
the cell where we place this formula. This approach is more spreadsheet like, but has one

61

deficiency. We cannot decide the order in which to bind the arguments. The functional
language notation gives us a way to decide which arguments to bind, e.g.

fun minus x y = x - y

fun minus3 x = minus x 3

In this example it is very important to bind the y argument and not the x argument, or
we will change the semantics of the function.

Several options are available:

BIND(f, x1, . . . , xn): Binds the first n arguments, where n depends on the number of ar-
guments supplied in the call to BIND.

BINDL, BINDR: Like BIND but where BINDL binds the first n arguments and BINDR
binds the last n arguments.

BIND1, BIND2, BIND3, BINDN: Binds the first, second, third or n’th argument, where n
would be an argument in the call to BINDN. BIND1 would equal BIND above.

BIND + SWAP: Use SWAP to swap the order of the arguments and then BIND the first
argument n arguments.

We have created a very simple implementation of BIND in our model. Assume that BIND
binds the first n arguments like the first option above.

1. A new function is created that has a reference to the bound function and an array
containing the value of the first n arguments.

2. We evaluate the arguments when the BIND function is called, thus the first n argu-
ments are only evaluated once.

3. When the new function is invoked the bound parameters are prefixed to the argu-
ments used in invocation.

4. The bound function is invoked with the new combined set of arguments and the
result is returned.

Listing 6 shows an implementation of the above procedure.

62

class BindFunctionValue : FunctionRefValue
{

public BindFunctionValue (Function boundFunction , Expr [] bEs)
: base (

new Function (
delegate (Calculat ionContext context , Expr [] es , int col , int row)
{

Expr [] cEs = new Expr [bEs . Length + es . Length] ; // combine arguments
bEs .CopyTo(cEs , 0) ; // bound arguments f i r s t
es . CopyTo(cEs , bEs . Length) ;
return boundFunction . a pp l i e r (context , cEs , col , row) ;

}))
{
}

}

Listing 6: Class definition of BindFunctionValue

For consistency the BIND function always returns a function as its value, even though
all parameters have been bound. In case all parameters have been bound, the result is a
function that takes no arguments.

As discussed earlier we had to find away to name anonymous functions, but we also has
to have a way to reference anonymous function. A call to BIND returns an anonymous
function but this implies that it does not have a name. Say we have bound the birthday
in our AgeFromDate function from earlier:

=BIND(AgeFromDate, 1974-08-24)

If we want to calculate the age at different points in time then we need a way to reference
the result of the above call to BIND.

Two situations come to mind in regard to where we want to call an anonymous function

1. The anonymous function is in a cell in the form of a FunctionRefValue. This is the
situation in the example above.

2. The anonymous function needs be to evaluated in the formula in which it was created.
This is especially important when using SWAP (which returns a function) with
BIND. The user will most likely want to use the SWAP in the argument to BIND.

We cannot use the cell address as the name of the function because it would confuse the
user in the first situation (but it does make sense in the second).

Instead a function CALL is created which can evaluate any function if the appropriate
number of arguments is supplied. The CALL function is the equivalent of calling the
function directly, but supports function references in FunctionRefValue - especially the
ones created by BIND.

63

8.4 Optimizations

One point in using partial evaluation is to optimize the calculations, e.g. the calculation
of the n’th root (NROOT(x,n)) can be optimized into the square root when n = 2 for all
values of x. When dealing with user-defined functions we have a special opportunity to
optimize the calculations because we have ’the source code’ of the function.

To handle this optimization we first have to be a little more concrete about how the
BIND function works. The description above uses partial application where we construct
a closure with the function and the bound arguments, e.g. (Add, x=3), and we do not do
any evaluation based on x. With partial evaluation one would expect evaluations based
on x.

In our model evaluation is handled by the CalculationContext, so to introduce partial
evaluation in BIND we would have to evaluate cells based on the bound arguments and
store the results in a special CalculationContext. This context is then used as a starting
point for evaluations instead of an empty list.

One relatively simple way to obtain a context with evaluated arguments would be to
evaluate the function with a special value for unbound arguments. The resulting Cal-
culationContext would contain the special unbound value for all results depending on
arguments other than the bound arguments. There is (at least) one exception: When
using non-deterministic functions, such as RAND, the stored result will not change and
the behavior is different from normal invocation of the function - this may or may not be
what the user expects. This method implies a certain overhead when using BIND, so it is
efficient only when there are heavy calculations depending on the bound argument only.
The actual implementation would have to decide when to use partial evaluation, but other
optimizations could apply if we treat the formulas as a functional language - we will not
explore these optimizations.

8.5 Case: Calculating passives

In actuarial work one often need to calculate the unit price of a pension (called a passive)
given a current age and the age of retirement. Depending on the type of product this
can involve very complex calculations and therefore the values are often tabulated. Plenty
of spreadsheets in life insurance companies and pension funds involve the tables and a
number of complex formulas to find the right passive in the table.

We can lessen the complexity with our user-defined functions. We start by defining a
function calculating the passive:

PASSIVE(AgeOfRetirement, CurrentAge)

64

The PASSIVE function is a user-defined function which handles the table lookup using
built-in lookup functions and not higher-order functions.

Companies have several products and therefore several tables of passives. Let us create
a function for each product and ignore that these products potentially have different
parameterizations (e.g. we could introduce health rating parameters). Let us for simplicity
only consider two products:

PASSIVE_PROD_A(AgeOfRetirement, CurrentAge)

PASSIVE_PROD_B(AgeOfRetirement, CurrentAge)

Product A could be benefits paid out for 10 years (called a deferred 10-year life annuity)
and product B could be benefits paid outs for 15 years (called a deferred 15-year life
annuity). The insured will select either product A or B but will have the same retirement
age (say e.g. 65) on the two products, thus making the passive function dependent of only
one variable - the current age.

PASSIVE_PROD_A_65 = BIND(PASSIVE_PROD_A, 65)

PASSIVE_PROD_B_65 = BIND(PASSIVE_PROD_B, 65)

This gives us

PASSIVE_PROD_A_65(CurrentAge)

PASSIVE_PROD_B_65(CurrentAge)

In figure 20 such a user-defined function is made.

Figure 20: A user-defined function that calculates yearly passives.

65

To make matters a little more complicated, the passive tables are usually defined on a
yearly basis. The monthly passives are found using interpolation. Interpolation functions
clutters the spreadsheet formulas we have seen until now, but once again user-defined
functions comes to the rescue. This time, however, higher-order functions can be used.

INTERPOLATION(Function, AgeInMonths)

The INTERPOLATION function uses CALL to calculate two values of the function using
the age in years.

CALL(Function, INT(AgeInMonths / 12))

CALL(Function, INT(AgeInMonths / 12) + 1)

The result is the average of the two functions weighted with MOD(AgeInMonths, 12).
This function can be used with different passive functions.

In figure 21 such a user-defined function is made.

Figure 21: A user-defined function that interpolate yearly passives to get monthly passives.

All in all we are able to calculate monthly passives with the use of our two user-defined
functions. See figure 22.

66

Traditionally such spreadsheets are used by actuaries to verify the calculation system. We
have seen many spreadsheets whose purposes are to calculate passives such as these. Either
they are very large and complex or they are very simple but coded in e.g. VBA. With the
user-defined functions we have created a spreadsheet that is easy to both understand and
use.

Figure 22: Calculation of monthly passives.

67

9 Conclusion

By using nine design concepts from the usability and HCI world for their analytic ap-
proach in [JBB03], Blackwell, Burnett and Peyton Jones develop a theoretical basis for
a design of user-defined functions in Excel. With this article as our theoretical basis and
with our practical experience as actuaries, employed in companies where the use of spread-
sheets is universal, as our practical basis, we have implemented user-defined functions in
a spreadsheet.

9.1 The approach

Our methodological approach was an evolutionary implementation via iterative enhance-
ments and we defined four prototypes that overall gave us a satisfying implementation of
the user-defined functions. These prototypes included:

• Prototype 1: Simple function

– Setting up a spreadsheet.

– Import from other spreadsheets.

– Simple function where we have N known arguments, the parameters are simple
and the result is simple.

• Prototype 2: Advanced function

– Simple function where we have a variable number of arguments and the number
of arguments is known when the function is called.

– Referring function. Function which refers to cells outside the function sheet.

• Prototype 3: Matrix function

– Matrix function where both the argument and the result is a matrix.

• Prototype 4: Recursive and higher order function

– Recursive function. Function that calls itself.

– Higher order function. Function that has another function as argument.

Overall the method of evolutionary implementation via iterative enhancements turned
out to be a very wise choice. It first of all gave us the possibility to see the user-defined
functions work very early in the process but it also gave us the possibility of making later
modifications and re-designs with relatively ease.

68

9.2 The prototypes

We successfully implemented what we aimed for in all four prototypes. But the challenge
was not only to implement the four prototypes but also to do so while satisfying the nine
design concepts described in [JBB03]. We believe that we have found technical solutions
that satisfy the design concepts.

From our analysis and during the implementation of the prototypes we encountered some
problems that we chose to solve differently than as proposed in [JBB03]. The most impor-
tant of these were the function signature and the visual representation of the invocation
list. In both cases we think we found more flexible solutions than proposed while still
obeying the nine design concepts.

In prototype 4 (section 8) we implemented recursion and higher-order functionality into
the user-defined functions. These two functionalities are not included in the proposed
design in [JBB03]. The target audience we aimed for with these functionalities is the
advanced spreadsheet users. This group will assume these functionalities to be available
in the user-defined functions and adding them to the implementation did not spoil the user
experience for the medium user. One can argue whether they spoiled any of the design
concepts or not but we believe that even though some of the concepts may have suffered
a bit recursion and higher-order functions are too essential not to include.

9.3 The cases

In all four prototypes we successfully used the user-defined functionalities on a case from
’the real world’. In comparison to the originals the spreadsheets were made simpler, easier
to maintain, space were saved and the important parts were encapsulated in user-defined
functions. The biggest effect (performance differences are not included) was on the more
complex spreadsheets, which indicates that limiting the target audience to the ’medium’
group might be wrong.

9.4 Test group

We have not carried out a full user test of our prototypes but we have shortly introduced
the spreadsheet for some people with different backgrounds, mostly colleagues and friends
of ours. The feedbacks were in general very positive.

The most noticeable was the feedback from the advanced Excel users (those with good
knowledge of VBA), they quickly understood the concept and immediately came up with
several ideas of how and where they could use it. The ’standard’ group (more or less
matching the target audience described in [JBB03]) needed more help to be able to un-

69

derstand the concept, but when this was achieved they were positive to the new ideas -
even though they only had a few concrete ideas of what to use it for.

We also introduced the spreadsheet to novice Excel users, but with little outcome. They
had difficulties understanding the concept and had trouble with the GUI.

All in all an interesting little test. Surely one needs to perform a full scale test to achieve
any reliable results, but it indicates that the target audience might be a large proportion
of the spreadsheet users.

9.5 Putting it all into perspective

With the outcome of the use for the user-defined functions in the cases and from our
little user test we believe that the ideas presented in [JBB03] and this paper has a great
potential, especially from the feedback from our colleagues in the pension and insurance
business we think that many companies (in the financial sector) can benefit from the user-
defined functions, not only seen from the single employees point of view but also from
the company, e.g. encapsulation of critical business calculations in user-defined function
libraries.

Since our goal was not to develop an end-user spreadsheet with user-defined functions
available, one would have to look into, e.g. the GUI and the ’standard’ spreadsheet
features to achieve that. Likewise, some of the functionality is implemented rather naively
and inefficiently so one could look at the functionality performance.

Furthermore one could combine this work with [Ive06] that has some interesting thoughts
regarding runtime code generation.

70

Appendix

A References, listings, figures and the project progress

References

[BT75] V.R. Basili and A.J. Turner. Iterative Enhancement: A Practical Technique for
Software Development. IEEE Transactions on Software Engineering, 1(4):390–
396, 1975.

[EACK06] Martin Erwig, Robin Abraham, Irene Cooperstein, and Steve Kollmansberger.
Gencel: A program generator for correct spreadsheets. Journal of Functional
Programming, 16(3):293–325, 2006.

[Flo84] C. Floyd. A Systematic Look at Prototyping, Approaches to Prototyping.
Springer-Verlag: Heidelberg. Budde, R. and Kuhlenkamp, K. and Mathiassen,
L. and Zullighoven, H., pages 1–17, 1984.

[Ive06] Thomas Iversen. Runtime code generation to speed up spreadsheet computa-
tions. Master’s thesis, DIKU, University of Copenhagen, August 2006.

[JBB03] Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A User-Centred
Approach to Functions in Excel. In ICFP ’03: Proceedings of the eighth ACM
SIGPLAN international conference on Functional programming, pages 165-
176, New York, NY, USA, 2003. ACM Press., 2003.

[Mic] Microsoft Corporation. Office 2003 XML Reference Schemas. http://www.

microsoft.com/office/xml/default.mspx.

[MWL] Hanspeter Mössenböck, Albrecht Wöss, and Markus Löberbauer. The Compiler
Generator Coco/R. University of Linz. http://www.ssw.uni-linz.ac.at/

Coco/.

[Ses05] Peter Sestoft. Spreadsheet notes. IT University of Copenhagen, 2005.

Listings

1 Representation of cell reference . 26

2 Determining absolute and relative sheet references 26

3 Partial class definition of CalculationContext 39

71

4 Evaluation of formulas using CalculationContext 40

5 Partial class definition of FunctionRefValue 60

6 Class definition of BindFunctionValue . 63

List of Figures

1 Example of a spreadsheet. 6

2 A user-defined function as illustrated in [JBB03] (figure 2). 11

3 ’Ordinary’ Excel sheet for age calculation 15

4 Excel sheet for age calculation by usage of user-defined functions 16

5 Screenshot from Excel (Danish) . 30

6 Selecting an invocation from the list. 34

7 Screenshot from the age calculation spreadsheet. 36

8 Screenshot from the function sheet for the age calculation. 37

9 The worksheet ’Calculation’ . 44

10 A user-defined function that calculates risk premiums with optional argu-
ments. 45

11 Matrix containing integers. 48

12 Matrix containing both integers and string values. 48

13 [JBB03]’s visual representation of matrices ([JBB03]’s figure 4) 50

14 Matrix shown in a separate window/sheet. 51

15 Horizontally expandable group template . 51

16 Template containing multiple vex groups . 52

17 Prices and total number of units for each of the three weeks. 55

18 Value calculation in Unit Link. 56

72

19 Value calculation in Unit Link. 57

20 A user-defined function that calculates yearly passives. 65

21 A user-defined function that interpolate yearly passives to get monthly pas-
sives. 66

22 Calculation of monthly passives. 67

The project progress

In this section we will briefly describe the project progress.

Before the start of the project we made a project plan that included deadlines for each of
the prototypes (implementation and description). These deadlines were:

• 1. March 2006

• 1. April 2006

• 8. May 2006

• 1. July 2006

The deadlines were almost reached every time and there was no need for any update of
the project plan. The project plan also included our holidays etc.

The subject showed to be more and more interesting as we went along, but it also showed to
be larger than first expected. We have also realized that the subject has a great potential
and that Blackwell, Burnett and Peyton Jones has applied for a patent on their ideas in
[JBB03].

It has not been necessary to change the approved project agreement.

All in all it has been seven tough months but we met our deadlines and are proud of the
result.

73

B Selected source code

This section contains a selection of the source code for this paper. The presented code
includes the core parts described in the paper, whereas many support classes and classes
used for the visual representation are left out. Fell free to contact us for the complete
sources.

Parts of the source code are produced by Peter Sestoft [Ses05].

License

Copyright (c) 2006 Daniel S. Cortes and Morten W. Hansen

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the ”Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

• The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

• The software is provided ’as is’, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a particular
purpose and noninfringement. In no event shall the authors or copyright holders be
liable for any claim, damages or other liability, whether in an action of contract, tort
or otherwise, arising from, out of or in connection with the software or the use or
other dealings in the software.

74

ArgumentCell.cs

/// <summary>
/// Represents a funct ion argument in a c e l l .
/// </summary>
class ArgumentCell : Ce l l
{

private string name ;
private Ce l l d e f a u l tC e l l ;
private int index ;

public ArgumentCell (string name , int index , Ce l l d e f a u l tC e l l)
{

this . name = name ;
this . index = index ;
this . d e f a u l tC e l l = d e f a u l tC e l l ;

}

public override Value Eval (Calcu lat ionContext context , int co l , int row)
{

CellAddr ca = new CellAddr (co l , row) ;
Value v ;
i f (context . TryGetValue (ca , out v))

return v ;

i f (context . I sFunct ionInvocat ion)
v = context . EvalArgument (index , co l , row) ;

else i f (d e f a u l tC e l l != null)
v = de f a u l tC e l l . Eval (context , co l , row) ;

i f (v != null)
context [ca] = v ;

return null ;
}

public override Ce l l MoveContents (int de l taCols , int deltaRows)
{

throw new NotImplementedException () ;
}

public override void InsertRows (Dict ionary<Spreadsheet . AbstractSyntax . Expr ,
Adjusted<Spreadsheet . AbstractSyntax . Expr>> adjusted , Sheet modSheet ,
bool th i sSheet , int aboveRow , int rows , int row)

{
throw new NotImplementedException () ;

}

public override string Show(int co l , int row)
{

return ”Argument : ” + name ;
}

public int Index
{

get { return index ; }
}

}

CalculationContext.cs

/// <summary>
/// Represents the ca l cu l a t i on context .
/// </summary>
public sealed class Calcu lat ionContext
{

private Sheet shee t ;
private string name ;
private Expr [] arguments ;
private Calcu lat ionContext invoker ;
private int stackDepth ;

private Dict ionary<CellAddr , Value> va lues ;

public Calcu lat ionContext (Sheet sheet , string name)
{

this . shee t = sheet ;
this . name = name ;
this . va lues = new Dict ionary<CellAddr , Value >() ;

}

public Calcu lat ionContext (Sheet sheet , string name ,
Calcu lat ionContext invoker , Expr [] arguments) : this (sheet , name)

{
this . invoker = invoker ;
this . arguments = arguments ;

}

public bool HasValue (CellAddr ca)
{

return va lues . ContainsKey (ca) ;
}

public bool TryGetValue (CellAddr ca , out Value value)
{

return va lues . TryGetValue (ca , out value) ;
}

public void Reset ()
{

va lues . Clear () ;
}

public Value EvalArgument (int index , int co l , int row)
{

i f (arguments != null && index < arguments . Length)
return arguments [index] . Eval (invoker , co l , row) ;

else

return null ;
}

public Value this [CellAddr ca]
{

get { return va lues [ca] ; }
set { va lues [ca] = value ; }

}

public Sheet Sheet { get { return shee t ; } }
public string Name { get { return name ; } }
public int Count { get { return va lues . Count ; } }

public bool I sFunct ionInvocat ion { get { return arguments != null ; } }

public int StackDepth
{

get { return stackDepth ; }
set { stackDepth = value ; }

}
}

Cell.cs

/// <summary>
/// A c e l l i s a vay to obtain and show a value .
/// </summary>
public abstract class Ce l l
{

public abstract Value Eval (
Calcu lat ionContext invoca t i onL i s t , int co l , int row) ;

public abstract Ce l l MoveContents (int de l taCols , int deltaRows) ;

public abstract void InsertRows (Dict ionary<Expr , Adjusted<Expr>> adjusted ,
Sheet modSheet , bool th i sSheet , int aboveRow , int rows , int row) ;

/// <summary>
/// Show computed value .
/// </summary>
public string ShowValue (Calcu lat ionContext invocat ion , int co l , int row)
{

Value v = Eval (invocat ion , co l , row) ;
return v != null ? v . ToString () : ”” ;

}

/// <summary>
/// Show constant or formula or matrix formula .
/// </summary>
public abstract string Show(int co l , int row) ;

public stat ic Ce l l Parse (string s , Workbook workbook , int co l , int row)
{

Scanner scanner = new Scanner (MakeStream(s)) ;
Parser par s e r = new Parser (scanner) ;
return par s e r . ParseCe l l (workbook , co l , row) ;

}

public stat ic Ce l l Create (Value value)
{

i f (value == null)
return null ;

NumberValue nv = value as NumberValue ;
i f (nv != null)

return new NumberCell (nv . value) ;
DateTimeValue dtv = value as DateTimeValue ;
i f (dtv != null)

return new DateTimeCell (dtv . va lue) ;
return new TextCel l (va lue . ToString ()) ;

}

private stat ic Stream MakeStream (string s)
{

char [] c s = s . ToCharArray () ;
byte [] bs = new byte [c s . Length] ;
for (int i = 0 ; i < cs . Length ; i++)
{

bs [i] = (byte) cs [i] ;
}
return new MemoryStream(bs) ;

}

public stat ic Sty l e GetStyle (Sheet sheet , int col Index , int rowIndex)
{

Sty l e s t y l e = sheet . S t y l e s [co l Index , rowIndex] ;
i f (s t y l e == null)

s t y l e = sheet . Workbook . S ty l e ;
return s t y l e ;

}

public stat ic bool I sAct i ve (Sheet sheet , int col Index , int rowIndex)
{

return rowIndex == sheet . ActiveRow && co l Index == sheet . ActiveColumn ;
}

}

CellAddr.cs

/// <summary>
/// Represents an abso lute , zero−based (col , row) c e l l adress .
/// </summary>
public struct CellAddr
{

public stat ic readonly CellAddr Inva l i d = new CellAddr (−1 , −1);
public stat ic readonly CellAddr A1 = new CellAddr (0 , 0) ;

public readonly int co l , row ;

public CellAddr (int co l , int row)
{

this . c o l = co l ;
this . row = row ;

}

public CellAddr (RARef cr , int co l , int row)
{

this . c o l = cr . colAbs ? cr . co lRe f : c r . co lRe f + co l ;
this . row = cr . rowAbs ? cr . rowRef : c r . rowRef + row ;

}

public CellAddr (System . Drawing . Point p)
{

this . c o l = p .X;
this . row = p .Y;

}

public override string ToString ()
{

return Column .GetName(co l) + (row + 1) ;
}

public stat ic bool operator== (CellAddr ca1 , CellAddr ca2)
{

return ca1 . c o l == ca2 . c o l && ca1 . row == ca2 . row ;
}

public stat ic bool operator != (CellAddr ca1 , CellAddr ca2)
{

return ca1 . c o l != ca2 . c o l | | ca1 . row != ca2 . row ;
}

}

CellArea.cs

/// <summary>
/// A CellArea express ion i s A1:C4 or A1 :C4 or A1: $C4 or sheet1 !A1:C4.
/// </summary>
class Cel lArea : Expr
{

private readonly RARef ul , l r ; // upper−l e f t , lower−r i g h t
private readonly Sheet shee t ;

public Cel lArea (Sheet sheet , RARef ul , RARef l r)
{

this . shee t = sheet ;
this . u l = ul ;
this . l r = l r ;

}

/// <summary>
/// Evaluate express ion as i f at c e l l address sheet [row , co l] .
/// </summary>
public override Value Eval (Calcu lat ionContext context , int co l , int row)
{

i f (this . shee t != null)
context = sheet . Context ;

CellAddr ulCa = ul . Addr (co l , row) ;
CellAddr lrCa = l r . Addr (co l , row) ;
int c o l s = lrCa . c o l − ulCa . c o l + 1 ;
int rows = lrCa . row − ulCa . row + 1 ;
int co l 0 = ulCa . c o l ;
int row0 = ulCa . row ;
Value [,] va lues = new Value [co l s , rows] ;
for (int c = 0 ; c < c o l s ; c++)
{

for (int r = 0 ; r < rows ; r++)
{

Ce l l c e l l = context . Sheet . Ce l l s [c o l 0 + c , row0 + r] ;
i f (c e l l != null)

va lues [c , r] = c e l l . Eval (context , co l 0 + c , row0 + r) ;
}

}
return new MatrixValue (va lues) ;

}

public override Expr Move(int deltaCol , int deltaRow)
{

return new Cel lArea (sheet ,
u l .Move(deltaCol , deltaRow) ,
l r .Move(deltaCol , deltaRow)) ;

}

public override Adjusted<Expr> InsertRows (
Sheet modSheet , bool th i sSheet , int aboveRow , int rows , int row)

{
i f (shee t == modSheet | | shee t == null && th i sShee t)
{

Adjusted<RARef> ulNew = ul . InsertRows (aboveRow , rows , row) ,
lrNew = l r . InsertRows (aboveRow , rows , row) ;

int upper = Math . Min(ulNew . upper , lrNew . upper) ;
return new Adjusted<Expr>(new Cel lArea (sheet , ulNew . e , lrNew . e) ,

upper , ulNew . same && lrNew . same) ;
}
else

return new Adjusted<Expr>(this) ;
}

public override string Show(int co l , int row , int ctxpre)
{

string s = ul . Show(col , row) + ” : ” + l r . Show(col , row) ;
return shee t == null ? s : shee t .Name + ” ! ” + s ;

}

public CellAddr NextHor izontal (CellAddr ca)
{

int c o l = ca . c o l ;
int row = ca . row ;

c o l++;

CellAddr c a l r = new CellAddr (l r , 0 , 0) ;
i f (c o l > c a l r . c o l)
{

CellAddr cau l = new CellAddr (ul , 0 , 0) ;
c o l = cau l . c o l ;
row++;
i f (row > c a l r . row)

return CellAddr . I nva l i d ;
}
return new CellAddr (co l , row) ;

}

public RARef UpperLeft { get { return ul ; } }
public RARef LowerRight { get { return l r ; } }

public bool I s S i n g l eC e l l
{

get { return ul == l r ; }
}

public override string ToString ()
{

i f (I s S i n g l eC e l l)
return ul . Show(0 , 0) ;

else

return this . Show(0 , 0 , 0) ;
}

}

CellRef.cs

/// <summary>
/// A Cel lRef express ion i s A1 or $A1 or A$1 or A1 or Sheet1 !A1
/// </summary>
class Cel lRe f : Expr
{

public readonly RARef r a r e f ;
private readonly Sheet shee t ; // nu l l i f sheet−r e l a t i v e , e l s e sheet−abso lu te

public Cel lRe f (Sheet sheet , RARef r a r e f)
{

this . shee t = sheet ;
this . r a r e f = r a r e f ;

}

public Cel lRe f (Sheet sheet , bool colAbs , int colRef , bool rowAbs , int rowRef)
: this (sheet , new RARef(colAbs , colRef , rowAbs , rowRef))

{
}

public override Value Eval (Calcu lat ionContext context , int co l , int row)
{

i f (this . shee t != null)
context = sheet . Context ;

CellAddr ca = r a r e f . Addr (co l , row) ;
Ce l l c e l l = context . Sheet . Ce l l s [ca] ;
return c e l l == null ? Value . Nul l : c e l l . Eval (context , ca . co l , ca . row) ;

}

public override Expr Move(int deltaCol , int deltaRow)
{

return new Cel lRe f (sheet , r a r e f .Move(deltaCol , deltaRow)) ;
}

public override Adjusted<Expr> InsertRows (
Sheet modSheet , bool th i sSheet , int aboveRow , int rows , int row)

{
i f (shee t == modSheet | | shee t == null && th i sShee t)
{

Adjusted<RARef> adj = r a r e f . InsertRows (aboveRow , rows , row) ;
return new Adjusted<Expr>(new Cel lRe f (sheet , adj . e) , adj . upper , adj . same) ;

}
else

return new Adjusted<Expr>(this) ;
}

public override string Show(int co l , int row , int ctxpre)
{

string s = r a r e f . Show(col , row) ;
return shee t == null ? s : shee t .Name + ” ! ” + s ;

}
}

ConstCell.cs

/// <summary>
/// A constant c e l l i s complete ly immutable ; i t s ins tances can be shared .
/// </summary>
public abstract class ConstCel l : Ce l l
{

public override void InsertRows (Dict ionary<Expr , Adjusted<Expr>> adjusted ,
Sheet modSheet , bool th i sSheet , int aboveRow , int rows , int row)

{
}

public override Ce l l MoveContents (int de l taCols , int deltaRows)
{

return this ;
}

}

DataType.cs

public enum DataType
{

Text ,
Number ,
DateTime ,
Boolean ,
Matrix ,
Error ,
Function

}

DateTimeCell.cs

/// <summary>
/// Represents a datetime constant in a c e l l .
/// </summary>
public class DateTimeCell : ConstCel l
{

private DateTimeValue v ;

public DateTimeCell (DateTime d)
{

this . v = new DateTimeValue (d) ;
}

public override Value Eval (Calcu lat ionContext invoca t i onL i s t , int co l , int row)
{

return v ;
}

public override string Show(int co l , int row)
{

return v . value . ToString () ;
}

}

DateTimeValue.cs

public class DateTimeValue : Value
{

public readonly DateTime value ;

public DateTimeValue (DateTime value)
{

this . va lue = value ;
}

public override string ToString ()
{

return value . ToShortDateString () ;
}

public override DataType DataType
{

get { return DataType . DateTime ; }
}

}

ErrorValue.cs

class ErrorValue : Value
{

private readonly string msg ;

public ErrorValue (string msg)
{

this . msg = ”#” + msg ;
}

public override string ToString ()
{

return msg ;
}

public override DataType DataType
{

get { return DataType . Error ; }
}

}

Formula.cs

/// <summary>
/// Represents a formula .
/// </summary>
public class Formula : Ce l l
{

private Expr e ;

public Formula (Expr e)
{

i f (e == null)
throw new ArgumentNullException (”e”) ;

this . e = e ;
}

public Formula (Formula f)
: this (f . e) { }

public override Value Eval (Calcu lat ionContext context , int co l , int row)
{

CellAddr ca = new CellAddr (co l , row) ;
Value v ;

i f (! context . TryGetValue (ca , out v))
{

context [ca] = Value . Vis i tMarker ;
v = e . Eval (context , co l , row) ;
i f (v == null)

v = new NumberValue (0) ;
context [ca] = v ;

}
i f (v == Value . Vis i tMarker)

throw new Cycl i cExcept ion (” Cyc l i c c e l l r e f e r e n c e : ” + Show(col , row)) ;
return v ;

}

public override Ce l l MoveContents (int de l taCols , int deltaRows)
{

return new Formula (e .Move(de l taCols , deltaRows)) ;
}

public override void InsertRows (Dict ionary<Expr , Adjusted<Expr>> adjusted ,
Sheet modSheet , bool th i sSheet , int aboveRow , int rows , int row)

{
Adjusted<Expr> ae ;
i f (adjusted . ContainsKey (e) && row < adjusted [e] . upper)
{

// there i s a va l i d cached adjusted express ion
//
ae = adjusted [e] ;

}
else

{
// compute new adjusted express ion and in s e r t in to the cache
//
ae = e . InsertRows (modSheet , th i sSheet , aboveRow , rows , row) ;
i f (ae . same)
{

ae = new Adjusted<Expr>(e , ae . upper , ae . same) ;
}
adjusted [e] = ae ;

}
System . Diagnos t i c s . Debug . Assert (row < ae . upper , ”Formula . InsertRows ”) ;
e = ae . e ;

}

public override string Show(int co l , int row)
{

return ”=” + e . Show(col , row , 0) ;
}

}

Function.cs

public delegate Value Appl ier (Calcu lat ionContext context , Expr [] es , int co l , int row) ;

public delegate R Fun<R>() ;
public delegate R Fun<A1 , R>(A1 x1) ;
public delegate R Fun<A1 , A2 , R>(A1 x1 , A2 x2) ;

class Function
{

private stat ic readonly IDic t ionary<string , Function> t ab l e ;
private stat ic readonly Random rnd = new Random () ;

public readonly string name ;
public readonly int f i x i t y ; // non−zero precedence of operator
public readonly Appl ier app l i e r ;

public stat ic Function Get (string name)
{

Function func t i on = null ;
i f (t ab l e . TryGetValue (name , out func t i on))

return f unc t i on ;

throw new Exception (”Unknown func t i on ’ ” + name + ” ’ . ”) ;
}

public stat ic bool TryGetFunction (string name , out Function func t i on)
{

return t ab l e . TryGetValue (name , out func t i on) ;
}

stat ic Function ()
{

t ab l e = new Dict ionary<string , Function >() ;

new Function (”RAND” ,
MakeFunction (delegate () { return rnd . NextDouble () ; })) ;

new Function (”PI” ,
MakeFunction (delegate () { return Math . PI ; })) ;

new Function (”TRUNC” ,
MakeFunction (delegate (double x) { return (int) x ; })) ;

new Function (”SIN” ,
MakeFunction (delegate (double x) { return Math . Sin (x) ; })) ;

new Function (”+” , 6 ,
MakeFunction (delegate (double x , double y) { return x + y ; })) ;

new Function (”∗” , 7 ,
MakeFunction (delegate (double x , double y) { return x ∗ y ; })) ;

new Function (”/” , 7 ,
MakeFunction (delegate (double x , double y) { return x / y ; })) ;

new Function (”ˆ” , 8 ,
MakeFunction (delegate (double x , double y) { return Math .Pow(x , y) ; })) ;

new Function (”TYPE” ,
delegate (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)

{
i f (es . Length != 1)

return new ErrorValue (”ARGCOUNT”) ;

Value v = es [0] . Eval (invocat ion , co l , row) ;
return new TextValue (v . GetType () .Name) ;

}) ;

new Function (”−” , 6 ,
delegate (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)

{
i f (es . Length != 1 && es . Length != 2)

return new ErrorValue (”ARGCOUNT”) ;

NumberValue v0 = es [0] . Eval (invocat ion , co l , row) as NumberValue ;
i f (es . Length == 1)

return new NumberValue (v0 == null ? 0 : −v0 . value) ;
else

{
NumberValue v1 = es [1] . Eval (invocat ion , co l , row) as NumberValue ;
return new NumberValue (

v0 == null ? 0 : v0 . va lue
− (v1 == null ? 0 : v1 . va lue)) ;

}
}) ;

new Function (”IF” ,
delegate (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)

{
i f (es . Length != 3)

return new ErrorValue (”ARGCOUNT”) ;

NumberValue v0 = es [0] . Eval (invocat ion , co l , row) as NumberValue ;
i f (v0 == null | | v0 . value == 0)

return es [2] . Eval (invocat ion , co l , row) ;
else

return es [1] . Eval (invocat ion , co l , row) ;
}) ;

new Function (”MOD” ,
MakeFunction (delegate (double x , double y) { return x % y ; })) ;

new Function (”SUM” ,
MakeFunction (delegate (Value [] vs)
{

double sum = 0 . 0 ;
Apply (vs , delegate (double x) { sum += x ; }) ;
return sum ;

})) ;

new Function (”YEAR” ,
MakeFunction (delegate (DateTime d) { return d . Year ; })) ;

new Function (”MONTH” ,
MakeFunction (delegate (DateTime d) { return d . Month ; })) ;

new Function (”VLOOKUP” ,
delegate (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length != 3 && es . Length != 4)
return new ErrorValue (”ARGCOUNT”) ;

NumberValue v0 = es [0] . Eval (invocat ion , co l , row) as NumberValue ;
MatrixValue v1 = es [1] . Eval (invocat ion , co l , row) as MatrixValue ;
NumberValue v2 = es [2] . Eval (invocat ion , co l , row) as NumberValue ;
return v1 [(int) v2 . va lue − 1 , v1 . FindRowIndex (((NumberValue) v0) . va lue)] ;

}) ;

// r e g i s t e r funct ions
//
Functions . MatrixFunctions . Reg i s t e r () ;
Functions . HighOrderFunctions . Reg i s t e r () ;

}

public Function (string name , Appl ier app l i e r)
: this (name , 0 , app l i e r)

{
}

private Function (string name , int f i x i t y , Appl ier app l i e r)
{

this . name = name ;
this . f i x i t y = f i x i t y ;
this . a pp l i e r = app l i e r ;
t ab l e .Add(name , this) ;

}

/// <summary>
/// I n i t i a l i z e s a new instance of the <see cre f=”T: Function”/> c l a s s .
/// </summary>
/// <remarks>

/// The funct ion i s anonymous and i s not added to the g l o ba l funct ion l i s t .
/// </remarks>

public Function (Appl ier app l i e r)
{

this . a pp l i e r = app l i e r ;
}

private stat ic Appl ier MakeFunction (Fun<double> dlg)
{

return

delegate (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length == 0)
return new NumberValue (dlg ()) ;

else

return new ErrorValue (”ARGCOUNT”) ;
} ;

}

private stat ic Appl ier MakeFunction (Fun<double , double> dlg)
{

return

delegate (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)

{
i f (es . Length == 1)
{

NumberValue v0 = es [0] . Eval (invocat ion , co l , row) as NumberValue ;
i f (v0 != null)

return new NumberValue (dlg (v0 . value)) ;
else

return new NumberValue (dlg (0)) ;
}
else

return new ErrorValue (”ARGCOUNT”) ;
} ;

}

private stat ic Appl ier MakeFunction (Fun<DateTime , double> dlg)
{

return

delegate (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length == 1)
{

DateTimeValue v0 = es [0] . Eval (invocat ion , co l , row) as DateTimeValue ;
i f (v0 != null)

return new NumberValue (dlg (v0 . value)) ;
else

return new ErrorValue (”ARGTYPE”) ;
}
else

return new ErrorValue (”ARGCOUNT”) ;
} ;

}

private stat ic Appl ier MakeFunction (Fun<double , double , double> dlg)
{

return

delegate (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length == 2)
{

Value v0 = es [0] . Eval (invocat ion , co l , row) . ToNumberValue () ;
Value v1 = es [1] . Eval (invocat ion , co l , row) . ToNumberValue () ;

i f (v0 i s ErrorValue)
return v0 ;

i f (v1 i s ErrorValue)
return v1 ;

return new NumberValue (dlg (
((NumberValue) v0) . value , ((NumberValue) v1) . va lue)) ;

}
else

return new ErrorValue (”ARGCOUNT”) ;
} ;

}

private stat ic Appl ier MakeFunction (Fun<Value [] , double> dlg)
{

return

delegate (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

t ry
{

return new NumberValue (dlg (Eval (es , invocat ion , co l , row))) ;
}
catch (ArgumentException)
{

return new ErrorValue (”ARGTYPE”) ;
}

} ;
}

private stat ic Appl ier MakePredicate (Fun<double , double , bool> dlg)
{

return

MakeFunction (delegate (double x , double y)
{

return dlg (x , y) ? 1 .0 : 0 . 0 ;
}) ;

}

private stat ic Value [] Eval (Expr [] es , Calcu lat ionContext invocat ion , int co l , int row)
{

Value [] vs = new Value [es . Length] ;
for (int i = 0 ; i < es . Length ; i++)
{

vs [i] = es [i] . Eval (invocat ion , co l , row) ;
}
return vs ;

}

private stat ic void Apply (Value [] vs , Act<double> act)
{

foreach (Value v in vs)
{

i f (v != null)
{

i f (v i s NumberValue)
act ((v as NumberValue) . va lue) ;

else i f (v i s MatrixValue)
(v as MatrixValue) . Apply (act) ;

else

throw new ArgumentException () ;
}

}
}

}

FunctionRefValue.cs

class FunctionRefValue : Value
{

private Function func t i on ;

public FunctionRefValue (Function func t i on)
{

i f (func t i on == null)
throw new ArgumentNullException (” func t i on ”) ;

this . f unc t i on = func t i on ;
}

public override DataType DataType
{

get { return DataType . Function ; }
}

public override string ToString ()
{

return ” f x : ” + func t i on . name ;
}

public Function Function
{

get { return f unc t i on ; }
}

}

FunctionSheet.cs

/// <summary>
/// Represents a funct ion sheet .
/// </summary>
public class FunctionSheet : Sheet
{

private Funct ionSignature s i gna tu r e ;
private Dict ionary<string , Calculat ionContext> i nvoca t i on s ;

/// <summary>
/// I n i t i a l i z e s a new instance of the <see cre f=”T: FunctionSheet”/> c l a s s .
/// </summary>
public FunctionSheet (Workbook workbook , string name , int co l s , int rows)

: base (workbook , name , co l s , rows)
{

new Function (name , new Appl ier (ApplySheetFunction)) ;

this . s i gna tu r e = new Funct ionSignature () ;
this . i nvoca t i on s = new Dict ionary<string , Calculat ionContext >() ;

}

public string ShowSignature ()
{

return s i gna tu r e . Show(this) ;
}

/// <summary>
/// Applies the sheet funct ion .
/// </summary>
private Value ApplySheetFunction (Calcu lat ionContext invoker ,

Expr [] es , int co l , int row)
{

// create an invocat ion on the i n v o c a t i on l i s t
//
string name = string . Format (” { 0 } ! { 1 } (. . .) ” ,

invoker . Sheet .Name,
new CellAddr (co l , row)
) ;

Calcu lat ionContext newInvocation = new Calcu lat ionContext (this , name , invoker , es) ;
newInvocation . StackDepth = invoker . StackDepth + 1 ;
i f (newInvocation . StackDepth > 1000)

return new ErrorValue (”STACK OVERFLOW”) ;

// NOTE: StackDepth i s hardcoded and should be conf igurab le , however
// the current implementation w i l l ra i s e a StackOverf lowException
// with at s tackdepth of only 1634.

i nvoca t i on s [name] = newInvocation ;

// apply arguments
//
i f (! s i gna tu r e . ApplyArguments (invoker , newInvocation , es , co l , row))

return new ErrorValue (”ARGCOUNT”) ;

// return r e s u l t
//
Value v = s i gna tu r e . GetResult (newInvocation) ;
s i gna tu r e . MarkUnevaluatedArguments (newInvocation) ;
return v ;

}

public Funct ionSignature S ignature
{

get { return s i gna tu r e ; }
}

public Dict ionary<string , Calculat ionContext> I nvoca t i onL i s t
{

get { return i nvoca t i on s ; }
}

}

FunctionSignature.cs

public class Funct ionSignature
{

private class SignatureArgument
{

public CellAddr ca ;
public string name ;

}

private List<SignatureArgument> arguments = new List<SignatureArgument >() ;
internal Cel lArea Result ;

public Funct ionSignature ()
{

RARef nu l r e f = new RARef(true , 0 , true , 0) ;
Result = new Cel lArea (null , nu l r e f , n u l r e f) ;

}

private Cel lArea optionalArguments ;
private string optionalArgumentsName ;

public void AddArgument(CellAddr ca)
{

AddArgument(ca , string . Empty) ;
}

public void AddArgument(CellAddr ca , string name)
{

SignatureArgument arg = new SignatureArgument () ;
arg . ca = ca ;
arg . name = name ;
arguments .Add(arg) ;

}

internal void AddOptionalArguments (Cel lArea ca)
{

AddOptionalArguments (ca , string . Empty) ;
}

internal void AddOptionalArguments (Cel lArea ca , string name)
{

this . optionalArguments = ca ;
this . optionalArgumentsName = name ;

}

public bool ApplyArguments (Calcu lat ionContext invoker , Calcu lat ionContext l i s t ,
Expr [] es , int co l , int row)

{
// check number of arguments
//
i f (es . Length < arguments . Count)

return f a l s e ;

i f (es . Length != arguments . Count && optionalArguments == null)
return f a l s e ;

// run through the arguments
//
for (int i = 0 ; i < arguments . Count ; i++)
{

l i s t [arguments [i] . ca] = es [i] . Eval (invoker , co l , row) ; ;
}

i f (optionalArguments != null)
{

// apply op t ina l arguments
//
CellAddr ca = new CellAddr (optionalArguments . UpperLeft , 0 , 0) ;
for (int i = arguments . Count ; i < es . Length ; i++)
{

i f (ca == CellAddr . I nva l i d)
throw new Exception (”Argument f a i l e d . ”) ;

l i s t [ca] = es [i] . Eval (invoker , co l , row) ;
ca = optionalArguments . NextHor izontal (ca) ;

}
}
return t rue ;

}

public void MarkUnevaluatedArguments (Calcu lat ionContext invoca t i on)
{

for (int c o l = 0 ; c o l < i nvoca t i on . Sheet . ExpandedColumnCount ; c o l++)
{

for (int row = 0 ; row < i nvoca t i on . Sheet . ExpandedRowCount ; row++)
{

CellAddr ca = new CellAddr (co l , row) ;
i f (! i nvoca t i on . HasValue (ca))

invoca t i on [ca] = new ErrorValue (”NO EVAL”) ;
}

}
}

public Value GetResult (Calcu lat ionContext invoca t i on)
{

Value v = Result . Eval (invocat ion , 0 , 0) ;
i f (Result . I s S i n g l eC e l l)

return ((MatrixValue)v) [0 , 0] ;
else

return v ;
}

public string Show(Sheet shee t)
{

St r ingBu i ld e r sb = new St r ingBu i ld e r () ;
sb . Append(sheet .Name) ;
sb . Append(” (”) ;

string p r e f i x = ”” ;
for (int i = 0 ; i < arguments . Count ; i++)
{

sb . Append(p r e f i x) ;

i f (string . IsNullOrEmpty (arguments [i] . name))
sb . Append(arguments [i] . ca) ;

else

{
sb . Append(arguments [i] . name) ;
sb . Append(” (”) ;
sb . Append(arguments [i] . ca) ;
sb . Append(”) ”) ;

}
p r e f i x = ” , ” ;

}
i f (optionalArguments != null)
{

for (int i = 0 ; i < 2 ; i++)
{

sb . Append(p r e f i x) ;
sb . Append(optionalArgumentsName) ;
sb . Append(i + 1) ;
p r e f i x = ” , ” ;

}
sb . Append(p r e f i x) ;
sb . Append(” . . . ”) ;

}
sb . Append(”)=”) ;
sb . Append(Result . ToString ()) ;
return sb . ToString () ;

}

public void I n i t i a l i z e S i g n a t u r e (FunctionSheet shee t)
{

Sty l e argumentStyle = new Sty l e (shee t . Workbook) ;
argumentStyle . I n t e r i o r = new I n t e r i o r (

System . Drawing . Color . Khaki , System . Drawing . Color . Beige , Pat te rnSty l e . None) ;

for (int index = 0 ; index < arguments . Count ; index++)
{

shee t [arguments [index] . ca] = new ArgumentCell (
arguments [index] . name ,
index ,
shee t [arguments [index] . ca]) ;

shee t . S t y l e s [arguments [index] . ca] = argumentStyle ;
}

i f (optionalArguments != null)
{

CellAddr ca = new CellAddr (optionalArguments . UpperLeft , 0 , 0) ;
int index = 0 ;

while (ca != CellAddr . I nva l i d)
{

index++;
sheet [ca] = new ArgumentCell (

optionalArgumentsName + index ,
arguments . Count + index ,
shee t [ca]) ;

shee t . S t y l e s [ca] = argumentStyle ;

ca = optionalArguments . NextHor izontal (ca) ;
}

}

Sty l e r e s u l t S t y l e = new Sty l e (shee t . Workbook) ;
r e s u l t S t y l e . I n t e r i o r = new I n t e r i o r (

System . Drawing . Color . LightBlue , System . Drawing . Color . Beige , Pat te rnSty l e . None) ;
shee t . S t y l e s [Result . UpperLeft . Addr (0 , 0)] = r e s u l t S t y l e ;

}
}

FunName.cs

class FunName : Expr
{

private string name ;
private Function func t i on ;

public FunName(string name)
{

i f (name == null)
throw new ArgumentNullException (”name”) ;

this . name = name ;
Function . TryGetFunction (name , out func t i on) ;

}

public override Expr Move(int de l taCols , int deltaRows)
{

return this ;
}

public override Value Eval (Calcu lat ionContext context , int co l , int row)
{

Function f ;
i f (Function . TryGetFunction (name , out f))

return new FunctionRefValue (f) ;
else

return new ErrorValue (”NAME”) ;
}

public override Adjusted<Expr> InsertRows (
Spreadsheet .DOM. Sheet modSheet , bool th i sSheet , int aboveRow , int rows , int row)

{
throw new NotImplementedException () ;

}

public override string Show(int co l , int row , int ctxpre)
{

return name ;
}

}

HigherOrderFunctions.cs

internal stat ic c lass HigherOrderFunctions
{

private class BindFunctionValue : FunctionRefValue
{

public BindFunctionValue (Function boundFunction , Expr [] boundArgs)
: base (

new Function (
delegate (Calcu lat ionContext context , Expr [] es , int co l , int row)

{
Expr [] combinedArgs = new Expr [boundArgs . Length + es . Length] ;
boundArgs . CopyTo(combinedArgs , 0) ;
e s . CopyTo(combinedArgs , boundArgs . Length) ;
return boundFunction . app l i e r (context , combinedArgs , co l , row) ;

}))
{
}

}

public stat ic void Reg i s t e r ()
{

new Function (”MAP” , new Appl ier (Map)) ;
new Function (”BIND” , new Appl ier (Bind)) ;
new Function (”CALL” , new Appl ier (Ca l l)) ;

}

private stat ic Value Bind (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length < 2)
return new ErrorValue (”ARGCOUNT”) ;

// eva luate 1. argument to funct ion
//
FunctionRefValue v0 = es [0] . Eval (invocat ion , co l , row) as FunctionRefValue ;
i f (v0 == null)

return new ErrorValue (”VALUE”) ;

// eva luate a l l the other arguments to ValueConst
//
Expr [] es1 = new Expr [es . Length − 1] ;
for (int i = 1 ; i < es . Length ; i++)
{

Value v1 = es [i] . Eval (invocat ion , co l , row) ;
es1 [i − 1] = new ValueConst (v1) ;

}
return new BindFunctionValue (v0 . Function , es1) ;

}

private stat ic Value Cal l (Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length < 2)
return new ErrorValue (”ARGCOUNT”) ;

// eva luate 1. argument to funct ion
//
FunctionRefValue v0 = es [0] . Eval (invocat ion , co l , row) as FunctionRefValue ;
i f (v0 == null)

return new ErrorValue (”VALUE”) ;

// eva luate a l l the other arguments to ValueConst
//
Expr [] es1 = new Expr [es . Length − 1] ;

for (int i = 1 ; i < es . Length ; i++)
{

Value v1 = es [i] . Eval (invocat ion , co l , row) ;
es1 [i − 1] = new ValueConst (v1) ;

}
return v0 . Function . app l i e r (invocat ion , es1 , co l , row) ;

}

private stat ic Value Map(Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length != 2)
return new ErrorValue (”ARGCOUNT”) ;

FunctionRefValue v0 = es [0] . Eval (invocat ion , co l , row) as FunctionRefValue ;
i f (v0 == null)

return new ErrorValue (”VALUE”) ;

MatrixValue v1 = es [1] . Eval (invocat ion , co l , row) as MatrixValue ;
i f (v1 == null)

return new ErrorValue (”VALUE”) ;

Value [,] v = new Value [v1 . Cols , v1 . Rows] ;
Expr [] es1 = new Expr [1] ; // funct ion must have 1 argument ! ? ! ? !
Function f = v0 . Function ;

for (int r = 0 ; r < v1 . Rows ; r++)
{

for (int c = 0 ; c < v1 . Cols ; c++)
{

es1 [0] = new ValueConst (v1 [c , r]) ;
v [c , r] = f . a pp l i e r (invocat ion , es1 , 0 , 0) ;

}
}
return new MatrixValue (v) ;

}
}

MatrixFunctions.cs

internal stat ic c lass MatrixFunctions
{

public stat ic void Reg i s t e r ()
{

new Function (”CBIND” , new Appl ier (CBind)) ;
new Function (”RBIND” , new Appl ier (RBind)) ;
new Function (”CDIM” , new Appl ier (CDim)) ;
new Function (”RDIM” , new Appl ier (RDim)) ;
new Function (”TRANSPOSE” , new Appl ier (Transpose)) ;
new Function (”MMULT” , new Appl ier (MMult)) ;
new Function (”MADD” , new Appl ier (MAdd)) ;
new Function (”MLookup” , new Appl ier (MLookup)) ;

}

private stat ic Value CBind(Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length != 2)
return new ErrorValue (”ARGCOUNT”) ;

MatrixValue v0 = es [0] . Eval (invocat ion , co l , row) as MatrixValue ;
MatrixValue v1 = es [1] . Eval (invocat ion , co l , row) as MatrixValue ;
i f (v0 == null | | v1 == null)

return new ErrorValue (”VALUE”) ;

i f (v0 . Rows != v1 . Rows)
return new ErrorValue (”DIMS ” + v0 . Rows + ”!=” + v1 . Rows) ;

int c o l s = v0 . Cols + v1 . Cols ;
int rows = v0 . Rows ;

Value [,] v = new Value [co l s , rows] ;

for (int r = 0 ; r < rows ; r++)
{

for (int c = 0 ; c < v0 . Cols ; c++)
{

v [c , r] = v0 [c , r] ;
}
for (int c = 0 ; c < v1 . Cols ; c++)
{

v [c + v0 . Cols , r] = v1 [c , r] ;
}

}
return new MatrixValue (v) ;

}

private stat ic Value CDim(Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length != 1)
return new ErrorValue (”ARGCOUNT”) ;

MatrixValue v = es [0] . Eval (invocat ion , co l , row) as MatrixValue ;
i f (v == null)

return new ErrorValue (”VALUE”) ;

return new NumberValue (v . Cols) ;
}

private stat ic Value RBind(Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length != 2)
return new ErrorValue (”ARGCOUNT”) ;

MatrixValue v0 = es [0] . Eval (invocat ion , co l , row) as MatrixValue ;
MatrixValue v1 = es [1] . Eval (invocat ion , co l , row) as MatrixValue ;
i f (v0 == null | | v1 == null)

return new ErrorValue (”VALUE”) ;

i f (v0 . Cols != v1 . Cols)
return new ErrorValue (”DIMS”) ;

int c o l s = v0 . Cols ;
int rows = v0 . Rows + v1 . Rows ;

Value [,] v = new Value [co l s , rows] ;

for (int c = 0 ; c < c o l s ; c++)
{

for (int r = 0 ; r < v0 . Rows ; r++)
{

v [c , r] = v0 [c , r] ;
}
for (int r = 0 ; r < v1 . Rows ; r++)
{

v [c , r + v0 . Rows] = v1 [c , r] ;
}

}
return new MatrixValue (v) ;

}

private stat ic Value RDim(Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length != 1)
return new ErrorValue (”ARGCOUNT”) ;

MatrixValue v = es [0] . Eval (invocat ion , co l , row) as MatrixValue ;
i f (v == null)

return new ErrorValue (”VALUE”) ;

return new NumberValue (v . Rows) ;
}

private stat ic Value Transpose (Calcu lat ionContext invocat ion ,
Expr [] es , int co l , int row)

{
i f (es . Length != 1)

return new ErrorValue (”ARGCOUNT”) ;

MatrixValue v = es [0] . Eval (invocat ion , co l , row) as MatrixValue ;
i f (v == null)

return new ErrorValue (”VALUE”) ;

return v . Transpose () ;
}

private stat ic Value MMult(Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length != 2)
return new ErrorValue (”ARGCOUNT”) ;

MatrixValue v0 = es [0] . Eval (invocat ion , co l , row) as MatrixValue ;
MatrixValue v1 = es [1] . Eval (invocat ion , co l , row) as MatrixValue ;

i f (v0 == null | | v1 == null)
return new ErrorValue (”VALUE”) ;

return v0 . Mult ip ly (v1) ;
}

private stat ic Value MAdd(Calcu lat ionContext invocat ion , Expr [] es , int co l , int row)
{

i f (es . Length != 2)
return new ErrorValue (”ARGCOUNT”) ;

MatrixValue v0 = es [0] . Eval (invocat ion , co l , row) as MatrixValue ;
MatrixValue v1 = es [1] . Eval (invocat ion , co l , row) as MatrixValue ;

i f (v0 == null | | v1 == null)
return new ErrorValue (”VALUE”) ;

return v0 .Add(v1) ;
}

private stat ic Value MLookup(Calcu lat ionContext invocat ion ,
Expr [] es , int co l , int row)

{
i f (es . Length != 3)

return new ErrorValue (”ARGCOUNT”) ;

MatrixValue v0 = es [0] . Eval (invocat ion , co l , row) as MatrixValue ;
NumberValue v1 = es [1] . Eval (invocat ion , co l , row) as NumberValue ;
NumberValue v2 = es [2] . Eval (invocat ion , co l , row) as NumberValue ;

i f (v0 == null | | v1 == null | | v2 == null)
return new ErrorValue (”VALUE”) ;

int c = (int) v1 . va lue ;
int r = (int) v2 . va lue ;

i f (c < 0 | | c >= v0 . Cols | | r < 0 | | r >= v0 . Rows)
return new ErrorValue (”DIMS”) ;

return v0 [c , r] ;
}

}

MatrixSheet.cs

public class MatrixSheet : Sheet
{

public MatrixSheet (Workbook workbook , MatrixValue value)
: base (workbook , value . Cols , va lue . Rows)

{
for (int c o l = 0 ; c o l < value . Cols ; c o l++)
{

for (int row = 0 ; row < value . Rows ; row++)
{

Ce l l s [co l , row] = Ce l l . Create (value [co l , row]) ;
}

}
}

}

MatrixValue.cs

public class MatrixValue : Value
{

private readonly Value [,] va lues ;

public MatrixValue (Value [,] va lues)
{

this . va lues = va lues ;
}

public int Cols
{

get { return va lues . GetLength (0) ; }
}

public int Rows
{

get { return va lues . GetLength (1) ; }
}

public Value this [CellAddr ca]
{

get

{
return this [ca . co l , ca . row] ;

}
}

public Value this [int co l , int row]
{

get

{
return va lues [co l , row] ;

}
}

public void Apply (Act<double> act)
{

foreach (Value v in va lues)
{

i f (v != null)
{

i f (v i s NumberValue)
act ((v as NumberValue) . va lue) ;

else i f (v i s MatrixValue)
(v as MatrixValue) . Apply (act) ;

else

throw new ArgumentException () ;
}

}
}

public int FindRowIndex (double value)
{

for (int index = 0 ; index < Rows ; index++)
{

NumberValue v = va lues [0 , index] as NumberValue ;
i f (v != null)
{

i f (v . va lue > value)
{

return index − 1 ;
}

}

}
return Rows − 1 ;

}

public Value Add(MatrixValue m)
{

i f (m. Rows != Rows | | m. Cols != Cols)
return new ErrorValue (”DIMS”) ;

int rows = Rows ;
int c o l s = Cols ;
Value [,] v = new Value [co l s , rows] ;
for (int r = 0 ; r < rows ; r++)
{

for (int c = 0 ; c < c o l s ; c++)
{

NumberValue v0 = va lues [c , r] as NumberValue ;
NumberValue v1 = m. va lues [c , r] as NumberValue ;
i f (v0 != null && v1 != null)

v [c , r] = new NumberValue (v0 . value + v1 . value) ;
else

v [c , r] = new ErrorValue (”VALUE”) ;
}

}
return new MatrixValue (v) ;

}

public Value Mult ip ly (MatrixValue m)
{

i f (m. Rows != Cols)
return new ErrorValue (”DIMS”) ;

int rows = Rows ;
int c o l s = m. Cols ;
int s i z e = Cols ;

Value [,] v = new Value [co l s , rows] ;
double [] column = new double [s i z e] ;
for (int c = 0 ; c < c o l s ; c++)
{

for (int k = 0 ; k < s i z e ; k++)
{

NumberValue nv = m[c , k] as NumberValue ;
i f (nv == null)

return new ErrorValue (”VALUE”) ;

column [k] = nv . value ;
}
for (int r = 0 ; r < rows ; r++)
{

double s = 0 ;
for (int k = 0 ; k < s i z e ; k++)
{

NumberValue nv = va lues [k , r] as NumberValue ;
i f (nv == null)

return new ErrorValue (”VALUE”) ;

s += nv . value ∗ column [k] ;
}
v [c , r] = new NumberValue (s) ;

}
}
return new MatrixValue (v) ;

}

public override string ToString ()
{

St r ingBu i ld e r sb = new St r ingBu i ld e r () ;
sb . Append (’ { ’) ;
for (int r = 0 ; r < Rows ; r++)
{

for (int c = 0 ; c < Cols ; c++)
{

Value v = va lues [c , r] ;

sb . Append(v == null ? ” [none] ” : v . ToString ()) ;
i f (c < Cols − 1)

sb . Append(” , ”) ;
}
i f (r < Rows − 1)

sb . Append(” ; ”) ;
}
sb . Append (’ } ’) ;
return sb . ToString () ;

}

public MatrixValue Transpose ()
{

Value [,] t = new Value [Rows , Cols] ;

for (int i = 0 ; i < Cols ; i++)
{

for (int j = 0 ; j < Rows ; j++)
{

t [j , i] = va lues [i , j] ;
}

}
return new MatrixValue (t) ;

}

public override DataType DataType
{

get { return DataType . Matrix ; }
}

}

NullValue.cs

/// <summary>
/// Represent the value of nu l l .
/// </summary>
public class NullValue : Value
{

public override DataType DataType
{

get { throw new NotImplementedException () ; }
}

public override Value ToNumberValue ()
{

return new NumberValue (0) ;
}

public override string ToString ()
{

return ”<nul l>” ;
}

}

NumberCell.cs

/// <summary>
/// Represent a f l oa t ing−point constant in a c e l l .
/// </summary>
public class NumberCell : ConstCel l
{

private NumberValue v ;

public NumberCell (double d)
{

this . v = new NumberValue (d) ;
}

public override Value Eval (Calcu lat ionContext invoca t i onL i s t , int co l , int row)
{

return v ;
}

public override string Show(int co l , int row)
{

return v . value . ToString () ;
}

}

NumberValue.cs

public class NumberValue : Value
{

public readonly double value ;

public NumberValue (double value)
{

this . va lue = value ;
}

public override Value ToNumberValue ()
{

return this ;
}

public override string ToString ()
{

return value . ToString (Cu l ture In fo . Invar i antCu l ture) ;
}

public override DataType DataType
{

get { return DataType . Number ; }
}

}

RARef.cs

public sealed class RARef
{

public bool colAbs , rowAbs ;
public int colRef , rowRef ;

public RARef(bool colAbs , int colRef , bool rowAbs , int rowRef)
{

this . colAbs = colAbs ;
this . co lRe f = co lRe f ;
this . rowAbs = rowAbs ;
this . rowRef = rowRef ;

}

public RARef(string s , int row , int c o l)
{

int i = 0 ;
i f (i < s . Length && s [i] == ’$ ’)
{

colAbs = true ;
i++;

}
int va l = −1;
while (i < s . Length && IsAToZ(s [i]))
{

va l = (va l + 1) ∗ 26 + AToZValue (s [i]) ;
i++;

}
co lRe f = colAbs ? va l : va l − c o l ;

i f (i < s . Length && s [i] == ’$ ’)
{

rowAbs = true ;
i++;

}
va l = 0 ;
while (i < s . Length && char . I sD i g i t (s [i]))
{

va l = va l ∗ 10 + (s [i] − ’ 0 ’) ;
i++;

}
rowRef = (rowAbs ? va l : va l − row) − 1 ;

}

private stat ic bool IsAToZ(char c)
{

return (’ a ’ <= c && c <= ’ z ’) | | (’A’ <= c && c <= ’Z ’) ;
}

private stat ic int AToZValue (char c)
{

return (c − ’A’) % 32 ;
}

public CellAddr Addr (int co l , int row)
{

return new CellAddr (this , co l , row) ;
}

public Adjusted<RARef> InsertRows (int aboveRow , int rows , int row)
{

int newRow ;
int upper ;
i f (rowAbs)
{

i f (rowRef >= aboveRow)
{

// abso lu te r e f to c e l l above inser t ed
newRow = rowRef + rows ;
upper = int . MaxValue ;

}
else

{
// abso lu te r e f to c e l l below inser t ed
newRow = rowRef ;
upper = int . MaxValue ;

}
}
else // r e l t a t i v e re ference
{

i f (row >= aboveRow)
{

i f (row + rowRef < aboveRow)
{

// r e l a t i v e r e f from above inse r t i on to c e l l below inse r t i on
newRow = rowRef − rows ;
upper = aboveRow − rowRef ;

}
else

{
// r e l a t i v e r e f from above inse r t i on to c e l l above inse r t i on
newRow = rowRef ;
upper = int . MaxValue ;

}
}
else

{
i f (row + rowRef >= aboveRow)
{

// r e l a t i v e r e f from below inse r t i on to c e l l above inse r t i on
newRow = rowRef + rows ;
upper = aboveRow ;

}
else

{
// r e l a t i v e r e f from below inse r t i on to c e l l below inse r t i on
newRow = rowRef ;
upper = Math . Min(aboveRow , aboveRow − rowRef) ;

}
}

}
RARef rarefNew = new RARef(colAbs , colRef , rowAbs , newRow) ;
return new Adjusted<RARef>(rarefNew , upper , rowRef == newRow) ;

}

public RARef Move(int deltaCol , int deltaRow)
{

return new RARef(
colAbs , colAbs ? co lRe f : co lRe f + deltaCol ,
rowAbs , rowAbs ? rowRef : rowRef + deltaRow
) ;

}

public string Show(int co l , int row)
{

CellAddr ca = new CellAddr (this , co l , row) ;
return (colAbs ? ”$” : ””) + Column .GetName(ca . c o l)

+ (rowAbs ? ”$” : ””) + (ca . row + 1) ;
}

}

Sheet.cs

public delegate void Shower (int co l , int row , string value) ;
public delegate void SheetHandler (Sheet shee t) ;

public abstract class Sheet
{

private int activeColumn ;
private int activeRow ;
private string name ;
private Workbook workbook ;
private Ce l lCo l l e c t i o n c e l l s ;
private RangeSe lect ion rangeSe l e c t i on ;
private ColumnCollection columns ;
private RowCollection rows ;
private S ty l eCo l l e c t i o n s t y l e s ;

private int l e f tCo lumnVis ib l e ;
private int topRowVisible ;
private int defaultColumnWidth ;
private int defaultRowHeight ;

public event ActiveCellChangedEventHandler ActiveCellChanged ;
public event ColumnChangedEventHandler ColumnWidthChanged ;
public event EventHandler LeftColumnVisibleChanged ;
public event EventHandler RangeSelectionChanged ;
public event SheetHandler RecomputeComplete ;
public event RowChangedEventHandler RowHeightChanged ;
public event EventHandler TopRowVisibleChanged ;

private Calcu lat ionContext context ;

p rotec ted Sheet (Workbook workbook , int co l s , int rows)
{

this . workbook = workbook ;
this . columns = new ColumnCollection (this) ;
this . rows = new RowCollection (this) ;
this . s t y l e s = new S ty l eCo l l e c t i o n () ;
this . c e l l s = new Ce l lCo l l e c t i o n (co l s , rows) ;

defaultColumnWidth = Column . DefaultWidth ;
defaultRowHeight = Row. DefaultHeight ;

}

protec ted Sheet (Workbook workbook , string name , int co l s , int rows)
: this (workbook , co l s , rows)

{
this . name = name ;
this . context = new Calcu lat ionContext (this , name) ;
workbook . AddSheet (this) ;

}

protec ted Sheet ()
{
}

public void CopyCell (int fromCol , int fromRow , int co l , int row , int co l s , int rows)
{

Ce l l c e l l = c e l l s [fromCol , fromRow] ;
i f (c e l l i s Formula)
{

// clone cache but share express ion f . e between a l l t a r ge t c e l l s
//
Formula f = (Formula) c e l l ;
for (int c = 0 ; c < c o l s ; c++)

for (int r = 0 ; r < rows ; r++)
c e l l s [c o l + c , row + r] = new Formula (f) ;

}
else i f (c e l l i s ConstCel l)
{

// share constant c e l l between a l l t a r ge t c e l l s
//
for (int c = 0 ; c < c o l s ; c++)

for (int r = 0 ; r < rows ; r++)
c e l l s [c o l + c , row + r] = c e l l ;

}
else

throw new Exception (”Cannot copy c e l l : ” + c e l l) ;
}

public void InsertMatrixFormula (
Ce l l c e l l , int co l , int row , CellAddr ulCa , CellAddr lrCa)

{
throw new NotImplementedException () ;

}

public void InsertRows (int aboveRow , int rows)
{

// check tha t t h i s w i l l not s p l i t a matrix formula
//
i f (aboveRow > 1)
{

for (int c o l = 0 ; c o l < ExpandedColumnCount ; c o l++)
{

Ce l l c e l l = c e l l s [co l , aboveRow − 1] ;
i f (c e l l i s MatrixFormula)

i f (((MatrixFormula) c e l l) . Contains (co l , aboveRow))
throw new Exception (” I n s e r t would s p l i t matrix formula . ”) ;

}
}

// adjus t formulas in a l l shee t s . The d ic t ionary record adjusted
// express ions to preserve sharing of express ion where po s s i b l e .
//
Dict ionary<Expr , Adjusted<Expr>> adjusted = new Dict ionary<Expr , Adjusted<Expr>>();
foreach (Sheet shee t in workbook)
{

Ce l lCo l l e c t i o n cs = sheet . c e l l s ;
for (int r = 0 ; r < shee t . ExpandedRowCount ; r++)
{

for (int c = 0 ; c < shee t . ExpandedColumnCount ; c++)
{

Ce l l c e l l = cs [c , r] ;
i f (c e l l != null)

c e l l . InsertRows (adjusted , this , shee t == this , aboveRow , rows , r) ;
}

}
}

// move the rows below aboveRow in current sheet
//
for (int r = ExpandedRowCount − 1 ; r >= aboveRow ; r−−)
{

for (int c = 0 ; c < ExpandedColumnCount ; c++)
{

c e l l s [c , r] = c e l l s [c , r − rows] ;
}

}

// f i n a l l y , nu l l out the f re sh rows
//
for (int r = 0 ; r < rows ; r++)
{

for (int c = 0 ; c < ExpandedColumnCount ; c++)
{

c e l l s [c , aboveRow + r] = null ;
}

}
}

protec ted void OnActiveCellChanged (ActiveCellChangedEventArgs e)
{

i f (ActiveCellChanged != null)
{

ActiveCellChanged (this , e) ;
}

}

protec ted internal void OnColumnWidthChanged (ColumnChangedEventArgs e)
{

i f (ColumnWidthChanged != null)
{

ColumnWidthChanged (this , e) ;
}

}

protec ted void OnLeftColumnVisibleChanged (EventArgs e)
{

i f (LeftColumnVisibleChanged != null)
{

LeftColumnVisibleChanged (this , e) ;
}

}

protec ted void OnRangeSelectionChanged (EventArgs e)
{

i f (this . RangeSelectionChanged != null)
{

this . RangeSelectionChanged (this , e) ;
}

}

protec ted internal void OnRowHeightChanged (RowChangedEventArgs e)
{

i f (RowHeightChanged != null)
{

RowHeightChanged (this , e) ;
}

}

protec ted virtual void OnRecomputeComplete ()
{

i f (RecomputeComplete != null)
{

RecomputeComplete (this) ;
}

}

protec ted void OnTopRowVisibleChanged (EventArgs e)
{

i f (TopRowVisibleChanged != null)
{

TopRowVisibleChanged (this , e) ;
}

}

/// <summary>
/// Move c e l l from (fromCol , fromRow) to (col , row)
/// </summary>
public void MoveCell (int fromCol , int fromRow , int co l , int row , int co l s , int rows)
{

Ce l l c e l l = c e l l s [fromCol , fromRow] ;
c e l l s [co l , row] = c e l l . MoveContents (c o l − fromCol , row − fromRow) ;

}

public void Recompute (Calcu lat ionContext invoca t i on)
{

for (int c o l = 0 ; c o l < ExpandedColumnCount ; c o l++)
{

for (int row = 0 ; row < ExpandedRowCount ; row++)
{

Ce l l c e l l = c e l l s [co l , row] ;
i f (c e l l != null)
{

c e l l . Eval (invocat ion , co l , row) ;
}

}
}

}

public void Recompute ()
{

Recompute (context) ;
OnRecomputeComplete () ;

}

public void Reset ()
{

context . Reset () ;
}

public void SetAct iveCe l l (int rowIndex , int co l Index)
{

i f (rowIndex != activeRow | | co l Index != activeColumn)
{

ActiveCellChangedEventArgs args = new ActiveCellChangedEventArgs (
activeRow , activeColumn) ;

activeRow = rowIndex ;
activeColumn = co l Index ;
OnActiveCellChanged (args) ;

}
}

public string Show(int co l , int row)
{

Ce l l c e l l = c e l l s [co l , row] ;
i f (c e l l != null)

return c e l l . Show(col , row) ;
else

return null ;
}

public void ShowAll (Shower show)
{

for (int c o l = 0 ; c o l < ExpandedColumnCount ; c o l++)
{

for (int row = 0 ; row < ExpandedRowCount ; row++)
{

Ce l l c e l l = c e l l s [co l , row] ;
show (col , row , c e l l != null ? c e l l . ShowValue (this . Context , co l , row) : null) ;

}
}

}

public string ShowValue (int co l , int row)
{

Ce l l c e l l = c e l l s [co l , row] ;
i f (c e l l != null)

return c e l l . ShowValue (this . Context , co l , row) ;
else

return null ;
}

public Ce l l this [int co l , int row]
{

get { return c e l l s [co l , row] ; }
set { c e l l s [co l , row] = value ; }

}

public Ce l l this [CellAddr ca]
{

get { return c e l l s [ca . co l , ca . row] ; }
set { c e l l s [ca . co l , ca . row] = value ; }

}

public int ExpandedColumnCount
{

get { return c e l l s . Cols ; }
}

public int ExpandedRowCount
{

get { return c e l l s . Rows ; }
}

public Ce l lCo l l e c t i o n Ce l l s
{

get { return c e l l s ; }
}

public ColumnCollection Columns
{

get { return columns ; }
}

public RowCollection Rows
{

get { return rows ; }
}

public int ActiveColumn
{

get { return activeColumn ; }
set { SetAct iveCe l l (activeRow , value) ; }

}

public int ActiveRow
{

get { return activeRow ; }
set { SetAct iveCe l l (value , activeColumn) ; }

}

public int DefaultColumnWidth
{

get

{
return defaultColumnWidth ;

}
set

{
throw new NotImplementedException () ;

}
}

public int DefaultRowHeight
{

get

{
return defaultRowHeight ;

}

set

{
throw new NotImplementedException () ;

}
}

public bool DisplayColumnHeaders
{

get { return t rue ; }
}

public bool Di sp l ayGr id l i n e s
{

get { return t rue ; }
}

public bool DisplayRowHeaders
{

get { return t rue ; }
}

public int LeftColumnVis ib le
{

get

{
return l e f tCo lumnVis ib l e ;

}
set

{
i f (value != le f tCo lumnVis ib l e)
{

this . l e f tCo lumnVis ib l e = value ;
OnLeftColumnVisibleChanged (EventArgs . Empty) ;

}
}

}

public string Name
{

get { return name ; }
set { name = value ; }

}

public RangeSe lect ion RangeSe lect ion
{

get { return r angeSe l e c t i on ; }
set

{
i f (r angeSe l e c t i on != value)
{

r angeSe l e c t i on = value ;
OnRangeSelectionChanged (EventArgs . Empty) ;

}
}

}

public int TopRowVisible
{

get

{
return topRowVisible ;

}
set

{
i f (value != this . topRowVisible)
{

this . topRowVisible = value ;
OnTopRowVisibleChanged (EventArgs . Empty) ;

}
}

}

public Workbook Workbook
{

get { return workbook ; }
}

public Calcu lat ionContext Context
{

get { return context ; }
}

public S ty l eCo l l e c t i o n S ty l e s
{

get { return s t y l e s ; }
}

}

TextCell.cs

class TextCel l : ConstCel l
{

private readonly TextValue v ;

public TextCel l (string s)
{

this . v = new TextValue (s) ;
}

public override Value Eval (Calcu lat ionContext invoca t i onL i s t , int co l , int row)
{

return v ;
}

public override string Show(int co l , int row)
{

return ” ’ ” + v . value ;
}

}

TextValue.cs

public class TextValue : Value
{

public readonly string value ;

public TextValue (string value)
{

this . va lue = value ;
}

public override Value ConvertTo (DataType dataType)
{

switch (dataType)
{

case DataType . Number :
double v ;
i f (double . TryParse (value , out v))

return new NumberValue (v) ;
else

return new ErrorValue (”VALUE”) ;
}
return base . ConvertTo (dataType) ;

}

public override string ToString ()
{

return value ;
}

public override Value ToNumberValue ()
{

double v ;
i f (double . TryParse (value , out v))

return new NumberValue (v) ;
else

return base . ToNumberValue () ;
}

public override DataType DataType
{

get { return DataType . Text ; }
}

}

Value.cs

/// <summary>
/// Represent a value
/// </summary>
public abstract class Value
{

private class Vis i tVa lue : Value
{

public override DataType DataType
{

get { throw new NotImplementedException () ; }
}

}

public stat ic readonly Value Vis i tMarker = new Vis i tVa lue () ;
public stat ic readonly Value Nul l = new NullValue () ;
public abstract DataType DataType { get ; }

}

Workbook.cs

public sealed class Workbook : IEnumerable<Sheet>

{
public List<Sheet> sh e e t s ;
private bool c y c l i c ; // i f true , workbook may be incons i s t en t
private Sheet ac t i v eShee t ;
private Sty l e s t y l e ;

public Workbook ()
{

this . s h e e t s = new List<Sheet >() ;
this . s t y l e = new Sty l e (this) ;

}

public void AddSheet (Sheet shee t)
{

sh e e t s .Add(sheet) ;
i f (a c t i v eShee t == null)

a c t i v eShee t = sheet ;
}

public void Recompute ()
{

c y c l i c = f a l s e ;
t ry
{

foreach (Sheet shee t in she e t s)
{

shee t . Recompute () ;
}

}
catch (Cyc l i cExcept ion)
{

foreach (Sheet shee t in she e t s)

{
shee t . Reset () ;

}
c y c l i c = true ;
throw ;

}
}

public bool Cyc l i c
{

get { return c y c l i c ; }
}

public Sheet Act iveSheet
{

get { return ac t i v eShee t ; }
set { ac t i v eShee t = value ; }

}

public Sheet this [string name]
{

get

{
foreach (Sheet shee t in she e t s)
{

i f (shee t .Name == name)
return shee t ;

}
throw new Exception (”No sheet named ’ ” + name + ” ’ . ”) ;

}
}

public Sheet this [int index]
{

get

{
return sh e e t s [index] ;

}
}

public IEnumerator<Sheet> GetEnumerator ()
{

foreach (Sheet shee t in she e t s)
yield return shee t ;

}

IEnumerator IEnumerable . GetEnumerator ()
{

foreach (Sheet shee t in she e t s)
yield return shee t ;

}

public Sty l e S ty l e
{

get { return s t y l e ; }
}

}

Worksheet.cs

public class Worksheet : Sheet
{

public Worksheet (Workbook workbook , string name , int co l s , int rows)
: base (workbook , name , co l s , rows)

{
}

}

Parser.atg

using System . Co l l e c t i o n s . Generic ;
using System . G loba l i z a t i on ;

using Spreadsheet . AbstractSyntax ;
using Spreadsheet .DOM;

COMPILER Spreadsheet

$L

private int co l , row ;
private Workbook workbook ;
private Ce l l c e l l ;

public Ce l l ParseCe l l (Workbook workbook , int co l , int row)
{

this . workbook = workbook ;
this . c o l = co l ;
this . row = row ;
Parse () ;
return c e l l ;

}

CHARACTERS
l e t t e r = ”ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz” .
d i g i t = ”0123456789” .
Alpha = l e t t e r + d i g i t .
c r = ’\ r ’ .
l f = ’\n ’ .
tab = ’\ t ’ .
exc lamation = ’ ! ’ .
d o l l a r = ’$ ’ .
newl ine = cr + l f .
s t r cha r = ANY − ’ ” ’ − ’\\ ’ − newl ine .
char = ANY − ’ ” ’ − ’\\ ’ − newl ine .

TOKENS
name = l e t t e r { l e t t e r } .
number =

d i g i t { d i g i t }
[/∗ opt iona l f rac t i on ∗/
[(” . ” | ” , ”) d i g i t { d i g i t }] /∗ opt iona l f r a c t i ona l d i g i t s ∗/
[(”E” | ”e”) /∗ opt iona l exponent ∗/

[”+” | ”−”] /∗ opt inoa l exponentsign ∗/
d i g i t { d i g i t }

]
] .

s h e e t r e f = Alpha { Alpha } exc lamation .
r a r e f = [d o l l a r] l e t t e r { l e t t e r } [d o l l a r] d i g i t { d i g i t } .
string = ”\”” { char } ”\”” .
t e x t c e l l = ”\ ’ ” { char } .

COMMENTS FROM ”/∗” TO ”∗/” NESTED
COMMENTS FROM ”//” TO cr l f

IGNORE cr + l f + tab

PRODUCTIONS

AddOp<out string op>

= (. op = ”+” ; .)
(’+ ’
| ’− ’ (. op = ”−” ; .)
| ’& ’ (. op = ”&” ; .)
) .

ArgumentList<out Expr [] es> (. e s = null ; .)
=

(’) ’ (. e s = new Expr [0] ; .)
| Exprs1<out es> ’) ’

)

.

Expr<out Expr e> (. Expr e2 ; string op ; e = null ; .)

= ”−” Expr<out e> (. e = new FunCall (”−” , new Expr [] { e }) ; .)
| (Term<out e>

{ AddOp<out op>

Term<out e2> (. e = new FunCall (op , new Expr [] { e , e2 }) ; .)
}) .

Exprs1<out Expr [] es> (. Expr e1 , e2 ;
L i s t<Expr> e l i s t = new List<Expr >() ;

.)
= (Expr<out e1> (. e l i s t .Add(e1) ; .)

{ (’ ; ’ | ’ , ’) Expr<out e2> (. e l i s t .Add(e2) ; .)
}

) (. e s = e l i s t . ToArray () ; .)
.

Factor<out Expr e> (. RARef r1 , r2 ; Sheet s1 = null ; double d ;
string s ; Expr [] e s ; e = null ; .)

= (
| s h e e t r e f (. t ry

{
string sheetname = t . va l . TrimEnd (’ ! ’) ;
s1 = workbook [sheetname] ;

}
catch
{
}

.)
)

Raref<out r1> ((. e = new Cel lRe f (s1 , r1) ; .)
| ’ : ’ Raref<out r2> (. e = new Cel lArea (s1 , r1 , r2) ; .)

)
| Number<out d> (. e = new NumberConst (d) ; .)
| string (. int l en = t . va l . Length −2;

e = new TextConst (t . va l . Substr ing (1 , l en)) ;
.)

| ’ (’ Expr<out e> ’) ’
| Name<out s>

(’ (’ ArgumentList<out es> (. e = new FunCall (s , e s) ; .)
| (. e = new FunName(s) ; .)
)

.

MulOp<out string op>

= (. op = ”∗” ; .)
(’∗ ’
| ’ / ’ (. op = ”/” ; .)
) .

Name<out string s>
= name (. s = t . va l ; .)

.

Number<out double d> (. d = 0 . 0 ; .)
= (number (. d = double . Parse (t . val , Cu l ture In fo . Invar i an tCu l ture) ; .)

| ”−” number (. d = −double . Parse (t . val , Cu l ture In fo . Invar i antCu l ture) ; .)
) .

PowFactor<out Expr e> (. Expr e2 ; .)
= Factor<out e>

{ ’ ˆ ’
Factor<out e2> (. e = new FunCall (”ˆ” , new Expr [] { e , e2 }) ; .)

}
.

Raref<out RARef ra r e f >

= ra r e f (. r a r e f = new RARef(t . val , row , c o l) ; .) .

Spreadsheet (. Expr e ; double d ; .)
= (’= ’ Expr<out e> (. c e l l = new Formula (e) ; .)

| t e x t c e l l (. c e l l = new TextCel l (t . va l . Substr ing (1)) ; .)

| Number<out d> (. c e l l = new NumberCell (d) ; .)
) .

Term<out Expr e> (. Expr e2 ; string op ; .)
= PowFactor<out e>

{ MulOp<out op>

PowFactor<out e2> (. e = new FunCall (op , new Expr [] { e , e2 }) ; .)
} .

END Spreadsheet .

