
A Spreadsheet Core

Implementation in C#

Version 1.0 of 2006-09-28

Peter Sestoft

IT University Technical Report Series TR-2006-91

ISSN 1600–6100 September 2006

Copyright c© 2006 Peter Sestoft

IT University of Copenhagen

All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

ISSN 1600–6100

ISBN 87-7949-135-9

Copies may be obtained by contacting:

IT University of Copenhagen

Rued Langgaardsvej 7

DK-2300 Copenhagen S

Denmark

Telephone: +45 72 18 50 00

Telefax: +45 72 18 50 01

Web www.itu.dk

Preface

Spreadsheet programs are used daily by millions of people for tasks ranging from
neatly organizing a list of addresses to complex economical simulations or analysis
of biological data sets. Spreadsheet programs are easy to learn and convenient to
use because they have a clear visual data model (tabular) and a simple efficient
computation model (functional and side effect free).

Spreadsheet programs are usually not held in high regard by professional soft-
ware developers [15]. However, their implementation involves a large number of
non-trivial design considerations and time-space tradeoffs. Moreover, the basic
spreadsheet model can be extended, improved or otherwise experimented with in
many ways, both to test new technology and to provide new functionality in a con-
text that could make a difference to a large number of users.

Yet there does not seem to be a coherently designed, reasonably efficient open
source spreadsheet implementation that is a suitable platform for experiments. Ex-
isting open source spreadsheet implementations such as Gnumeric and OpenOffice
are rather complex, written in unmanaged languages such as C and C++, and the
documentation of their internals is sparse. Commercial spreadsheet implementa-
tions such as Microsoft Excel neither expose their internals through their source
code nor through adequate documentation of data representations and functions.

Goals of this report The purpose of this report is to enable others to make exper-
iments with innovative spreadsheet functionality and with new ways to implement
it. Therefore we have attempted to collect in one place a considerable body of knowl-
edge about spreadsheet implementation.

To our knowledge neither the challenges of efficient spreadsheet implementation
nor possible solutions to them are systematically presented in the existing scientific
literature. There are many patents on spreadsheet implementation, but they offer
a very fragmented picture, since patents traditionally do not describe the prior art
on which they build.

This report is a first attempt to provide a more coherent picture by gleaning
information from experience with existing spreadsheet implementations and with
our own implementation CoreCalc, from the scientific literature, and from patents
and patent applications. For commercial software, this necessarily involves some
guesswork, but we have not resorted to any form of reverse engineering.

1

2

Contents of this report The report comprises the following parts:

• A summary of the spreadsheet computation model and the most important
challenges for efficient recalculation, in chapter 1.

• A survey of scholarly works, spreadsheet implementations and related patents,
in sections 1.10 through 1.12.

• A description of a core implementation of essential spreadsheet functionality
for making practical experiments, in chapter 2. The implementation itself,
called CoreCalc, is available in source form under a liberal license, and is writ-
ten in C#, using only managed code.

• A discussion of alternatives to some of the design decisions made in CoreCalc,
in chapter 3.

• A thorough investigation of one particular design alternative, presenting a
possibly novel way to represent the support graph, an important device for
achieving minimal recalculation, in chapter 4.

• A description of an experiment with using runtime bytecode generation on the
.NET platform for efficient formula evaluation, in chapter 5.

• A description of experiments with permitting users to define functions in terms
of special function sheets, rather than in an extraneous programming lan-
guage such as VBA, in chapter 6.

• A list of possible extensions and future projects, in chapter 7.

• An appendix listing all known US patents and patent applications related to
spreadsheet implementation, in appendix A.

Goals of the CoreCalc implementation The purpose of the CoreCalc imple-
mentation described in chapter 2 of this report is to provide a source code platform
for experiments with spreadsheet implementation. The CoreCalc implementation is
written in C# and provides all essential spreadsheet functionality. The implemen-
tation is small and simple enough to allow experiments with design decisions and
extensions, yet complete and efficient enough to benchmark against real spread-
sheet programs such as Microsoft Excel, Gnumeric and OpenOffice Calc, as shown
in section 5.2.

The hope is that this core implementation can be used in further experiments
with implementation design decisions and extended functionality.

Availability and license The complete implementation, including documenta-
tion, is available in binary and source form from the IT University of Copenhagen:

http://www.itu.dk/people/sestoft/corecalc/

3

The CoreCalc implementation is copyrighted by the authors and distributed under
a BSD-style license:

Copyright c© 2006 Peter Sestoft

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE

FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This means that you can use and modify the CoreCalc software for any purpose,
including commerce, without a license fee, but the copyright notice must remain
in place, and you cannot blame us for any consequences of using or abusing the
software. In particular, we accept no responsibility if the commercial exploitation of
an idea presented in this report is construed to violate one or more patents. This
license does not apply to the ideas discussed in chapter 4.

Also, all trademarks belong to their owners.

Acknowledgements The original impetus to look at spreadsheets came from Si-
mon Peyton Jones and Margaret Burnett during a visit to Microsoft Research, Cam-
bridge UK, in 2001, and from their 2003 paper with Alan Blackwell [70].

Thomas S. Iversen investigated the use of runtime code generation for speeding
up spreadsheet calculations in his 2006 MSc thesis project [45], jointly supervised
with Torben Mogensen (DIKU, University of Copenhagen). Parts of this work are
summarized in chapter 5. Thomas also restructured the core code base and added
functionality to read XMLSS files exported from Microsoft Excel.

Daniel S. Cortes and Morten W. Hansen investigated how to design and imple-
ment so-called function sheets, thus allowing spreadsheet users to define their own
functions using well-known spreadsheet concepts. This work was done in their 2006
MSc thesis project [20]. Parts of this work are summarized in section 6.1.

Quan Vi Tran and Phong Ha investigated an alternative implementation of func-
tion sheets, using the infrastructure provided by Microsoft Excel. This work was
done in their 2006 MSc thesis project [40] and is briefly summarized in section 6.2.

Other IT University students, including Jacob Atzen, Claus Skoubølling Jør-
gensen and Jens Lind, investigated other corners of the spreadsheet design space.

4

Source code naming conventions

Name Meaning Type Page
ae adjusted expression Adjusted<Expr> 45
c column index variable int
ca cell address, absolute CellAddr 33
ccar cell or cell area reference CellRef, CellArea 69
cell cell Cell 26
col column number, zero-based int
cols column count int
deltaCol column increment int
deltaRow row increment int
e expression in formula Expr 27
es expression array Expr[]
lr lower right corner of area RARef 32
matrix matrix value MatrixValue 27
r row index variable int
raref relative/absolute reference RARef 32
row row number, zero-based int
rows row count int
sheet sheet Sheet 25
ul upper left corner of area RARef 32
v value Value 31
vs value array Value[]
workbook workbook Workbook 25

Contents

1 What is a spreadsheet 7

1.1 History . 7
1.2 Basic concepts . 7
1.3 Cell reference formats . 9
1.4 Formulas, functions and matrices . 10
1.5 Other spreadsheet features . 11
1.6 Dependency, support, and cycles . 12
1.7 Recalculation . 13
1.8 Spreadsheets are dynamically typed . 15
1.9 Spreadsheets are functional programs 15
1.10 Related work . 15
1.11 Online resources and implementations 18
1.12 Spreadsheet implementation patents 18

2 CoreCalc implementation 21

2.1 Definitions . 21
2.2 Syntax and parsing . 24
2.3 Workbooks and sheets . 25
2.4 Sheets . 25
2.5 Cells, formulas and matrix formulas . 26
2.6 Expressions . 27
2.7 Runtime values . 31
2.8 Representation of cell references . 32
2.9 Sheet-absolute and sheet-relative references 33
2.10 Cell addresses . 33
2.11 Recalculation . 34
2.12 Cyclic references . 35
2.13 Built-in functions . 35
2.14 Copying formulas . 41
2.15 Moving formulas . 41
2.16 Inserting new rows or columns . 42
2.17 Deleting rows or columns . 46
2.18 Prettyprinting formulas . 48

5

6 Contents

2.19 Graphical user interface . 48
2.20 Reading spreadsheets in XML format 50
2.21 Benchmarking CoreCalc . 50
2.22 Organization of source files . 51

3 Alternative designs 53

3.1 Representation of references . 53
3.2 Evaluation of matrix arguments . 54
3.3 Minimal recalculation . 54

4 The support graph 61

4.1 Compact representation of the support graph 61
4.2 Arithmetic progressions and FAP sets 62
4.3 Support graph edge families and FAP sets 63
4.4 Creating and maintaining support graph edges 65
4.5 Reconstructing the support graph . 66
4.6 Related work . 76
4.7 Applications of the support graph . 77
4.8 Limitations and challenges . 78

5 Runtime code generation 81

5.1 Runtime code generation levels . 82
5.2 Performance measurements . 84
5.3 Related work . 90

6 Sheet-defined functions 91

6.1 Sheet-defined functions based on CoreCalc 91
6.2 Sheet-defined functions within Excel 93
6.3 Summary of sheet-defined functions . 94

7 Extensions and projects 95

7.1 Moving and copying cells . 95
7.2 Evaluation mechanism . 95
7.3 Graphical user interface for CoreCalc 96
7.4 Additional functions . 96
7.5 Other project ideas . 98

A Patents and applications 101

Bibliography 120

Index 127

Chapter 1

What is a spreadsheet

1.1 History

The first spreadsheet program was VisiCalc, developed by Dan Bricklin and Bob
Frankston in 1979 for the Apple II computer [10, 94]. A version for MS-DOS on the
IBM PC was released in 1981; the size of the executable was a modest 27 KB.

Many different spreadsheet programs followed, including SuperCalc, Lotus 1-2-
3, PlanPerfect, QuattroPro, and many more. By now the dominating spreadsheet
program is Microsoft Excel [57], whose executable weighs in at 9838 KB. Several
open source spreadsheet programs exist, including Gnumeric [37] and OpenOffice
Calc [67]. See also Wikipedia’s entry on spreadsheets [93].

1.2 Basic concepts

All spreadsheet programs have the same visual model: a two-dimensional grid of
cells. Columns are labelled with letters A, B, . . . , Z, AA, . . . , rows are labelled with
numbers 1, 2, . . . , cells are addressed by row and column: A1, A2, . . . , B1, B2, . . . ,
and rectangular cell areas by their corner coordinates, such as B2:C4. A cell can
contain a number, a text, or a formula. A formula can involve constants, arithmetic
operators such as (*), functions such as SUM(...), and most importantly, references
to other cells such as C2 or to cell areas such as D2:D4. Also, spreadsheet programs
perform automatic recalculation: whenever the contents of a cell has been edited,
all cells that directly or transitively dependent on that cell are recalculated.

Figure 1.1 shows an example spreadsheet, concerning three kinds of tools. For
each tool we know the unit count (column B) and the unit weight (column C). We
compute the total weight for each kind of tool (column D), the total number of tools
(cell B5), the total weight of all tools (cell D5) and the average unit weight (cell C7).
Moreover, in cells E2:E4 we compute the percentage the count for each kind of tool
makes up of the total number of tools. Figure 1.2 shows the formulas used in these
computations.

7

8 Basic concepts §1.2

Figure 1.1: Spreadsheet window showing computed results.

Modern spreadsheet programs have one further essential feature in common.
A reference in a formula can be relative such as C2, or absolute such as B5, or a
mixture such as B$5 which is row-absolute but column-relative.

This distinction matters when the reference occurs in a formula that is copied
from one cell to another. In that case, an absolute reference remains unchanged,
whereas a relative reference gets adjusted by the distance (number of columns
and rows) from the original cell to the cell receiving the copy. A row-absolute and
column-relative reference will keep referring to the same row, but will have its col-
umn adjusted. The adjustment of relative references works also when copying a
formula from one cell to an entire cell area: each copy of the formula gets adjusted
according to its goal cell.

Figure 1.2 shows the formulas behind the sheet from figure 1.1. The formulas in
D3:D4 are copies of that in D2, with the row numbers automatically adjusted from 2
to 3 and 4. The formula in D5 is a copy of that in B5, with the column automatically
adjusted from B to D in the cell area reference. Finally, the formulas in E3:E4 are
copies of the formula =B2/B5*100 in E2; note how the relative row number in B2
gets adjusted whereas the absolute row number in B5 does not.

Figure 1.2: The formulas behind the spreadsheet in figure 1.1.

So far, we have viewed a spreadsheet as a rectangular grid of cells. An equally

§1.4 Cell reference formats 9

valid view is that a spreadsheet is a graph whose nodes are cells, and whose edges
(arrows) are the dependencies between cells; see figure 1.3. The two views corre-
spond roughly to what is called the physical and logical views by Isakowitz [43].

C2

C3

C4 B4

D4

D3

B2

E4

E3

D2

B3

E2

D5

C7

B5

Figure 1.3: A graph-oriented view of the spreadsheet in figures 1.1 and 1.2.

1.3 Cell reference formats

Usually, cell references and cell area references are entered and displayed in the
A1 format shown above, consisting of a column and a row indication. References
are relative by default, and an absolute column or row is indicated by the dollar ($)
prefix.

In Piersol’s 1986 spreadsheet implementation [71] and in Excel there is an alter-
native format called the R1C1 format, in which the row number is shown followed
by the column number (so the opposite of the A1 format). References are numeric
for both rows and columns, and absolute by default, with relative references indi-
cated by an offset in square brackets. When the offset is zero it is left out, so RC
means “this cell”.

The R1C1 format is interesting because it is the essentially the internal format
of out implementation CoreCalc. The R1C1 is used in Excel’s XML export format
XMLSS, and Excel and Gnumeric (but apparently not OpenOffice) can optionally
display formulas in R1C1 format.

The main virtue of R1C1 format is that it is invariant under the adjustment of
relative cell references implied by copying of a formula. Figure 1.4 compares the
two reference formats.

10 Formulas, functions and matrices §1.4

A1 format R1C1 format Meaning
A1 R[-1]C[-1] Relative; previous row, previous column
A2 RC[-1] Relative; this row, previous column
B1 R[-1]C Relative; previous row, this column
B2 RC Relative; this cell
C3 R[+1]C[+1] Relative; next row, next column
A1 R1C1 Absolute; row 1, column 1 (A)
A2 R2C1 Absolute; row 2, column 1 (A)
B1 R1C2 Absolute; row 1, column 2 (B)
B2 R2C2 Absolute; row 2, column 2 (B)
C3 R3C3 Relative; row 3, column 3 (C)
$A1 R[-1]C1 Relative row (previous); absolute column 1 (A)

Figure 1.4: References from cell B2 shown in A1 format and in R1C1 format.

1.4 Formulas, functions and matrices

As already shown, a formula in a cell is an expression that may contain references
to other cells, standard arithmetic operators such as (+), and calls to functions such
as SUM. Most spreadsheet programs implement standard mathematical functions
such as EXP, LOG and SIN, statistical functions such as MEDIAN and probability dis-
tributions, functions to generate pseudo-random number such as RAND, functions
to manipulate times and dates such as NOW and TODAY, financial functions such as
“present value”, a conditional function IF, matrix functions (see below), and much
more.

Some functions take arguments that may be a cell area reference, or range, such
as D2:D4, which denotes the three cells D2, D3 and D4. In general an area reference
consists of two cell references, here D2 and D4, giving two corners of a rectangular
area of a sheet. The cell references giving the two corners may be any combination
of relative, absolute, or mixed relative/absolute. For instance, one may enter the for-
mula =SUM(A$1:A1) in cell B1 and copy it to cell B2 where it becomes =SUM(A$1:A2), to
cell B3 where it becomes =SUM(A$1:A3), and so on, as shown in figure 1.5. The effect
is that column B computes the partial sums of the numbers in column A. Moreover,
since the corner references were column relative, copying column B’s formulas to
column C would make column C compute the partial sums of column B.

A B
1 0.5 =SUM(A$1:A1)
2 =A1*1.00001 =SUM(A$1:A2)
3 =A2*1.00001 =SUM(A$1:A3)

.
12288 =A12287*1.00001 =SUM(A$1:A12288)

Figure 1.5: Adjustment of cell area references when copying a formula.

§1.6 Other spreadsheet features 11

Some built-in functions, called matrix functions, return an entire matrix of val-
ues rather than a number or a text string. Such functions include TRANSPOSE, which
transposes a cell area, and MMULT, which computes matrix multiplication. The ma-
trix result must then be expanded over a rectangular cell area of the same shape,
so that each cell in the area receives one component (one atomic value). In Excel,
Gnumeric and OpenOffice this is achieved by entering the formula as a so-called
matrix formula. First one marks the cell area that should receive the values, then
one enters the formula, and finally one types Ctrl+Shift+Enter instead of just Enter
to complete the formula entry. The resulting formula is shown in curly braces, like
{=TRANSPOSE(A1:B3)}, in every cell of the result area, although each cell contains
only one component of the result. See figure 1.6 for an example.

Figure 1.6: The matrix formula {=TRANSPOSE(A1:B3)} in result area A5:C6.

Finally, modern spreadsheet programs allow the user to define multiple related
sheets, bundled in a so-called workbook. A cell reference can optionally refer to a
cell on another sheets in the same workbook using the notation Sheet2!A$1 in Excel
and Gnumeric, and Sheet2.A$1 in OpenOffice. Similarly, cell area references can be
qualified with the sheet, as in Sheet2!A$1:A1. Naturally, the two corners of a cell
area must lie within the same sheet.

The CoreCalc spreadsheet implementation described in chapter 2 of this report
supports all the functionality described above, including built-in functions and ma-
trix formulas.

1.5 Other spreadsheet features

Most modern spreadsheet programs furthermore provide business graphics (bar
charts, pie charts, scatterplots), pivot tables, database access, spell checkers, and
a large number of other useful and impressive features. Microsoft Excel’97 even
contained a flight simulator, which was activated as follows: Open a new workbook;
press F5; enter X97:L97 and press Enter; press Tab; press Ctrl+Shift; click the
Chart Wizard button. Such features shall not concern us here.

12 Dependency, support, and cycles §1.7

1.6 Dependency, support, and cycles

Clearly, a central concept is the dependence of one cell on the value of another. When
cell D2 contains the formula =B2*C2 as in figure 1.2, then we say that D2 directly

depends on cells B2 and C2, and cells B2 and C2 directly support cell D2. Some
spreadsheet programs, notably Excel and OpenOffice, can display the dependencies
using a feature called formula audit, as shown in figure 1.7. The arrows from cells
B5 and D5 to cell C7 show that both of those cells directly support C7, or equiva-
lently, that C7 directly depends on those two cells. In turn D5 depends on D2:D4,
and so on. In fact, the formula audit in figure 1.7 simply combines the graphical
view in figure 1.3 with the usual spreadsheet grid view.

Figure 1.7: The dependencies in the sheet from figures 1.1 and 1.2.

A cell may directly depend on any number of other cells. For instance, cell B5 in
figures 1.2 and 1.7 directly depends B2, B3 and B4. Similarly, a cell may directly
support any number of other cells: cell B5 directly supports E2, E3 and E4.

More precisely, B5 both statically and dynamically depends on B2, B3 and B4. By
static dependence we mean that the formula text in B5 refers to the cells in B2:B5,
and by dynamic dependence, we mean that calculating the value of B5 requires
calculating the values of those three cells.

A static dependence may or may not cause a dynamic dependence; it is an ap-
proximation of dynamic dependence. For instance, a cell containing the formula
=IF(G1<>0; G2; G3) statically depends G1, G2 and G3, but in any given recalcu-
lation dynamically depends only on G1 and G2 or G1 and G3, according as G1 is
non-zero or zero. This is because IF is a non-strict function; see section 1.7.4.

A cell transitively depends on another cell (possibly itself) if there is a non-empty
chain of direct dependencies from the former to the latter. For instance, cell D5
indirectly depends on the nine cells in B2:D4. The notion of transitive support is
defined similarly. For instance, cell B4 transitively supports B5, D4, D5, C7 and F2,
F3, F4 — the latter three because they depend on B5.

If a cell statically transitively depends on itself, then there is a static cycle in the
workbook; and if a cell dynamically transitively depends on itself, then there is a
dynamic cycle. Sections 1.7.6 and 4.7 have more to say about cycles.

§1.7 Recalculation 13

1.7 Recalculation

When the contents of a cell is changed by editing it, all cells supported by that cell,
whether in the same sheet or another sheet in the workbook, must be recalculated.
This happens relatively frequently, although hardly more than once every 2 seconds
when a human edits the sheet. Recalculations may happen far more frequently
when the cell is edited by a numerical zero-finding routine such as GOAL.SEEK or a
numerical optimization routine such as SOLVER.

1.7.1 Recalculation order

Recalculation should be completed in dependency order: If cell B2 depends on cell
A1, then the evaluation of A1 should be completed before the evaluation of B2 is
completed. However, recalculation can be initiated in bottom-up order or top-down
order.

In bottom-up order, recalculation starts with cells that do not depend on any
other cells, and always proceeds with cells that depend only on cells already com-
puted.

In top-down order, recalculation may start with any cell. When the value of
an as yet uncomputed cell is needed, then that cell is computed, and when that
computation is completed, the computation of the original cell is resumed. The sub-
computation may recursively lead to further subcomputations, but will terminate
unless there is a dynamic cyclic dependency. The current CoreCalc implementation
uses top-down recalculation; see chapter 2.

1.7.2 Requirements on recalculation

The design of the recalculation mechanism is central to the efficiency and reliability
of a spreadsheet implementation, and the design space turns out to be large. First
let us consider the requirements on a recalculation after one cell has been edited,
which is the most frequent scenario:

• Recalculation should be correct. After a recalculation the contents of all cells
should be consistent with each other (in the absence of dynamic cycles).

• Recalculation should be efficient in time and space. The time required for a
recalculation should be at most linear in the total size of formulas in the sheet,
and ideally it should be linear in the size of formulas in those cells supported
by the cells that have changed, which is potentially a much smaller number.
Also, supporting data structures should require space that is at most linear in
the total size of formulas in the workbook. See section 1.7.3.

• Recalculation should accurately detect dynamic cycles; see section 1.7.6.

• Recalculation should avoid evaluating unused arguments of non-strict func-
tions such as IF(e1; e2; e3) and should evaluate volatile functions such as
NOW() and RAND(); see sections 1.7.4 and 1.7.5.

14 Recalculation §1.8

1.7.3 Efficient recalculation

One way to ensure that recalculation takes time at most linear in the total size of
formulas, is to make sure that each formula and each matrix formula is evaluated
at most once in every recalculation. This is rather easy to ensure: visit every active
cell and evaluate its formula if not already evaluated, recursively evaluating any
supporting cells. This is the approach taken in CoreCalc, which evaluates every for-
mula exactly once in each recalculation, using extra space (for the recursion stack)
that is at most linear in the total size of formulas.

It is possible but surprisingly complicated to do better than this, as discussed in
section 3.3 and chapter 4.

1.7.4 Non-strict functions

Most built-in functions in spreadsheet programs are strict: They require all their
arguments to be evaluated before they are called. But the function IF(e1; e2; e3)
is non-strict, as it evaluates at most one of e2 and e2. For instance, the function call
IF(A2<>0; 1/A2; 1) evaluates its second operand 1/A2 only if A2 is non-zero.

It is straightforward to implement non-strict functions: simply postpone argu-
ment evaluation until it is clear that the argument is needed. However, the exis-
tence of non-strict functions means that a static cyclic dependency may turn out to
be harmless, and it complicates the use of topological sorting to determine a safe
recalculation order. See section 3.3.3.

1.7.5 Volatile functions

Furthermore, some functions are volatile: Although they take no arguments, dif-
ferent calls typically produce different values. Typical volatile functions are NOW()
which returns the current time, and RAND() which returns a random number. Both
are easy to implement, but complicate the use of explicit dependency information of
to control recalculation order. See sections 3.3.1 and 3.3.2.

1.7.6 Dependency cycles

The existence of non-strict functions has implications for the presence or absence of
cycles. Assume that cell A1 contains the formula IF(A2<>0; A1; 1). Then it would
seem that there is a cyclic dependence of A1 on A1, but that is the case only if A2 is
non-zero — only those arguments of an IF-function that actually get evaluated can
introduce a cycle.

This is how Excel and OpenOffice work. They report a cyclic dependency involv-
ing the argument of a non-strict functions only if the argument actually needs to be
evaluated. Strangely, Gnumeric does not appear to detect and report cycles at all,
whether involving non-strict functions or not.

§1.10 Spreadsheets are dynamically typed 15

1.8 Spreadsheets are dynamically typed

Spreadsheet programs distinguish between several types of data, such as numbers,
text strings, logical values (Booleans) and matrices. However, this distinction is
made dynamically, in the style of Scheme [49], rather than statically, in the style of
Haskell [41] or Standard ML [58].

For instance, the formula =TRANSPOSE(IF(A1>0; B1:C2; 17)) is perfectly OK so
long as A1>0 is true, so that the argument to TRANSPOSE is a matrix-shaped cell area,
but evaluates to a matrix of error values #ARGTYPE if A1>0 is false.

Similarly, it is fine for cell D1 to contain the formula =IF(A1>0; 42; D1) so long
as A1>0 is true, but if A1>0 is false, then there is a cyclic dependency in the sheet
evaluation.

1.9 Spreadsheets are functional programs

The recalculation mechanism of a spreadsheet program is in a sense dual to that
of lazy functional languages such as Haskell [41]. In a lazy functional language,
an intermediate expression is evaluated only when there is a demand for it, and its
value is then cached so that subsequent demands will use that value.

In a spreadsheet, a formula in a cell is (re)calculated only when some cell on
which it depends has been recalculated, and its value is then cached so that all cells
dependent on it will use that value.

So calculation in a lazy functional language is driven by demand for output,
or backwards, whereas (re)calculation in a spreadsheet is driven by availability of

input, or forwards.
The absence of assignment, destructive update and proper recursive definitions

implies that there are no data structure cycles in spreadsheets. All cyclic dependen-
cies are computational and are detected by the recalculation mechanism.

Spreadsheet programs have been proposed that are lazy also in the above sense
of evaluation being driven by demand for output; see Nuñez’s [64], and Du and
Wadge [27], who call this eductive evaluation.

1.10 Related work

Despite some non-trivial implementation design issues, the technical literature on
spreadsheet implementation is relatively sparse, as opposed to the trade literature
consisting of spreadsheet manuals, handbooks and guidelines. There is also a con-
siderable scholarly literature on ergonomic and cognitive aspects of spreadsheet use
[43], on risks and mistakes in spreadsheet use [32, 68] and on techniques to avoid
them [74].

However, our interest here is spreadsheet implementation, and variations and
extensions on the spreadsheet concept. Literature in that area includes Piersol’s

16 Related work §1.10

1986 paper [71] on implementing a spreadsheet in Smalltalk. On the topic of re-
calculation, the paper hints that at first, an idea similar to update event listeners
(section 3.3.1) was attempted, but was given up in favor of another mechanism that
more resembles that implemented by Corecalc and described in section 2.11.

De Hoon’s 1995 MSc thesis [22] and related papers [23] describe a rather com-
prehensive spreadsheet implementation in the lazy functional language Clean. The
resulting spreadsheet is somewhat non-standard, as it uses the Clean language for
cell formulas, allows the user to define further functions in that language, and sup-
ports symbolic computation on formulas. Other papers on extended spreadsheet
paradigms in functional languages include Davie and Hammond’s Functional Hy-
persheets [21] and Lisper and Malmström’s Haxcel interface to Haskell [53].

Nuñez’s remarkable 2000 MSc thesis [64] presents ViSSh (Visualization Spread-
sheet), an extended spreadsheet system. The system is based on three ideas. First,
as in Piersol’s system, there is a rich variety of types of cell contents, such as graph-
ical components; second, the functional language Scheme is used for writing formu-
las, and there is no distinction between values and functions; and third, the system
uses lazy evaluation so recalculation is performed only when it has an impact on
observable output. Among other things, these generalizations enable a spreadsheet
formula to “call” another sheet as a function. The implementation seems to main-
tain both an explicit dependency graph and an explicit support graph. This can
be very space-consuming in the presence of copies of formulas with cell area argu-
ments, as discussed in section 3.3.2.

Wang and Ambler developed an experimental spreadsheet program called For-
mulate [91]. Region arguments are used instead of the usual relative/absolute cell
references, and functions are applied based on the shape of their region arguments.
The Formulate implementation does not appear to be publicly available.

Burnett et al. developed Forms/3 [13], which contains several generalizations of
the spreadsheet paradigm. New abstraction mechanisms are added, and the eval-
uation mechanism is extended to react not only to user edits, but also to external
events such as time passing, or new data arriving asynchronously on a stream.
Forms/3 is implemented in Liquid Common Lisp and is a available (for non-commercial
use) in binary form for the Sun Solaris and HP-UX operating systems, but does not
appear to be available in source form.

A MITRE technical report [35] by Francoeur presents a recalculation engine Ex-
celComp in Java for Excel spreadsheets. The engine has an interpreted mode and
a compiled mode. The approach requires that the spreadsheet does not contain any
static cyclic dependencies, and it is not clear that it handles volatile functions. There
is no discussion of the size of the dependency graph or of techniques for representing
it compactly. The ExcelComp implementation is not available to the public [36].

Yoder and Cohn have written a whole series of papers on spreadsheets, data-flow
computation, and parallel execution. Topics include the relation between spread-
sheet computation, demand-driven (eductive, lazy) and data-driven (eager) evalu-
ation, parallel evaluation, and generalized indexing notations [97]; the design of a
spreadsheet language Mini-SP with matrix values and recursion (not unlike Core-
Calc) and a case study solving several non-trivial computation problems [98]; and a

§1.11 Related work 17

Generalized Spreadsheet Model in which cell formulas can be Scheme expressions,
including functions, and an explicit “dependency graph” (actually a support graph
as defined in section 3.3.2) is used to perform minimal recalculation and to schedule
parallel execution [96, 99].

Clack and Braine present a spreadsheet paradigm modified to include features
from functional programming, such as higher-order functions, as well as features
from object-oriented programming, such as virtual methods and dynamic dispatch
[16].

None of the investigated implementations appear to use the sharing-preserving
formula representation of CoreCalc.

In addition to Yoden and Cohn’s papers mentioned above, there are a few other
papers on parallelization of spreadsheet computations. For instance, in his thesis
[90], Wack investigates how the dependency graph can be used to schedule parallel
computation.

Field-programmable custom hardware for spreadsheet evaluation has been pro-
posed by Lew and Halverson [51]. Custom circuitry realizing a particular spread-
sheet’s formula is generated at runtime by configuring an FPGA (field-programmable
gate array) chip attached to a desktop computer. This can be thought of as an ex-
treme form of runtime code generation. As an added benefit it ought to be possible
to perform computations in parallel; spreadsheets lends themselves well to paral-
lelization because of a fairly static dependency structure.

A paper [85] by Stadelmann describes a spreadsheet paradigm that uses equa-
tional constraints (as in constraint logic programming) instead of unidirectional for-
mulas. Some patents and patent applications (numbers 168 and 220) propose a sim-
ilar idea. This seriously changes the recalculation machinery needed; Stadelmann
used Wolfram’s Mathematica [95] tool to compute solutions.

A spreadsheet paradigm that computes with intervals, or even interval con-
straints, is proposed by Hyvönen and de Pascale in a couple of papers [24, 1, 42].

The interval computation approach was used in the PhD thesis [7] of Ayalew
as a tool for testing spreadsheets: Users can create a “shadow” sheet with interval
formulas that specify the expected values of the real sheet’s formulas.

Burnett and her group have developed several methods for spreadsheet testing,
in particular the Wysiwyt or “What You See Is What You Test” approach [14, 75,
76, 77, 33], within the EUSES consortium [82]. This work is the subject also of
patents 144 and 145, listed in appendix A.

Several researchers have recently proposed various forms of type systems for
spreadsheets, usually to support units of measurements so that one can prevent
accidental addition of dollars and yen, or of inches and kilograms. Some notable
contributions: Erwig and Burnett [30]; Ahmad and others [5]; Antoniu and others
[6]; Coblenz [17]; and Abraham and Erwig [2, 4].

18 Spreadsheet implementation patents §1.12

1.11 Online resources and implementations

The company Decision Models sells advice on how to improve recalculation times for
Excel spreadsheets, and in that connection provides useful technical information on
Excel’s implementation on their website [26]; see section 3.3.5.

There are quite a few open source spreadsheet implementations in addition to
the modern comprehensive implementations Gnumeric [37] and OpenOffice Calc
[67], already mentioned. A Unix classic is sc, originally written by James Gosling
and now maintained by Chuck Martin [54], and the several descendants of sc such
as xspread, slsc and ss. The user interface of sc is text-based, reminiscent of Visi-
Calc, SuperCalc and other DOS era spreadsheet programs.

A comprehensive and free spreadsheet program is Abykus [81] by Brad Smith.
This program is not open source, and presents a number of generalizations and
deviations relative to the mainstream (Excel, OpenOffice and Gnumeric).

One managed code open source spreadsheet program is Vincent Granet’s XXL
[38], written in STk, a version of Tk based on the Scheme programming language.
Another one, currently less developed, is Einar Pehrson’s CleanSheets [69], which
is written in Java. More spreadsheet programs — historical, commercial or open
source — are listed on Chris Browne’s spreadsheet website [11], with historical
notes connecting them. Another source of useful information is the list of frequently
asked questions [79] from the Usenet newsgroup comp.apps.spreadsheets, although
the last update was in June 2002. The newsgroup itself [88] seems to be devoted
mainly to spreadsheet application and does not appear to receive much traffic.

A number of commercial closed source managed code implementations of Excel-
compatible spreadsheet recalculation engines, graphical components and report gen-
erators exist. Two such implementation are Formula One for Java [72] and Spread-
sheetGear for .NET [84]; the lead developer for both is (or was) Joe Erickson. Such
implementations are typically used to implement spreadsheet logic on servers with-
out the need to reimplement formulas and so on in Java, C# or other programming
languages.

Spreadsheet implementation is frequently used to illustrate the use of a pro-
gramming language or software engineering techniques; for instance, that was the
original goal of the above-mentioned XXL spreadsheet program. A very early exam-
ple is the MicroCalc example distributed in source form with Borland Turbo Pascal
1.0 (November 1983), still available at Borland’s “Antique Software” site [9]. A more
recent example is the spreadsheet chapter in John English’s Ada95 book [29, chap-
ter 18]; however, this is clearly not designed with efficiency in mind.

1.12 Spreadsheet implementation patents

The dearth of technical and scientific literature on spreadsheet implementation is
made up for by the great number of patents and patent applications. Searches
for such documents can be performed at the European Patent Office’s Espacenet
[66] and the US Patents and Trademarks Office [87]. A search for US patents or

§1.12 Spreadsheet implementation patents 19

patent applications in which the word “spreadsheet” appears in the title or abstract
currently gives 581 results. Appendix A lists several hundred of these that appear
to be concerned with the implementation rather than the use of spreadsheets.

Some patents of interest are:

• Harris and Bastian at WordPerfect Corporation have a patent, number 223
in appendix A, on a method for “optimal recalculation”, further discussed in
section 3.3.7.

• Roger Schlafly has two patents, numbers 194 and 213 in appendix A, that
describe runtime compilation of spreadsheet formulas to x86 code. A distin-
guishing feature is clever use of the math coprocessor and the IEEE754 double-
precision floating-point number representation, and especially NaN values, to
achieve very fast formula evaluation.

• Bruce Cordel and others at Microsoft have submitted a patent application,
number 24 in appendix A, on multiprocessor recalculation of spreadsheet for-
mulas. It includes a description of the uniprocessor recalculation model that
agrees with that given by La Penna [50], summarized in section 3.3.5.

In fact, in one of the first software patent controversies, several major spreadsheet
implementors were sued (not by the inventors) in 1989 for infringing on US Patent
No. 4,398,249, filed by Rene K. Pardo and Remy Landau in 1970 and granted in
1983 [48]. The patent in question appears to contain no useful contents at all. The
United States Court of Appeals for the Federal Circuit in 1996 upheld the District
Court’s ruling that the patent is unenforceable [86].

A surprising number of patents and patent applications claim to have invented
compilation of a spreadsheet formula to more traditional kinds of code, similar to
the compiled-mode version of Francoeur’s implementation [35] mentioned above:

• Schlafly’s patents (numbers 194 and 213 in appendix A) describe compilation
to x86 machine code.

• Khosrowshahi and Woloshin’s patent (number 141) describes compilation to a
procedural programming language.

• Chovin and Chatenay’s patent (number 133) describes compilation of a graph
of formulas to code for embedded systems.

• Rank and Pampuch’s patent application (number 132) describes compilation
for PDAs.

• Rubin and Smialek’s patent application (number 101) describes compilation to
Java source code.

• Waldau’s patent application (number 82) describes compilation to a different
platform, such as a mobile phone.

20 Spreadsheet implementation patents §1.12

• Jager and Rosenau’s patent application (number 45) describes compilation to
Java source code with special application to database queries.

• Tanenbaum’s patent applications (number 16 and 46) describe compilation to
C source code.

Chapter 2

CoreCalc implementation

This chapter describes the CoreCalc spreadsheet core implementation, focusing on
concepts and details that may be useful to somebody who wants to modify it.

2.1 Definitions

Here we define the main CoreCalc concepts in the style of Landin and Burge. A
UML-style summary is given in figure 2.1.

• A workbook of class Workbook (section 2.3) consists of a collection of sheets.

• A sheet of class Sheet (section 2.4) is a rectangular array, each of whose ele-
ments may contain null or a cell.

• A non-null cell of abstract class Cell (section 2.5) may be

– a constant floating-point number of class NumberCell

– or a constant text string of class TextCell

– or a formula of class Formula

– or a matrix formula of class MatrixFormula

A cell could also specify the formatting of contents, data validation criteria,
background colour, and other attributes, but currently does not.

• A formula of class Formula (section 2.5) consists of

– a non-null expression of class Expr to produce the cell’s value

– and a cached value of class Value

– and a workbook reference of class Workbook

– and an uptodate field and a visited field, both of type bool.

21

22 Definitions §2.2

• A matrix formula of class MatrixFormula (section 2.5) consists of

– a non-null cached matrix formula of class CachedMatrixFormula
– and a cell address of struct type CellAddr

• A cached matrix formula of class CachedMatrixFormula (section 2.5) consists
of

– a formula of class Formula
– and the address, as a pair (c,r), at which that formula was entered
– and the corners (ulCa,lrCa) of the rectangle of cells sharing the formula

• An expression of abstract class Expr (section 2.6) may be

– a floating-point constant of class NumberConst
– or a constant text string of class TextConst
– or a static error of class Error
– or a cell reference of class CellRef (an optional sheet and a relative/absolute

reference)
– or an area reference of class CellArea (an optional sheet and two rela-

tive/absolute references)
– or an application (call) of an operator or function, of class FunCall.

• A value of abstract class Value (section 2.7) is produced by evaluation of an
expression. A value may be

– a floating-point number of class NumberValue
– or a text string of class TextValue
– or an error value of class ErrorValue
– or a matrix value of class MatrixValue.

• An atomic value is a NumberValue or a TextValue.

• A matrix value of class MatrixValue consists of a rectangular array of values
of class Value, some of which may be null.

• A raref or relative/absolute reference of class RARef (section 2.8) is a four-
tuple (colAbs, col, rowAbs, row) used to represent cell references A1, A1, $A1,
A$1, and area references A1:$B2 and so on in formulas. If the colAbs field is
true, then the column reference col is absolute ($), otherwise relative (non-$);
and similarly for rows.

• A cell address of struct type CellAddr (section 2.10) is the absolute, zero-based
location (col,row) of a cell in a sheet.

• A function of class Function (section 2.13) represents a built-in function such
as SIN or a built-in operator such as (+).

§2.2 Definitions 23

Figure 2.1: Class diagram for CoreCalc. A triangular arrow denotes inheritance,
with the arrow pointing at the base class, as seen in the three class hierarchies de-
riving from abstract classes Cell, Expr and Value. An arrow originating in an open
rhombus denotes aggregation: the instance at the rhombus end has zero or more ref-
erences to instances at the other end, though possibly shared with other instances.
An arrow originating in a solid rhombus denotes composition: the instance at the
rhombus end has zero or more references to instances at the other end, accessible
only from the instance at the rhombus end.

24 Syntax and parsing §2.2

2.2 Syntax and parsing

2.2.1 CoreCalc cell contents syntax

The syntax of CoreCalc cell contents is very similar to that of Excel, Gnumeric and
OpenOffice:

Expr ::= Raref ::=
Expr == Expr Column Row

| Expr <> Expr | $ Column Row
| Expr < Expr | Column $ Row
| Expr <= Expr | $ Column $ Row
| Expr > Expr | R Offset C Offset
| Expr >= Expr
| Expr & Expr Offset ::=
| Expr + Expr <empty>
| Expr - Expr | Uint
| Expr * Expr | [Int]
| Expr / Expr
| Expr ^ Expr Call ::=
| Raref Name (Exprs)
| Raref : Raref
| Sheetref Exprs ::=
| Number Expr
| " String " | Expr ; Exprs
| (Expr)
| Call CellContents ::=

Number
Sheetref ::= | ’ String

Name ! Raref | " String "
| Name ! Raref : Raref | = Expr

Above, Number is a floating-point constant; String is a sequence of characters; Name
is a legal function or sheet name; Column is a column name A, B, . . . ; Row is a row
number 1, 2, . . . ; Uint is a non-negative integer; and Int is an integer.

There is no special syntax for matrix formulas. As in Excel and OpenOffice, such
formulas are written as ordinary formulas, and then completed with the special
incantation Ctrl+Shift+Enter.

2.2.2 Formula parsing

The above grammar has been rewritten to produce a scanner and parser specifica-
tion for the CoCo/R generator of recursive descent parsers [61]. Mostly the rewrite
has been necessary to give operators the correct associativity and precedence, while
avoiding left recursive grammar productions. All operators are left associative, even
the exponentiation operator (^), just as in Excel and OpenOffice. The resulting
parser builds and returns the abstract syntax tree as a Cell object. This is pretty
straightforward, but the following things must be considered:

§2.4 Workbooks and sheets 25

• When parsing a formula we must know the workbook that contains it, and the
cell address at which it was entered. Otherwise relative cell references and
area references, and sheet-absolute ditto, cannot be resolved to the abstract
syntax that we use.

• The CoCo/R scanner apparently does not support the definition of overlapping
token classes, such as column ([a-zA-Z]+) and identifier ([a-zA-Z][a-zA-Z0-9]*).

This complicates the notation for calls to functions, such as LOG10, whose name
looks like a cell reference. This is not a problem in Excel 2003, Gnumeric and
OpenOffice 2, in which the last column name is IV, corresponding to column
number 256.

2.3 Workbooks and sheets

A workbook of class Workbook contains zero or more sheets, organized as a list of
non-null Sheet references, where no two references refer to the same Sheet object.

Notable methods on class Workbook include:

• void AddSheet(Sheet sheet) adds sheet at the end of the workbook.

• Sheet this[String name] returns the named sheet.

• void Recalculate() initiates a recalculation of all active cells in all sheets of
the workbook.

2.4 Sheets

A Sheet contains a rectangular array of cells (type Cell[,]) each element of which
may be null, representing an inactive cell, or non-null, representing an active cell.
No two cell references from the same sheet or from different sheets can refer to the
same Cell object.

Notable methods on class Sheet include:

• Cell InsertCell(String text, CellAddr ca) parses text to a cell, stores it
at position ca in the sheet, and returns the cell.

• void InsertMatrixFormula(Cell cell, int col, int row, CellAddr ulCa,
CellAddr lrCa) creates as CachedMatrixFormula from cell, which must be a
Formula, and stores MatrixFormula objects in the cells in the area with cor-
ners ulCa and lrCa, all sharing the same CachedMatrixFormula.

• void InsertRowCols(int R, int N, bool doRows) inserts N new rows (or col-
umns) before row (or column) R >= 0 in this sheet, and adjusts all referring for-
mulas in this sheet and other sheets by calling InsertRowCols on active cells.
Performs row insertion if doRows is true; otherwise performs column insertion.
See section 2.16.

26 Cells, formulas and matrix formulas §2.5

• void MoveCell(int fromCol, int fromRow, int col, int row) move the cell
contents in cell (fromCol,fromRow) to cell (col, row).

• void PasteCell(Cell cell, CellAddr ca, int cols, int rows) pastes or
copies cell, which must be a formula or constant, to the cell area that has
upper left-hand corner (ca.col, ca.row), and cols columns and rows rows. If
cell is a formula, all the resulting Formula objects will be distinct but will
share the same underlying Expr object.

• void PasteCell(Cell cell, CellAddr ca) pastes or copies cell, which must
be a formula or constant, to the cell address ca. If cell is a formula, then the
new cell has its own Formula object, but shares cell’s underlying Expr object.

• void Recalculate() initiates a recalculation of all active cells in the sheet.

• void Reset() calls Reset() on every active cell in the sheet.

• void ShowAll(Shower show) calls show(col, row, val) for every active cell in
the sheet, passing its column, row and value.

• String Show(int col, int row) returns a string representing the Cell con-
tents at position (col,row).

• String ShowValue(int col, int row) returns a string representing the value
(if any) in the cell at position (col,row).

• Cell this[int col, int row] gets or sets the cell at position (col,row) in the
sheet.

• Cell this[CellAddr ca] gets or sets the cell at position in the sheet.

2.5 Cells, formulas and matrix formulas

A cell in a sheet may contain an object of abstract type Cell, which has concrete
subclasses NumberCell, TextCell, Formula and MatrixFormula; see figure 2.1.

Abstract class Cell has the following significant methods:

• Value Eval(Sheet sheet, int col, int row) evaluates the cell’s contents, and
all cells that it depends on, and marks the cell up to date, unless already up to
date; then returns the cell’s value.

• void InsertRowCols(Dictionary<Expr,Adjusted<Expr>> adjusted, Sheet
modSheet, bool thisSheet, int R, int N, int r, bool doRows) adjusts the
formula in this cell, originally in row (or column) r, after insertion of N new
rows (or columns) before row (or column) R >= 0. Performs row insertion if
doRows is true; otherwise performs column insertion. See section 2.16.

• Cell MoveContents(int deltaCol, int deltaRow) returns a new cell object,
resulting from moving the given cell by (deltaCol, deltaRow).

§2.6 Expressions 27

• static Cell Parse(String text, Workbook workbook, int col, int row)
parses text to a cell within the given workbook and assuming the cell’s position
is (col, row).

• void Reset() resets the cell’s visited and uptodate flags, if any; see sec-
tion 2.11.

• String Show(int col, int row, Format fo) shows the cell’s contents (noth-
ing, constant, formula, matrix formula).

• String ShowValue(Sheet sheet, int col, int row) returns a string display-
ing the cell’s value, if necessary computing it first.

A floating-point constant is represented by a NumberCell object, and a text constant
is represented a TextCell object.

An ordinary number-valued or text-valued formula is represented by a Formula
object and is basically an expression together with machinery for caching its value,
once computed. Thus a formula contains a non-null expression of class Expr, a
cached value of class Value, flags uptodate and visited to control recalculation (see
section 2.11), and a reference to the containing workbook. The latter serves to re-
solve absolute sheet references within the expression.

Whereas a given Formula object shall not be reachable from multiple distinct
Cell[,] elements, an Expr object may well be reachable from many distinct Formula
objects. In fact, it is a design objective of CoreCalc to achieve such sharing of Expr
objects; see section 2.8.

A matrix formula computes a matrix value, that is, a rectangular array of val-
ues. This result must be expanded over a rectangular cell area of the same shape as
the matrix value, so that each cell in the area receives one component (one ordinary
value) from the matrix value, just as in Excel and OpenOffice. A MatrixValue is a
cell entry that represents one cell’s component of the matrix. Hence a MatrixValue
object in a sheet cell contains two things: a non-null reference to a CachedMatrix-
Formula object shared among all cells in the cell area, and that sheet cell’s (col,row)
location within the cell area. The shared CachedMatrixFormula contains a For-
mula, whose expression must evaluate to a MatrixValue, as well as an indication of
the cell area’s location within the sheet.

The evaluation of one cell in the matrix formula’s cell area will evaluate the
underlying shared Formula once and cache its value (of type MatrixValue) for use
by all cells in the cell area.

2.6 Expressions

The abstract class Expr has concrete subclasses NumberConst, TextConst, CellRef,
CellArea, FunCall; see figure 2.1. Expressions are used to recursively construct
composite expressions, and ultimately, formulas, but whereas a formula caches its
value, an expression itself does not.

Class Expr has the following abstract methods:

28 Expressions §2.6

• void Apply(Sheet sheet, int col, int row, Act<Value> act) applies act to
the result of evaluating this expression at cell address sheet[col, row], where
sheet must be non-null. For a cell area expression, it applies act recursively
to the result of evaluating each cell in that area. For any other matrix valued
expression, it applies act to each value in the matrix. This is used to evaluate
functions whose arguments are cell areas; see sections 2.13.4 and 2.13.5.

• Value Eval(Sheet sheet, int col, int row) returns the result of evaluating
this expression at cell address sheet[col, row], where sheet must be non-null.

• Expr Move(int deltaCol, int deltaRow) returns a new Expr in which rela-
tive cell references have been updated as if the containing cell were moved,
not copied, by (deltaCol, deltaRow); see section 2.15.

• Adjusted<Expr> InsertRowCols(Sheet modSheet, bool thisSheet, int R,
int N, int r, bool doRows) returns an expression, originally in row (or col-
umn) r, adjusting its references after insertion of N new rows (or columns)
before row (or column) R >= 0. Performs row insertion if doRows is true; other-
wise performs column insertion. See section 2.16.

• String Show(int col, int row, int ctxpre, Format fo) returns a string re-
sulting from prettyprinting the expression in a fixity context ctxpre and with
formatting options fo; see section 2.18.

2.6.1 Number constant expressions

A NumberConst represents a floating-point constant such as 3.14 in a formula. A
NumberConst object encapsulates the number, represented as a NumberValue (sec-
tion 2.7). Its Eval method returns that value; its Apply method applies act to it:

class NumberConst : Const {
private readonly NumberValue value;
public NumberConst(double d) {

value = new NumberValue(d);
}
public override Value Eval(Sheet sheet, int col, int row) {

return value;
}
public override void Apply(Sheet sheet, int col, int row, Act<Value> act) {

act(value);
}
public override String Show(int col, int row, int ctxpre, Format fo) {

return value.ToString();
}

}

§2.6 Expressions 29

2.6.2 Text constant expressions

A TextConst represents a text constant such as "foo" in a formula and is very simi-
lar to a NumberConst, except in the way the constant is displayed:

class TextConst : Const {
private readonly TextValue value;
public TextConst(String s) {
value = new TextValue(s);

}
public override Value Eval(Sheet sheet, int col, int row) {
return value;

}
public override void Apply(Sheet sheet, int col, int row, Act<Value> act) {
act(value);

}
public override String Show(int col, int row, int ctxpre, Format fo) {
return "\"" + value.ToString() + "\"";

}
}

2.6.3 Cell reference expressions

A CellRef represents a cell reference such as $B7; it consists of a raref (section 2.8)
and, if the cell reference is sheet-absolute, a sheet reference. A cell reference is eval-
uated relative to a given sheet, column and row. Its evaluation involves computing
the referred-to cell address ca and evaluating the formula in that cell. Its Apply
method applies delegate act to the value of the referred-to cell.

class CellRef : Expr {
private readonly RARef raref;
private readonly Sheet sheet; // non-null if sheet-absolute
public override Value Eval(Sheet sheet, int col, int row) {
if (this.sheet != null)
sheet = this.sheet;

CellAddr ca = raref.Addr(col, row);
Cell cell = sheet[ca];
return cell==null ? null : cell.Eval(sheet, ca.col, ca.row);

}
public override void Apply(Sheet sheet, int col, int row, Act<Value> act) {
... Just like Eval, excep that the last statement is:
if (cell != null)
cell.Apply(sheet, ca.col, ca.row, act);

}
public override String Show(int col, int row, int ctxpre, Format fo) {
String s = raref.Show(col, row, fo);
return sheet==null ? s : sheet.Name + "!" + s;

}
}

30 Expressions §2.6

2.6.4 Cell area reference expressions

A CellArea represents a cell area reference such as $B7:B52 in a formula. It consists
of two rarefs (section 2.8) giving the area’s corner cells and, if the cell area reference
is sheet-absolute, a sheet reference. A cell area is evaluated, by Eval, relative to a
given sheet, column and row by finding the cell addresses of the upper left corner
ulCa and lower right corner lrCa of the referred-to cell area, evaluating all cells
in that area, and returning a MatrixValue (section 2.7) of the results. The Apply
method instead calls itself recursively on each cell in the area.

class CellArea : Expr {
private readonly RARef ul, lr; // upper left, lower right
private readonly Sheet sheet; // non-null if sheet-absolute
public override Value Eval(Sheet sheet, int col, int row) {

CellAddr ulCa = ul.Addr(col, row), lrCa = lr.Addr(col, row);
CellAddr.NormalizeArea(ulCa, lrCa, out ulCa, out lrCa);
int cols = lrCa.col-ulCa.col+1, rows = lrCa.row-ulCa.row+1;
int col0 = ulCa.col, row0 = ulCa.row;
Value[,] values = new Value[cols,rows];
for (int c=0; c<cols; c++)
for (int r=0; r<rows; r++) {

Cell cell = sheet[col0+c, row0+r];
if (cell != null)
values[c,r] = cell.Eval(sheet, col0+c, row0+r);

}
return new MatrixValue(values);

}
public override void Apply(Sheet sheet, int col, int row, Act<Value> act) {

... Just like CellArea.Eval, but the inner loop contains:
cell.Apply(sheet, col0 + c, row0 + r, act);

}
public override String Show(int col, int row, int ctxpre, Format fo) {

String s = ul.Show(col, row, fo) + ":" + lr.Show(col, row, fo);
return sheet==null ? s : sheet.Name + "!" + s;

}
...

}

2.6.5 Function call and operator expressions

A FunCall represents a function call such as SIN(B7), or an infix operator appli-
cation such as A1+B6, in a formula. It consists of a Function object representing
the function to call, and a non-null array of argument expressions. A function call
is evaluated relative to a given sheet, column and row by invoking the function’s
applier (section 2.13) on the argument expressions and sheet, column and row. The
argument expressions are passed unevaluated to cater for non-strict functions such
as IF. The Apply function evaluates the function call and applies act to its value.

§2.8 Runtime values 31

The Show function displays the function call in prefix or infix notation as appropri-
ate; see section 2.18. Section 2.13 describes the function call machinery in more
detail.

class FunCall : Expr {
private readonly Function function; // Non-null
private readonly Expr[] es; // Non-null, elements non-null
public override Value Eval(Sheet sheet, int col, int row) {
return function.applier(sheet, es, col, row);

}
public override void Apply(Sheet sheet, int col, int row, Act<Value> act) {
Value v = function.applier(sheet, es, col, row);
if (v is NumberValue || v is TextValue)
act(v);

else if (v is MatrixValue)
(v as MatrixValue).Apply(act);

else if (v != null)
throw new ArgumentException(); // Non-null but wrong type

}
public override String Show(int col, int row, int ctxpre, Format fo) {
StringBuilder sb = new StringBuilder();
int pre = function.fixity;
if (pre == 0) { // Not operator
... show as F(arg1; ...; argN) ...

} else { // Operator. Assume es.Length is 1 or 2
... show as arg1+arg2 or similar ...

}
return sb.ToString();

}
...

}

2.7 Runtime values

The abstract class Value has concrete subclasses NumberValue, TextValue, Matrix-
Value and ErrorValue as shown in figure 2.1.

A NumberValue represents a floating-point number, and has a public readonly
field value containing that number. A NumberValue can also represent a logical
value with 0.0 meaning false and all other numbers true. A TextValue represents a
text string, and has a public readonly field value containing that string. A Matrix-
Value represents the value of a cell area expression or the result of a matrix formula,
and has a public readonly field values of type Value[,] holding the elements of the
matrix. A matrix of size 1x1 is distinct from an atomic value. An ErrorValue rep-
resents the result of an illegal operation (there are no exceptions in spreadsheets),
and has a public readonly field msg of type String holding a description of the error.

32 Representation of cell references §2.8

2.8 Representation of cell references

Cell references should be represented so that they, and the expressions in which
they appear, can be copied without change. Namely, it is common for a formula to be
entered in one cell and then copied to many (even thousands) of other cells. Sharing
the same expression object between all those cells would give considerable space
savings. In particular, when using runtime code generation (RTCG) on expressions
to speed up spreadsheet calculations, there should be as few expression instances
as possible.

Hence in CoreCalc cell references and cell area references, we store absolute
($) references as absolute zero-based cell addresses, and relative (non-$) references
as positive, zero or negative offsets relative to the address of the cell containing
the formula. Concretely, CoreCalc uses a class RARef, short for relative/absolute
reference, to represent references in formulas:

public sealed class RARef {
public readonly bool colAbs, rowAbs; // True=absolute, False=relative
public readonly int colRef, rowRef;
...
public CellAddr Addr(int col, int row) {

return new CellAddr(this, col, row);
}
public String Show(int col, int row, Format fo) {

if (fo.RcFormat)
return "R" + RelAbsFormat(rowAbs, rowRef)

+ "C" + RelAbsFormat(colAbs, colRef);
else {
CellAddr ca = new CellAddr(this, col, row);
return (colAbs ? "$" : "") + CellAddr.ColumnName(ca.col)

+ (rowAbs ? "$" : "") + (ca.row+1);
}

}
}

A raref is somewhat similar to the R1C1 reference format (section 1.3) but since we
put the column number first (as in the A1 format) and use zero-based numbering,
our format could be called the C0R0 format. Figure 2.2 shows the four basic forms
of a C0R0 format reference. As a consequence of this representation, an expression
must be interpreted relative to the address of the containing cell when evaluating
or displaying the expression. This adds a little extra runtime cost.

We shall use the term virtual copy to denote a reference from a formula cell to a
shared expression instance in this representation.

When an expression is moved (not copied) from one cell to another, its relative
references must be updated and hence the abstract syntax tree must be duplicated;
see section 2.15. But moving a formula does not increase the number of formulas,
whereas copying may enormously increase the number of formulas, so it is more

§2.10 Sheet-absolute and sheet-relative references 33

C0R0 format Meaning
CcRr Absolute reference to cell (c,r) where 0 ≤ c,r
CcR[r] Absolute column c, relative row offset r
C[c]Rr Relative column offset c, absolute row r
C[c]R[r] Relative column offset c, relative row offset r

Figure 2.2: The four basic forms of C0R0 references.

important to preserve the the formula representation when copying the formula
than when moving it.

Also, when rows or columns are inserted or deleted, both relative and absolute
references may have to be adjusted in a way that preserves as much sharing of
virtual copies as possible; see section 2.16.

2.9 Sheet-absolute and sheet-relative references

A cell reference Sheet1!B7 or an area reference Sheet1!B7:D9 may refer to another
sheet than the one containing the enclosing formula. This is implemented by adding
a sheet field to CellRef and CellArea. If the field is non-null, then the reference is
sheet-absolute and refers to a cell in that sheet. If the field is null, then the reference
is sheet-relative and refers to a cell in the current sheet (the one containing the
enclosing formula), that is, the sheet argument passed to the Eval method.

The sheet reference (or the absence of it) is preserved when copying or moving
the CellRef or AreaRef from one sheet to another. Sheet-absolute references remain
sheet-absolute, and sheet-relative references become references to the new sheet to
which the enclosing formula gets copied.

The adjustment of column and row references is the same regardless of whether
the reference is sheet-absolute or sheet-relative. Namely, a column-relative or row-
relative but sheet-absolute reference presumably refers to a sheet that has a sim-
ilar structure to the present one. Note that OpenOffice makes another distinc-
tion between sheet-relative and sheet-absolute references: A reference of the form
Sheet17.A1 is adjusted to Sheet18.A1 if the formula is copied from Sheet1 to Sheet2.
Excel does not support this kind of adjustment.

2.10 Cell addresses

A CellAddr represents an absolute cell address in a sheet as a pair of a zero-based
column number and a zero-based row number. This is in contrast to a RARef (sec-
tion 2.8) which represents cell references and cell area references in formulas. Given
the column and row number of a RARef occurrence, the CellAddr constructor com-
putes the absolute cell address that the RARef refers to:

public struct CellAddr {

34 Recalculation §2.11

public readonly int col, row;
public CellAddr(RARef cr, int col, int row) {
this.col = cr.colAbs ? cr.colRef : cr.colRef + col;
this.row = cr.rowAbs ? cr.rowRef : cr.rowRef + row;

}
public override String ToString() {
return ColumnName(col) + (row+1);

}
...

}

2.11 Recalculation

The value of a cell may depend on the values of other cells. Whenever any cell
changes, the value of all dependent cells must be recalculated, exactly once, in some
order that respects the dependencies (unless a cyclic dependency makes this impos-
sible).

A workbook is recomputed by recomputing all its sheets in some order; a sheet
is recomputed by recomputing all its cells in some order.

A formula cell caches its value to make the runtime complexity linear in the
number of active cells. A matrix formula caches the value of the underlying matrix-
valued expression, which is shared between all the cells that must receive some part
of that matrix value.

To support recalculation and caching, each formula has two boolean flags: visited
and uptodate. At the beginning of a recalculation both are set to false.

A formula is evaluated as follows:

1. If uptodate is true, then return the cached value.

2. Else, if visited is true, then the cell depends on itself; stop and report a cyclic
dependency.

3. Else, set visited to true and evaluate the cell’s expression. This will cause
referred-to cells to be recomputed and may ultimately reveal circularities.

4. If the evaluation succeeds, set uptodate to true, cache the result value, and
return it.

Hence all formulas are eventually recomputed, and when necessary they are
recomputed in the order imposed by dependencies, by simple recursive calls. This
may cause deep recursion if there are long dependency chains and an unfortunate
order of visits is chosen. (This could be fixed as follows: If the recalculation depth
exceeds some threshold, an approximate topological sort in dependency order might
be performed and cells may be recomputed in that order. But that would lose the
simplicity of the above scheme).

§2.13 Cyclic references 35

One could implement the visited and uptodate field management by explicitly
resetting the visited and uptodate fields to false for every formula before a recalcu-
lation. To avoid the expense of this traversal, we introduce a field called set, global
to a workbook, and make sure to maintain the following invariant:

State invariant: Between recalculations, the visited and uptodate fields
of every formula equals the set field of the workbook.

Resetting the visited and uptodate fields of all formulas to false is a simple
matter of inverting the global set field. The possible states of a formula, and their
interpretation, are:

State Meaning
visited != set && uptodate != set Awaits recalculation
visited == set && uptodate != set Is being recomputed
visited == set && uptodate == set Is up to date
visited != set && uptodate == set (Impossible)

Since only three of the four possible states are actually used, it might be better to
represent the state with an enum type having three values: AwaitsComputation,
BeingComputed, UpToDate. However, that would require resetting the state of ev-
ery cell from UpToDate to AwaitsComputation at the beginning of a recalculation.

Another possibility is to replace visited and uptodate fields by two (hash-based)
sets during recalculation, one containing at any time the formulas for which visited
would be true, and another containing at any time the formulas for which uptodate
would be true. This makes the “resetting” very fast: simply discard the current sets
and replace them by empty sets.

2.12 Cyclic references

The value of a cell may depend on the value of other cells, and may directly or indi-
rectly depend on itself. The purpose of a formula’s visited field is to discover such
dependencies, stop recalculation, and report the discovery of a cycle. To maintain
the state invariant after the discovery of a cycle, all formulas should have their
visited and uptodate fields reset to the value of the workbook’s global set field.
Every formula is reachable from one or more cells, so it is sufficient to perform an
explicit traversal of every cell of every sheet in the workbook. This cost is accept-
able, because cyclic references should be rare, whereas ordinary recalculation must
happen every time any cell has been edited, which happens frequently.

2.13 Built-in functions

CoreCalc built-in functions include mathematical functions (SIN), cell area functions
(SUM), matrix-valued functions (TRANSPOSE), the conditional function (IF), which is

36 Built-in functions §2.13

non-strict, and volatile functions (RAND). Built-in operators include the usual arith-
metic operators, such as +, -, * and /.

Built-in functions and built-in operators are represented internally by objects of
class Function:

class Function {
public readonly String name;
public readonly Applier applier;
public readonly int fixity; // Non-zero: precedence of operator
private static readonly IDictionary<String,Function> table;
private static readonly Random rnd = new Random();
private static readonly long basedate = new DateTime(1899, 12, 30).Ticks;
private Function(String name, Applier applier) {

this.name = name;
this.applier = applier;
table.Add(name, this);

}
...

}

The Function class uses a hash dictionary table to map a function name such as
"SIN" or an operator name such as "+" to a Function object. The rnd and basedate
static fields are used in the implementation of spreadsheet functions RAND() and
NOW(); see section 2.13.3.

The most important component of a Function object is a delegate applier of type
Applier. This delegate takes as argument a sheet reference, an array of argument
expressions, and column and row numbers:

public delegate Value Applier(Sheet sheet, Expr[] es, int col, int row);

Evaluation of a function call or operator application simply passes the argument
expressions to the function’s Applier delegate as shown in section 2.6.5. A family of
auxiliary methods called MakeFunction in class Function can be used to create the
Applier delegate for a strict function from a delegate representing the function. The
following generic delegate types are used to represent non-void functions:

public delegate R Fun<R>();
public delegate R Fun<A1, R>(A1 x1);
public delegate R Fun<A1, A2, R>(A1 x1, A2 x2);

2.13.1 Strict one-argument functions

Most functions are strict, that is, their arguments are fully evaluated before the
function is called. The applier for a strict function evaluates the argument expres-
sions as if at cell sheet[col,row] and applies the function to the resulting argument
values, each of type Value.

An applier for a strict unary function from double to double, such as SIN(), can
be manufactured like this:

§2.13 Built-in functions 37

private static Applier MakeFunction(Fun<double,double> dlg) {
return
delegate(Sheet sheet, Expr[] es, int col, int row) {
if (es.Length == 1) {

NumberValue v0 = es[0].Eval(sheet, col, row) as NumberValue;
if (v0 != null)
return new NumberValue(dlg(v0.value));

else
return new ErrorValue("ARGTYPE");

} else
return new ErrorValue("ARGCOUNT");

};
}

As can be seen, the Applier checks that exactly one argument is supplied, evalu-
ates it, attempts to extract a NumberValue from the result, and applies the given
delegate dlg to the double in the NumberValue.

This way new functions can easily be defined:

new Function("SIN", MakeFunction(Math.Sin));
new Function("COS", MakeFunction(Math.Cos));
new Function("ROUND", MakeFunction(Math.Round));

2.13.2 Other strict functions

There are similar overloads of the MakeFunction method for defining strict double-
valued and bool-valued functions:

private static Applier MakeFunction(Fun<double> dlg) { ... }
private static Applier MakeFunction(Fun<double,double,double> dlg) { ... }
private static Applier MakePredicate(Fun<double,double,bool> dlg) { ... }

The Fun<double> overload is used to define argumentless functions such as RAND()
and NOW(); see section 2.13.3. The Fun<double,double,double> overload is used to
define arithmetic operators:

new Function("+", 6,
MakeFunction(delegate(double x, double y) { return x+y; }));

new Function("*", 7,
MakeFunction(delegate(double x, double y) { return x*y; }));

new Function("^", 8,
MakeFunction(Math.Pow));

...

The integer arguments (6, 7, 8) indicate the operator’s fixity; see section 2.18. The
MakePredicate method is used to define comparison operators:

38 Built-in functions §2.13

new Function("==", 4,
MakePredicate(delegate(double x, double y) { return x == y; }));

new Function("<", 5,
MakePredicate(delegate(double x, double y) { return x < y; }));

...

Further overloads of the MakeFunction method are used to define variable-argument
but double-valued functions such as SUM in section 2.13.4, or one-argument but
matrix-valued functions such as TRANSPOSE in section 2.13.6, or completely general
strict functions such as MMULT:

private static Applier MakeFunction(Fun<Value[], double> dlg) { ... }
private static Applier MakeFunction(Fun<Value, Value> dlg) { ... }
private static Applier MakeFunction(Fun<Value[], Value> dlg) { ... }

2.13.3 Volatile functions

A volatile function is implemented just like any other function. For instance, the
RAND() function can be implemented like this, where rnd is a field in class Function
of type System.Random:

new Function("RAND", MakeFunction(rnd.NextDouble));

The NOW() function, which returns the number of days since 30 December 1899, can
be defined as follows, where basedate is the number of 100 ns ticks until the base
date:

new Function("NOW",
MakeFunction(delegate() {

return (DateTime.Now.Ticks-basedate)*100E-9/60/60/24;
}));

The most notable aspect of volatile functions is that they cause complications in the
design of the recalculation mechanism; see section 3.3.

2.13.4 Functions with multiple arguments

Functions such as SUM, AVG, MIN and MAX take multiple arguments, some of which may
be simple numbers, cell references, cell areas, or matrix values, as in SUM(A1:B4, 8)
or SUM(MMULT(A1:B2, C1:D2)). These are evaluated by applying a suitable action
to all arguments, recursively applying it to the elements of every matrix-valued
argument.

new Function("SUM",
MakeFunction(delegate(Value[] vs) {
double sum = 0.0;
Apply(vs, delegate(double x) { sum += x; });
return sum; })

);

§2.13 Built-in functions 39

The general Apply function performs the recursive evaluation:

private static void Apply(Value[] vs, Act<double> act) {
foreach (Value v in vs) {
if (v is NumberValue)
act((v as NumberValue).value);

else if (v is MatrixValue)
(v as MatrixValue).Apply(act);

else
throw new ArgumentException();

}
}

where the Act<T> delegate type represents void functions:

public delegate void Act<A1>(A1 x1);

2.13.5 Better implementation of SUM, AVG, and the like

The previous section’s implementation of SUM, AVG and similar functions works well,
but is rather slow, as revealed by Thomas Iversen’s measurements reported in sec-
tion 5.2.2. Figure 5.7 shows that the above implementation of SUM can be roughly 14
times slower than Excel when applied to large cell area arguments. The reason is
that the evaluated cell area argument is built explicitly as a matrix value and then
passed to the function, but this is wholly unnecessary for functions such as SUM.

A slight change of the implementation brings a four-fold speedup, so that the
CoreCalc base implementation is only 3.4 times slower than Excel; see the FASTSUM
Level 0 bar in figure 5.9. This better implementation simply calls the Apply method
on each argument expression e, passing to it a delegate that gets called on every
atomic part of the expression’s value. Thus no intermediate matrix values are con-
structed during the evaluation:

new Function("FASTSUM",
delegate(Sheet sheet, Expr[] es, int col, int row) {
double sum = 0.0;
foreach (Expr e in es) {

e.Apply(sheet, col, row,
delegate(Value v) {
NumberValue number = v as NumberValue;
if (number != null)
sum += number.value;

else
throw new ArgumentException();

});
}
return new NumberValue(sum);

});

40 Built-in functions §2.13

2.13.6 Functions with matrix-valued results

Some built-in functions produce a matrix value as result. This is the case in particu-
lar for functions used in matrix formulas: matrix transposition (TRANSPOSE), matrix
multiplication (MMULT), linear regression (LINEST), and so on. The result of such a
function is a MatrixValue, which contains a two-dimensional array Value[,] of val-
ues.

For instance, function TRANSPOSE takes as argument one expression that evalu-
ates to a MatrixValue argument with size (cols′,rows′). The result is a new Matrix-
Value whose underlying value array sheet has size (cols,rows) with cols = rows′ and
cols′ = rows. Element [i, j] of the result array contains the value of element [j, i] the
given argument array:

new Function("TRANSPOSE",
MakeFunction(delegate(Value v0) {
MatrixValue v0mat = v0 as MatrixValue;
if (v0mat != null) {

int cols = v0mat.Rows, rows = v0mat.Cols;
Value[,] res = new Value[cols,rows];
for (int c=0; c<cols; c++)
for (int r=0; r<rows; r++)

res[c, r] = v0mat[r, c];
return new MatrixValue(res);

} else
return new ErrorValue("ARGTYPE");

}));

2.13.7 Non-strict functions

For a non-strict function, the Applier delegate is not created by a MakeFunction
method but written outright. For instance, the three-argument function IF is de-
fined like this:

new Function("IF", // Note: non-strict in arg 2 and 3
delegate(Sheet sheet, Expr[] es, int col, int row) {
if (es.Length == 3) {

NumberValue v0 = es[0].Eval(sheet, col, row) as NumberValue;
if (v0 != null)
if (v0.value != 0)

return es[1].Eval(sheet, col, row);
else

return es[2].Eval(sheet, col, row);
else
return new ErrorValue("ARGTYPE");

} else
return new ErrorValue("ARGCOUNT");

});

§2.15 Copying formulas 41

There must be three argument expressions in es. The first one must be non-null
and is evaluated to obtain a NumberValue. If the double contained in that value
is non-zero, the second argument is evaluated by calling its Eval method; else the
third argument is evaluated by calling its Eval method.

2.14 Copying formulas

The copying of formulas from one cell to one or more other cells is implemented us-
ing the Windows clipboard, which uses “Object Linking and Embedding”, or OLE.
For this reason, the application must run in a so-called “single-threaded apart-
ment”, which means that the application’s Main method must have the STAThread
attribute.

The clipboard can hold multiple formats at the same time, so to ease exchange
with other applications, we copy to the clipboard a text representation of the cell
contents, as well as the CoreCalc internal description of the cell. The internal rep-
resentation of the cell is simply its: the name of the sheet from which it is copied
and the cell address at which it occurs. This can lead to surprises if that particular
sheet cell is edited before one pastes from the clipboard.

A seemingly more robust alternative would be to transfer the actual cell object
via the clipboard by serialization (thus requiring all cell, formula and expression
classes to have the Serializable attribute). However, that would lose sharing of
expression abstract syntax, and in general causes mysterious problems, presumably
because built-in functions use delegate objects which are not correctly deserialized.

2.15 Moving formulas

Thanks to the internal representation of references, the cell references and cell area
references in a formula need not be updated when the formula is copied from one
cell one or more other cells. However, when a formula is moved from one cell and to
another cell, for instance by “cutting” and then “pasting” it, then references must be
updated in two ways, as shown by the example in figure 2.3:

• References from the moved formula to other cells appear unchanged in the A1
format, but in the internal representation relative references must actually be
changed, as they are stored as offsets. In the figure 2.3 example, the internal
representation of cell reference A1 changes from R[-1]C to R[-2]C[-1].

• Cell references to the cell containing the formula before the move must be
updated so they refer to the cell containing the formula after the move. In
the example, the external as well as internal representation of the formulas in
cells B1 and C1 change as a consequence of the move. Even references from
other sheets in the workbook must be updated in this way. On the other hand,
references to cell areas that include the formula are not updated when the

42 Inserting new rows or columns §2.16

formula is moved. Thus if C1 had contained a cell area reference A2:B2, then
C1 would be unaffected by the move of the formula in A2 to B3.

The second point above in particular is somewhat surprising, but is the semantics
implemented by Excel, Gnumeric and OpenOffice.

A B C
1 11 =A2 =A2
2 =A1+A1
3

A B C
1 11 =B3 =B3
2
3 =A1+A1

Figure 2.3: Formulas before (left) and after (right) moving from A2 to B3.

The moving of formulas is only partially implemented in CoreCalc, by method
Move on abstract class Expr and its concrete subclasses, and method MoveContents
on abstract class Cell and its concrete subclasses. Currently we do not implement:

• The adjustment of all references that pointed to the old cell so that henceforth
they point to the new cell. Also references from other sheets and from within
the moved formula must be adjusted. This adjustment should preserve the
sharing of the referring formulas.

• When a block of cells, all of which share the same underlying formula (due to
virtual copying) is moved, one should maintain the sharing in the moved cells.
This is not done currently; maybe the visited field can be used to implement
this?

2.16 Inserting new rows or columns

It should be possible to insert additional rows into a given sheet. This must not
only move, and hence change the numbering of, some rows within the given sheet,
but should also update references from cells in that sheet and in other sheets to the
moved rows. (Insertion of columns is entirely similar to insertion of rows and will
therefore not be discussed explicitly here). In general, one must update references
from the affected sheet as well as from other sheets.

Consider what happens when a new row 3 is inserted in the example sheet shown
on the left in figure 2.4.

A row-absolute reference must be updated if it refers to a row that follows the
inserted rows. In the example, this affects all the A3 references in the sheet (before
insertion).

A row-relative reference must be updated if the reference straddles the insertion:
that is, if the referring cell precedes the insert and the referred-to cell follows the
insert, or vice versa. In both cases the reference must be increased (numerically) by
the number of inserted rows. In the example, this affects reference $A3 in cell B1,

§2.16 Inserting new rows or columns 43

references $A3 and $A4 in B2, references $A1 and $A2 in B3, and reference $A2 in cell
B4 (before the insertion).

A B
1 11 =A2+A3+$A1+$A2+$A3
2 21 =A2+A3+$A2+$A3+$A4
3 31 =A2+A3+$A1+$A2+$A3
4 41 =A2+A3+$A2+$A3+$A4

A B
1 11 =A2+A4+$A1+$A2+$A4
2 21 =A2+A4+$A2+$A4+$A5
3
4 31 =A2+A4+$A1+$A2+$A4
5 41 =A2+A4+$A2+$A4+$A5

Figure 2.4: Formulas before (left) and after (right) inserting new row 3.

The insertion of a row is illegal if it would split a matrix formula block; this
is enforced in OpenOffice, for instance. Therefore we first check that no matrix
formula straddles the insert; if one does, then the insert is rejected. To make this
check, we let a cached matrix formula include the corner coordinates of the area
of participating cells. The check is made by scanning all cells preceding the insert
(if any), and checking that no matrix formula block in that row extends to cells
following the insert.

One should avoid copying all formulas that are to be updated. That would lose
the sharing of expressions carefully achieved by the representation of relative and
absolute references; see section 2.8. On the other hand, a shared expression cannot
simply be adjusted destructively, because a it might then be adjusted once for each
cell that shares it.

Virtual formula copies near the insert may have relative references that straddle
the insert and therefore require adjustment, whereas virtual copies of the same
formula farther away from the insert do not have relative references that straddle
the insert. Hence even virtual formula copies on the same side of the insert may
need to be adjusted in different ways. The possible versions are further multiplied
if a formula contains relative references with different offsets.

Figure 2.5 shows the internal representation of the formulas shown in the fig-
ure 2.4 example above. On the left hand side it can be seen that before the insertion,
cells B1 and B2 contain virtual copies of the same formula, and cells B3 and B4 con-
tain virtual copies of another formula. On the right hand side it can be seen that
after the insert, no two formulas are the same internally.

Observation 1: All virtual copies of an expression on the same row must
be adjusted in the same way.

Using this observation, it is clear that sharing of copies of an expression on the
same row can be obtained as follows: When processing each row, maintain a dictio-
nary that maps old expressions to new (adjusted) expressions; if an old expression
is found in the dictionary, use a virtual copy of the new expression (simply set the
Expr reference in the Formula instance; formula instances are shared only in the

44 Inserting new rows or columns §2.16

n A B
0 11 R1+R2+R[0]+R[+1]+R[+2]
1 21 R1+R2+R[0]+R[+1]+R[+2]
2 31 R1+R2+R[-2]+R[-1]+R[0]
3 41 R1+R2+R[-2]+R[-1]+R[0]

n A B
0 11 R1+R3+R[0]+R[+1]+R[+3]
1 21 R1+R3+R[0]+R[+2]+R[+3]
2
3 31 R1+R3+R[-3]+R[-2]+R[0]
4 41 R1+R3+R[-3]+R[-1]+R[0]

Figure 2.5: Internal representation before and after inserting new row R = 2 (zero-
based). References are in C0R0 format, but the C0 prefix has been omitted.

case of matrix formulas); else compute the new expression, add the entry (old,new)
to the dictionary, and use a virtual copy of new.

Observation 2: One can compute the range of rows for which the adjust-
ment is valid, as shown by the case analysis below.

Assume that N ≥ 0 rows are to be inserted just before row R ≥ 0. For relative refer-
ences, let δ denote the offset before adjustment and δ′ the offset after adjustment.

Aa An absolute reference to row n < R needs no adjustment. This (non-)adjustment
is valid regardless of the row r in which the containing expression appears.

Ab An absolute reference to row n ≥ R must be adjusted to n+N. This adjustment
is valid regardless of the row r in which the containing expression appears.

Raa A relative reference to row n < R needs no adjustment if the containing expres-
sion appears in row r < R. The reference has δ′ = δ = n− r before and after the
insertion.

Rab A relative reference to row n < R must be adjusted (changed from δ = n− r to
δ′ = n− r−N) if the containing expression appears in row r ≥ R.

Rba A relative reference to row n ≥ R must be adjusted (changed from δ = n− r to
δ′ = n− r +N) if the containing expression appears in row r < R.

Rbb A relative reference to row n ≥ R needs no adjustment if the containing expres-
sion appears in row r ≥ R. The reference has δ′ = δ = n− r before and after the
insertion.

In the example on the left of figures 2.4 and 2.5, case Aa applies to all the A2
references; case Ab applies to all the A3 references; case Raa applies to the $A1
and $A2 references in cells B1 and B2; case Rab applies to the $A1 and $A2 references
in cells B3 and B4; case Rba applies to the $A3 and $A4 references in cells B3 and
B4; and case Rbb applies to the $A3 and $A4 references in cells B1 and B2.

The cases Raa, Rab, Rba and Rbb for relative references can be translated into
the following constraints on the offset δ = n− r and the containing row r:

§2.17 Inserting new rows or columns 45

Raa If r < R and δ + r < R then no adjustment is needed. The resulting expression
is valid for rows r for which r < min(R,R−δ), that is, r ∈ [0,min(R,R−δ)[.

Rab If r ≥ R and δ+ r < R then adjust to δ′ = δ−N. The resulting expression is valid
for rows r for which R ≤ r < R−δ, that is, r ∈ [R,R−δ[.

Rba If r < R and δ+ r ≥ R then adjust to δ′ = δ+N. The resulting expression is valid
for rows r for which R−δ ≤ r < R, that is, r ∈ [R−δ,R[.

Rbb If r ≥ R and δ + r ≥ R then no adjustment is needed. The resulting expression
is valid for rows r for which r ≥ max(R,R−δ), that is, r ∈ [max(R,R−δ),M[where
M is the number of rows in the sheet.

The variables R, N and r used above agree with the CoreCalc implementation
of row insertion in method InsertRowCols in class Expr. For relative references we
additionally have δ=rowRef and n=r+rowRef.

The adjustment of an entire expression is valid for the intersection of the rows
for which the adjustments of each of its relative references is valid.

Note that an adjustment for a reference is valid for an entire sheet (Aa and Ab)
or for a lower (Raa) or upper (Rbb) half-sheet, or for a band preceding (Rba) or a
band following (Rab) the insertion. In all cases this range is a half-open interval,
representable by its lower bound (inclusive) and upper bound (exclusive). The in-
tersection of intervals is itself an interval (possibly empty, though not here), easily
computed as [max(lower),min(upper)[.

Building further on Observation 1, we could maintain for each original expres-
sion a collection [(r1,e1), . . . ,(rm,em)] of ranges r1, . . . ,rm and the adjusted versions
e1, . . . ,em of the expression valid for each of those ranges.

But in fact, if we process the rows in increasing order, we only need to record, for
each adjusted expression in the dictionary, the least row U not in its validity range.
Once we reach a row r for which r ≥ U , we recompute an adjusted expression and
save that and the corresponding new U to the dictionary.

This scheme will preserve sharing of virtual copies completely within each row.
However, sharing may be lost across rows, because the same adjusted version of an
expression may be valid at non-contiguous row ranges of the sheet (for instance, if a
row is inserted in a range of cells, each of which depends on a cell on the immediately
preceding row). The reason for this small deficiency is that our case analysis above
involves the row r in which the formula appears.

This could be partially alleviated by reusing the old expression whenever the
adjusted one is structurally identical. A more general solution would be to use a
form of hash-consing to (re)introduce sharing of expressions that turn out to be
identical after adjustment.

The insertion of new rows and new columns according to the above scheme is
implemented by methods called InsertRowCols on class Sheet, on abstract class Cell
and its subclasses, on abstract class Expr and its subclasses, and on class RARef. A
generic class Adjusted<T> is used to store adjusted copies of Expr and RARef objects
to preserve sharing as described above.

46 Deleting rows or columns §2.17

2.17 Deleting rows or columns

Deletion of rows or columns is similar to insertion. Again we consider only dele-
tion of rows, since deletion of columns in completely analogous. More precisely, we
consider deleting N ≥ 0 rows beginning with row R ≥ 0, that is, deleting the rows
numbered R,R+N −1. As in the insertion case, references from cells in rows follow-
ing row R + N on the affected sheet must be adjusted, as must references to those
rows from any cell in the workbook. Moreover, references to the deleted rows cannot
be adjusted in a meaningful way and must be replaced with a static error indication.
Figures 2.6 and 2.7 show an example in the ordinary A1 reference format and in the
internal C0R0 format.

A B
1 11 =A2+A4+$A1+$A2+$A4
2 21 =A2+A4+$A2+$A3+$A5
3 31
4 41 =A2+A4+$A1+$A2+$A4
5 51 =A2+A4+$A2+$A3+$A5

A B
1 11 =A2+A3+$A1+$A2+$A3
2 21 =A2+A3+$A2+#REF+$A4
3 41 =A2+A3+$A1+$A2+$A3
4 51 =A2+A3+$A2+#REF+$A4

Figure 2.6: Formulas before (left) and after (right) deleting row 3.

n A B
0 11 R1+R3+R[0]+R[+1]+R[+3]
1 21 R1+R3+R[0]+R[+1]+R[+3]
2 31
3 41 R1+R3+R[-3]+R[-2]+R[0]
4 51 R1+R3+R[-3]+R[-2]+R[0]

n A B
0 11 R1+R2+R[0]+R[+1]+R[+2]
1 21 R1+R2+R[0]+#REF+R[+2]
2 41 R1+R2+R[-2]+R[-1]+R[0]
3 51 R1+R2+R[-2]+#REF+R[0]

Figure 2.7: Internal representation before and after deleting row R = 2 (zero-based).
References are in C0R0 format, but the C0 prefix has been omitted.

The cases are analogous to those of insertion in section 2.16, with two additional
cases (Ac and Rc) to handle references to cells that get deleted.

Aa An absolute reference to row n < R needs no adjustment. This (non-)adjustment
is valid regardless of the row r in which the containing expression appears.

Ab An absolute reference to row n ≥ R + N must be adjusted to n−N. This ad-
justment is valid regardless of the row r in which the containing expression
appears.

Ac An absolute reference to row R ≤ n < R + N must be replaced by a #REF error
indication. This adjustment is valid regardless of the row r in which the con-
taining expression appears.

§2.18 Deleting rows or columns 47

Raa A relative reference to row n < R needs no adjustment if the containing expres-
sion appears in row r < R. The reference has δ′ = δ = n− r before and after the
deletion.

Rab A relative reference to row n < R must be adjusted (changed from δ = n− r to
δ′ = n− r +N) if the containing expression appears in row r ≥ R+N.

Rba A relative reference to row n ≥ R+N must be adjusted (changed from δ = n− r
to δ′ = n− r−N) if the containing expression appears in row r < R.

Rbb A relative reference to row n ≥ R + N needs no adjustment if the containing
expression appears in row r ≥ R+N. The reference has δ′ = δ = n− r before and
after the deletion.

Rca A relative reference to row R ≤ n < R + N from row r < R must be replaced by
an error indication #REF.

Rcb A relative reference to row R ≤ n < R + N from row r ≥ R + N must be replaced
by an error indication #REF.

In the example on the left of figures 2.6 and 2.7, case Aa applies to all the A2 ref-
erences; case Ab applies to all the A3 references; case Ac does not apply anywhere;
case Raa applies to the $A1 and $A2 references in cells B1 and B2; case Rab applies
to the $A1 and $A2 references in cells B4 and B5; case Rba applies to the $A4 and $A5
references in cells B1 and B2; case Rbb applies to the $A4 and $A5 references in cells
B4 and B5; case Rca applies to the $A3 reference in cell B2; and case Rcb applies to
the $A3 reference in cell B5.

The cases Raa, Rab, Rba, Rbb, Rca and Rcb for relative references can be trans-
lated into the following constraints on the offset δ = n− r and the referring row r:

Raa If r < R and δ + r < R then no adjustment is needed. The resulting expression
is valid for rows r for which r < min(R,R−δ), that is, r ∈ [0,min(R,R−δ)[.

Rab If r ≥ R+N and δ+ r < R then adjust to δ′ = δ+N. The resulting expression is
valid for rows r for which R+N ≤ r < R−δ, that is, r ∈ [R+N,R−δ[.

Rba If r < R and δ+ r ≥ R+N then adjust to δ′ = δ−N. The resulting expression is
valid for rows r for which R+N −δ ≤ r < R, that is, r ∈ [R+N −δ,R[.

Rbb If r ≥ R + N and δ + r ≥ R + N then no adjustment is needed. The result-
ing expression is valid for rows r for which r ≥ max(R,R + N − δ), that is, r ∈
[max(R,R+N −δ),M[where M is the number of rows in the sheet.

Rca If r < R and R ≤ δ+ r < R+N then the reference is invalid and must be replaced
by #REF. The resulting expression is valid for rows r for which R − δ ≤ r <
min(R,R+N −δ), that is, r ∈ [R−δ,min(R,R+N −δ)[.

Rcb If r ≥ R + N and R ≤ δ + r < R + N then the reference is invalid and must be
replaced by #REF. The resulting expression is valid for rows r for which max(R+
N,R−δ) ≤ r < R+N −δ, that is, r ∈ [max(R+N,R−δ),R+N −δ[.

48 Graphical user interface §2.20

2.18 Prettyprinting formulas

To show operators properly in infix form and without excess parentheses, we add
to every Function an integer denoting its fixity and precedence. A fixity of 0 means
not an infix operator, positive means infix left associative, and higher value means
higher precedence (stronger binding). We could take negative to mean right asso-
ciative and indicate precedence by the absolute value, but that does not seem to
be needed. Even the exponentiation operator (^) is left associative in Excel and
OpenOffice. In Gnumeric, it is right associative as is conventional in programming
languages.

Then we add a parameter ctxpre to the Show method of the Expr class to in-
dicate the context’s precedence. When the function to be printed is an infix with
precedence less than ctxpre, we must enclose it in parentheses; otherwise there is
no need for parentheses. Applications of functions that are not infix are printed
as F(e1; ...; en). Function arguments and top-level expressions have a ctxpre
of zero. To prettyprint (1-2)-3 without parentheses and 1-(2-3) with parenthe-
ses, the prettyprinter distinguishes left-hand operands from right-hand operands
by increasing the ctxpre of right-hand operands by one.

Another parameter to the Show method, of type Format, controls other aspects
of the display of formulas, such as whether references are shown in A1 or R1C1
format.

2.19 Graphical user interface

A simple graphical user interface has been created to facilitate experimentation
with CoreCalc, as shown in figure 2.8.

The graphical user interface in implemented in files GUI/GUI.cs and GUI/AboutBox.cs.
A workbook is displayed using a WorkbookForm instance, which derives from class
Form in the System.Windows.Forms namespace. Apart from menus, a formula text
box and a status bar, a WorkbookForm contains a TabControl that holds a Sheet-
Tab, derived from class TabPage, for each sheet in the workbook. The SheetTab
contains a DataGridView control to display the sheet’s cells in a rectangular grid.
The DataGridView implementation from System.Windows.Forms is amazingly slow,
but works well enough if you have a good graphics accelerator. We use the DataGrid-
View without an underlying data model, and explicitly set the display contents of
each cell from the CoreCalc implementation. Hence a leaner implementation of the
graphical grid-of-cells component would suffice and would be welcomed.

Most CoreCalc functionality is available through menus and menu items, with
associated shortcut keys; see figure 2.9.
Also, entering a cell displays the cell’s formula (if any) so that it can be edited, and
leaving a cell enters the edited formula (if any) into that cell or into the marked cell
area. Marking a cell area and entering a formula automatically makes it a matrix
formula; the incantation Ctrl+Shift+Enter is not needed.

§2.20 Graphical user interface 49

Figure 2.8: Graphical user interface for CoreCalc.

Menu Shortcut Operation
File | New sheet Ctrl+N Add sheet to workbook
File | Import workbook Ctrl+O Read new workbook from file
File | Exit Discard workbook and exit
Edit | Copy Ctrl+C Copy cell to clipboard
Edit | Cut Ctrl+X Cut cell to clipboard
Edit | Paste Ctrl+V Paste from clipboard
Edit | Delete Del Delete cell
Insert | Column Insert new column before current
Insert | Row Insert new row before current
Tools | Recalculate F9 Recalculate workbook
Tools | Reference format | A1 Show references in A1 format
Tools | Reference format | C0R0 Show references in C0R0 format
Tools | Reference format | R1C1 Show references in R1C1 format
Help | About Information about CoreCalc

Figure 2.9: Menu options in CoreCalc.

50 Benchmarking CoreCalc §2.22

2.20 Reading spreadsheets in XML format

Thomas S. Iversen implemented support for reading existing spreadsheets from files
in XML format, or more precisely, the export format XMLSS of Microsoft Excel 2003
and the export format of Gnumeric. Those format was chosen in preference to other
formats because they are reasonably simple and documented. The Excel format
moreover represents references in the R1C1 format (section 1.3), similar to the in-
ternal reference representation in CoreCalc. The implementation of import from
these XML formats is found in file IO/WorkbookIO.cs.

In the future, it would make sense to support also some more standardized for-
mats. Some formats of particular interest are:

• OpenDocument or OASIS Open Document Format for Office Applications (ODF)
[34], which is implemented by Open Office and which has been approved as
ISO and IEC international standard ISO/IEC 26300. Spreadsheet formula
syntax will not be standardized until version 1.2 of this specification [92]. Even
so, the standard comprises some 700 pages.

• Office Open XML (OOXML), which is implemented by Microsoft Office 2007
and which has been submitted to Ecma International TC45 for standardiza-
tion [28]. The current draft standard comprises some 5400 pages, although
only around 840 pages are closely related to spreadsheet representation.

2.21 Benchmarking CoreCalc

Support for performance measurements of recalculation in CoreCalc has been im-
plemented by Thomas S. Iversen. A typical use is to build a complex spreadsheet un-
der the control of a C# program, calling methods such as InsertCell and PasteCell
from the Sheet class, and then recalculate the workbook multiple times by calling
the Recalculate method on the Workbook class. The primary value of the bench-
mark environment is that it collects information about the operating system and
hardware (CPU type and speed, and amount of RAM), and writes this and other in-
formation together with timing results to an XML file. This information can easily
be postprocessed by various plotting programs, such as Ploticus [39]. The bench-
mark support is implemented by classes Benchmark, MachineInfo and TinyScript
in file BenchmarkUtils/Benchmark.cs.

A small but complete example benchmark is found in the Benchmarks project, in
directory Benchmarks/SumFunction.cs. Executing the SumFunctions.bat script from
a Windows Command Prompt in that directory will run the benchmark, collect per-
formance data in an XML file called SumFunctions.xml, create a Ploticus script, and
run Ploticus to create bar charts in the files SumFunctions.gif and SumFunctions.eps.
This assumes that CoreCalc has been built and that Ploticus is installed so that
pl.exe is in the PATH.

§2.22 Organization of source files 51

2.22 Organization of source files

The source code of CoreCalc is organized as a Visual Studio “solution” called Core-
Calc, which is divided into several “projects”, as shown in figures 2.10 to 2.12.

File Contents Classes
Benchmark.cs Benchmark support Benchmark, MachineInfo, TinyScript
CellAddressing.cs Cell addresses Adjusted<T>, CellAddr, RARef
Cells.cs Sheet cell contents CachedMatrixFormula, Cell, Const-

Cell, Formula, MatrixFormula, Num-
berCell, TextCell

Expressions.cs Formula expressions CellArea, CellRef, Const, Error, Fun-
Call, NumberConst, TextConst

Functions.cs Built-in functions Function
Program.cs Main program Program
Sheet.cs Sheets of a workbook Sheet
Types.cs Auxiliary types Act, Applier, Format, Fun, Shower, . . .
Values.cs Values of expressions ErrorValue, MatrixValue, Number-

Value, TextValue, Value
Workbook.cs Workbooks
Coco/Spreadsheet.ATG Parser specification
GUI/AboutBox.cs An “about” dialog AboutBox
GUI/GUI.cs User interface CopiedCell, SheetTab, WorkbookForm
IO/WorkbookIO.cs Spreadsheet import IOFormat, GnumericIOFormat,

XMLSSIOFormat

Figure 2.10: Source files of the CoreCalc project, all in the CoreCalc namespace.

File Contents Classes
hbars.ploticus.template.txt Ploticus template for bar charts
SumFunctions.bat Run benchmark and create graphs
SumFunctions.cs Benchmark SUM functions SumFunctions

Figure 2.11: Source files of the Benchmarks project.

File Contents Classes
Programs.cs From XML to Ploticus script Data, Dataset, Ploticus, Program, Sub-

data

Figure 2.12: Source files of the BenchmarkToPloticus project.

52 Organization of source files §2.22

Chapter 3

Alternative designs

The previous chapter presented details of the CoreCalc implementation. This chap-
ter will review some aspects of the CoreCalc design, especially the recalculation
mechanism, and explain why some seemingly plausible alternatives are difficult to
implement, or unlikely to work well.

3.1 Representation of references

As described in sections 2.15 through 2.17, cumbersome adjustments of referring
formulas must be performed when moving a formula from one cell to another, and
when inserting or deleting rows or columns in an existing sheet.

3.1.1 Direct object references

These adjustments would be automatic if a cell reference such as A1 was represented
as a direct object reference from the abstract syntax of one formula to the abstract
syntax of other formulas. However, such a representation would preclude sharing
of virtual formula copies.

Alternatively, the adjustment of referring formulas described in section 2.15
would be considerably simplified if the implementation maintained explicit knowl-
edge of which cells directly depend on the moved cell, for instance using a support
graph as described in section 3.3.2. With the current implementation, a scan of the
entire workbook is needed to find those cells, but cell move operations are infre-
quent, and the extra time required to scan the workbook is small compared to the
time it takes a user to perform these operations, usually done manually.

3.1.2 Reference representation in Excel

The fact that the XML export format of Excel 2003 uses the R1C1 format (sec-
tion 1.3) makes it reasonable to assume that a variant of R1C1 is the internal

53

54 Minimal recalculation §3.3

reference format of Excel. However, patents 182 and 204 by Kaethler et al. indi-
cate that formula copies are (or were) not shared by default in Excel, which seems
to remove the main motivation for using R1C1. Also, the highly efficient formula
implementation described in Schlafly’s patents 194 and 213 is not directly applica-
ble to sharable formulas, unlike Thomas Iversen’s implementation of runtime code
generation, briefly presented in chapter 5.

3.2 Evaluation of matrix arguments

The current CoreCalc implementation of aggregate functions such as SUM and AVG
first evaluates all their arguments, and then applies a delegate to aggregate the re-
sults. This may imply wasteful allocation of large intermediate data structures,
which can make CoreCalc slower than Gnumeric and OpenOffice, as shown by
Thomas Iversen’s experiments, summarized in section 5.2.2.

An obvious alternative is to iterate over the unevaluated cell area arguments,
passing a delegate that evaluates the cells and aggregates the results in one pass,
thus avoiding the allocation of data structures that simply hold intermediate results
for a very short time.

3.3 Minimal recalculation

In the current CoreCalc implementation, each recalculation evaluates every for-
mula exactly once, and follows each reference from each formula once, for a recal-
culation time that is linear in the sum of the sizes of all formulas. As shown in
section 5.2, this provides efficiency comparable to that of several other spreadsheet
implementations when all cells need to be recalculated. Still, it would be desirable
to improve this so that each recalculation only considers cells that depend on some
changed cell, as is possibly the case in Excel.

Several “obvious” solutions are frequently proposed in discussions:

• Update event listeners on cells; see section 3.3.1.

• Explicit representation of the support graph; see section 3.3.2 and chapter 4.

• Topological sorting of cells in dependency order; see section 3.3.3.

• Speculatively reuse evaluation order; see section 3.3.4.

In the sections below we will discuss the merits of each of these proposed mecha-
nisms for minimal recalculation. To simplify discussion of space and time require-
ments, assume that only one cell has been edited before a recalculation, and let NA

be the number of non-null cells in the workbook, let FA be the total size of formulas
in the workbook, let ND be the number of cells that depend on the changed (edited)
cell in a given recalculation, and let correspondingly FD be the total size of formulas
in those cells.

§3.3 Minimal recalculation 55

3.3.1 Update event listeners

One idea that seems initially plausible is to use event listeners. For instance, if
the formula in cell B2 depends on cells A1 and A2, then B2 could listen to value
change events on cells A1 and A2. Whenever the value of a cell changes, a value
change event is raised and can be handled by the listening cells. This makes each
dependent cell an observer of all its supporting cells.

However, it is difficult to make this design work in practice:

• First of all, the number of event listeners may be O(N2
A), quadratic in the num-

ber of active cells. For instance, in the sheet shown in figure 5.6, the SUM
formula in cell Bn must have event listeners on n cells in column A. With N
such rows, the number of event listeners is O(N2). This poses two problems:
the space required to record the event handlers associated with cells (even if
the handler objects themselves can be shared), and the large number of event
handler calls. The space problem is by far the most severe one.

• Second, one needs a separate mechanism to determine the proper recalcula-
tion order anyway. The value change event listener cannot just initiate the
recalculation of the listening cell, because the handler may be called at a time
when some (other) supporting cells are not yet up to date. Hence an event
handler may just record that the cell needs to be recalculated, and perhaps
also that a particular supporting cell now is up to date.

• Third, a cell that contains a formula with a volatile function call must be recal-
culated even if the value of no supporting cell has changed. That is, one needs
to keep a separate list of such cells and recalculate them whenever anything
changes, or one could introduce artificial “events” on which such cells depend.

• Fourth, a dynamic cyclic dependency will cause an infinite chain of events,
unless a separate cycle detection scheme is implemented.

• Fifth, event listeners would have to be attached based on static dependencies.
For instance, if cell B2 contains the formula IF(RAND()>0.5; A1; A2), then
B2 should attach event handlers to both A1 and A2. However, a value change
event on A1 may be irrelevant to B2, namely when the pseudo-random number
generator RAND() returns a number less than or equal to 0.5. In general, the
existence of non-strict functions means that some event handlers will be called
to no avail.

• Finally, the lists of event handlers need to be maintained when the contents
of cells are edited. This is fairly straightforward because the formula in a cell
contains the necessary information about it directly supporting cells. So when
a cell reference is added to or deleted from a formula, it is easy to find the
cell(s) that must have event listeners added or removed.

56 Minimal recalculation §3.3

3.3.2 Explicit support graph

A more general alternative to using event listeners is to build an explicit static sup-

port graph, whose nodes are sheet cells and where there is an edge from cell A1
to cell B2, say, if A1 statically supports B2, or equivalently, B2 statically depends
on A1. The arrows drawn by the formula audit feature of modern spreadsheet pro-
grams essentially draw the support graph, as shown in figure 1.7.

An explicit support graph suffers from some of the same problems as the use of
event listeners. In fact, systematic attachment of event listeners as described above
would create precisely a support graph, where the edge from A1 to B2 is represented
by A1 holding a reference to an event handler supplied by B2.

Some of the problems with using an explicit support graph are:

• First, as for event listeners, the support graph may have O(N2
A) edges when

there are NA active cells, witness the example in figure 5.6. Thus the space
required to explicitly represent the support graph’s edges would be excessive.
But note that the dependency graph, represented by the formulas in the active
cells, requires only space O(FA). The reason for this is chiefly the compact
representation of sums and other formulas that take cell area arguments.

An interesting question is whether the support graph, like the dependency
graph, can be represented compactly?

• The support graph can be used to determine the proper recalculation order.
When a cell has been edited, one can determine all the cells reachable from it,
that is, all the cells transitively statically supported by that cell. Then one can
linearize the subgraph consisting of those cells by topological sorting in time
O(FD). The resulting linear order is suitable for a single pass recalculation.

• As for event listeners, one needs to keep a list of the cells containing formulas
with volatile function calls, and recalculate those cells, and all cells reachable
from them, at every recalculation.

• A static cyclic dependency manifests itselves as a cycle in the support graph,
but a static dependency may be harmless. When there is no cycle in the sup-
port graph, there can be no dynamic cyclic dependency. When there is a cycle
in the support graph, which should be rare, a separate mechanism can be used
to determine whether this is also a harmful dynamic cyclic dependency. How-
ever, a static cycle would complicate the topological sorting proposed above.

• As for event listeners, the support graph would have to be based on static
dependencies, with the same consequence: Some cells may be recomputed al-
though they do not actually (dynamically) depend on cells that have changed.

• The static support graph must be maintained when the contents of cells are
edited. As for event listeners, this is fairly straightforward.

In conclusion, an explicit static support graph seems more promising than event
listeners, but is feasible only if a compact yet easily maintainable representation
can be found. One such representation is discussed in chapter 4.

§3.3 Minimal recalculation 57

3.3.3 Topological sorting of cell dependencies

A topological sorting is a linearization and approximation of the support graph. The
advantage of keeping only the topological sorting is that it requires only space O(NA)
rather than space O(N2

A) for the more precise support graph. The chief additional
disadvantage is that the topological sort can be very imprecise and hence is a poor
basis achieving minimal recalculation. Linearizations of the dependencies in the
figure 3.1 example have the form A1, A2, A3, . . . , B1, B2, B3, . . . , C1, C2, C3, . . . ,
D1, D2, D3, . . . , E1, E2, E3, . . . , F1, F2, F3, . . . , with some permutation of the
blocks.

A B C D E F
1 11 12 13 14 15 16
2 =A1+1 =B1+1 =C1+1 =D1+1 =E1+1 =F1+1
3 =A2+1 =B2+1 =C2+1 =D2+1 =E2+1 =F2+1

. .

Figure 3.1: Bad control of recalculation using topological sort.

This means that if A1 changes, then not only the cells supported by A1 will be
recalculated, but also all the other cells following A1 in the topological sorting, most
of them needlessly.

Building the topological sorting in the first place is not straightforward. Most
simple algorithms for building the topological sorting assume a proper ordering
(acyclic, that is, not just a preorder), but as shown in section 1.7.6, a spreadsheet
can contain a static dependency cycle that is perfectly harmless, thanks to non-strict
functions.

Rebuilding the topological sorting anew at each change to the spreadsheet is not
attractive, as this requires time O(FA), in which time one can recalculate all cells,
whether changed or not, anyway. Hence it is desirable to try to incrementally adapt
the topological sorting as the cells of the spreadsheet are edited. There do exist on-
line algorithms for maintaining topological sorts, but they are not fast. Also, simple
edits to spreadsheet cells can radically change the topological sorting as shown in
figure 3.2, which indicates that efficient maintenance of the topological sorting is
not straightforward.

3.3.4 Speculative reuse of evaluation order

As an alternative to maintaining a correct topological sorting, or linearization, of
the cell dependencies, one could simply record the actual order in which cells are
recalculated, and attempt to reuse that order at the next recalculation. Maybe this
is what Excel does, see section 3.3.5.

The idea should be that dependency structure changes very little, usually not at
all, from recalculation to recalculation. Hence the most recent bottom-up recalcula-
tion order is likely to work next time also.

58 Minimal recalculation §3.3

A B C D
1 11 12 =SUM(B1:B9999) 14
2 =B1+A$1 =D1+C$1
3 =B2+A$1 =D2+C$1
4 =B3+A$1 =D3+C$1

.
Topological order before edit: A1, B1, B2, . . . , C1, D1, D2, . . .

A B C D
1 =SUM(D1:D9999) 12 13 14
2 =B1+A$1 =D1+C$1
3 =B2+A$1 =D2+C$1
4 =B3+A$1 =D3+C$1

.
Topological order after edit: C1, D1, D2, . . . , A1, B1, B2, . . .

Figure 3.2: Radical change in topological order after editing A1 and C2.

This should avoid rediscovering dependency order most of the time. However,
the correct amount and order of recalculation may change from recalculation to re-
calculation even if not cells are edited between recalculations. Again, non-strict
and volatile functions are the culprits: if the sheet contains a formula such as
IF(RAND()>0.5; A1; A2), then the previous recalculation order will be wrong half
the time.

3.3.5 Recalculation in Microsoft Excel

A paper by La Penna at the Microsoft Developer Network (MSDN) website [50]
describes recalculation in Excel 2002. The paper presents an example but glosses
over the handling of volatile and non-strict functions.

Recalculation is presented as a three-stage process: (1) identify the cells whose
values need to be recalculated, (2) find the correct order in which to recalculate those
cells, and (3) recalculate them.

The description of step (1) implies that from a given cell one can efficiently find
the cells and the cell areas that depend on that cell, but the paper does not say how
this is implemented. Presumably this is done using the “dependency tree” described
later in this section.

The paper’s advice on efficiency of user-defined functions indicate that step (2) is
embedded in step (3) as follows. To recalculate a cell, start evaluating its formula.
If this evaluation encounters a reference to a cell that must be recalculated, then
abandon the current evaluation and start evaluating the other cell’s formula. When
that is finished, start over from scratch evaluating the original cell’s formula. At
least, that is what the advice implies for user-defined functions: “One way to opti-

§3.3 Minimal recalculation 59

mize user-defined functions is to prevent repeated calls to the user-defined function

by entering them [the calls?] last in order in an on-sheet formula”.

Interestingly, this requires a linked list (acting as a stack) to remember the yet-
to-be-computed cells. This is somewhat similar to the CoreCalc design, which uses
the method call stack but avoids discarding any work already done.

Another interesting bit of information is that the final recalculation order is
saved and reused for the next recalculation, so that it avoids discarding partially
computed results. It is not discussed how this scheme works for a formula such
as IF(RAND()>0.5; A1; A2) that changes the dynamic dependencies in an unpre-
dictable way. Nevertheless, such a scheme probably works well in practice.

The paper hints that usually Excel only recalculates a cell if it (transitively)
depends on cells that have changed, but no explicit guarantees are given. That pa-
per says that one can request an ordinary recalculation (recalculate only cells that
transitively depend on changed ones) by pressing F9, and force a “full recalcula-
tion” (recalculate all cells, also those not depending on changed cells) by pressing
Ctrl+Alt+F9, but the latter key combination does not seem to work in Excel 2003.

Other sources indicate that the methods Calculate and CalculateFull from Ex-
cel interop class ApplicationClass provide other ways to perform ordinary and full
recalculation [25, 63]. In addition, the method CalculateFullRebuild rebuilds the
so-called “dependency tree” and then performs a full recalculation; see below. These
methods and the dependency tree are not mentioned in the La Penna paper. The
benchmark data in section 5.2 show that rebuilding the dependency tree can in-
crease recalculation time very considerably; by a factor of 80 in bad cases.

The patents by Schlafly (numbers 194 and 213 in appendix A) give a hint how re-
calculation order may be implemented in classic spreadsheet implementations. Our
conjecture is: Each formula (really, cell) record has a pointer to the next formula, so
that all cells together make up a linked list. The implementation attempts to keep
this list ordered so that a cell always precedes any cells that depend on it. If during
evaluation, a formula is found to depend on a cell that has not yet been evaluated,
then the offending cell is moved from its current position in the linked list to just
before the dependent formula, and evaluation starts over at the offending cell’s new
position in the list.

Third-party information from the company Decision Models [26] indicates that
Excel 2003 does maintain a “dependency tree”, probably corresponding to the sup-
port graph discussed in section 3.3.2 and chapter 4. (Note that the “tree” may in
general be a graph, and may even contain cycles). The dependency tree is used to
limit recalculation to those cells that depend on changed cells. However, according
to the same source, in Excel 2003 there are some limitations on the representation
of the dependency tree: The number of different areas in a sheet that may have de-

pendencies is limited to 65 536, and the number of cells that may depend on a single

area is limited to 8192. In Excel 2007 (Excel 12) those limits will be removed, but
in versions of Excel prior to that, full recalculations will be performed rather than
minimal recalculations when those limits are exceeded [25].

60 Minimal recalculation §3.3

3.3.6 Recalculation in Gnumeric

The Gnumeric spreadsheet program [37] is open source, but we have not studied its
recalculation mechanism in detail. An interesting technical note [56] by Meeks and
Goldberg, distributed with the source code, discusses “the new dependency code”.
The purpose of that code is to find a minimal set of cells that must be recalculated
when given cells have changed. Apparently two hash tables are used for individual
cell dependencies, but some other form of search is needed to determine whether
the value of a cell A42 is used in a cell area reference such as A1:A10000.

3.3.7 Related work

Harris and Bastian has a patent, number 223 in appendix A, on a method for “op-
timal recalculation”. The patent assumes that there is an explicit representation of
the support graph (which the patent calls the dependency set for a cell), and then
describes how to recalculate only those formulas that need to be recalculated, and
in an order that respects dependencies. Basically, this combines a filtering (consider
only non-uptodate cells) with transitive closure (cells that depend on non-uptodate
cells are themselves non-uptodate) and topological sorting (to recalculate in depen-
dency order), so algorithmically, this is not novel. Nothing is said about volatile and
non-strict functions, and the handling of cyclic dependencies is unclear. Nothing is
said about how to represent the dependency set.

Chapter 4

The support graph

The support graph shows which cells directly statically depend on a given cell. A
support graph facilitates minimal recalculation as well as ordering of formula re-
calculation. As discussed in section 3.3.2, the number of edges in the support graph
may be very large. This chapter investigates a compact representation of the sup-
port graph, as well as efficient algorithms for building, maintaining and using it.

These ideas may be the subject of a patent application. At this time, the ideas
have not been implemented and evaluated in practice. In particular they are not
part of the current CoreCalc implementation and not covered by the license shown
on page 3. To make good use of them, the recalculation mechanism implemented
by CoreCalc must be radically changed, so as to initiate recalculation in bottom-up
order instead of the current top-down order (see section 1.7.1). Such a change will
provide a number of further benefits; see section 4.7.

4.1 Compact representation of the support graph

As shown in section 3.3.2, there may be a large number of edges in the static support
graph. There are two reasons for this: A cell area argument in a formula may
refer to a large number of cells, and copying of such a formula may multiply that
by a large factor. First, a cell that contains the formula SUM(A1:A10000) will
belong to the support of 10 000 cells. Second, that formula may be copied to 5 000
other cells, thus making each of the 10 000 cells support 5 000 cells, for a total of
10 000 ·5 000 = 50 000 000 support graph edges between only 10 000 + 5 000 = 15 000
cells. Clearly a naive explicit representation of the support graph would require far
too much memory even for modest-size spreadsheets.

Here we shall investigate how to compactly represent support graph edges from a
cell to families of other cells that all hold virtual copies of the same expression. That
is, we shall attack the second source of the support graph edge problem, and reduce
the 50 000 000 support graph edges needed above to 10 000 compactly represented
families of support graph edges.

61

62 Arithmetic progressions and FAP sets §4.2

4.2 Arithmetic progressions and FAP sets

A finite arithmetic progression has the form a,a+b, . . . ,a+(k−1)b where a, b and k ≥ 0
are integers. Arithmetic progressions are interesting because the row numbers (and
column numbers) of virtual copies of an expression can be described by an arithmetic
progression with b ≥ 1 and k ≥ 1. To make this observation seem profound, we shall
refer to the set of elements in such a finite arithmetic progression as a FAP set,
and call a its offset, b its period, and k its cardinality. Clearly, FAP sets generalize
singleton sets (k = 1) and integer intervals (b = 1).

First observe that a FAP set can be represented compactly by the triple (a,b,k).
We shall abuse notation and denote the set itself by the triple, like this:

(a,b,k) = {a,a+b, . . . ,a+(k−1)b}

For the empty set (k = 0) and for one-element sets (k = 1) the representation by a
triple is not unique. We shall usually not represent the empty set by a triple at all,
and we therefore say that the representation is normalized if b ≥ 1, and k ≥ 1, and
k = 1 ⇒ b = 1. Figure 4.1 shows some equivalences for FAP sets.

(m,b,0) = {} empty set
(m,b,1) = {m} singleton

(m,1,n−m+1) = {m,m+1, . . . ,n} interval
(a,b,k1 + k2) = (a,b,k1) ∪ (a+bk1,b,k2) chop
(a,1,k1 + k2) = (a,2,k1) ∪ (a+1,2,k2) zip two

Figure 4.1: Some equivalences for FAP sets.

The “zip two” equivalence in the figure is a special case of this “zip multiple”
equivalence (with b = 1 and n = 2):

(a,b,k) = (a,nb,k0) ∪ (a+b,nb,k1) ∪ . . . ∪ (a+(n−1)b,nb,kn−1)

where ki ≥ 0 is the greatest integer such that n(ki −1) ≤ k−1− i, which can be com-
puted as k_i=(k-1-i+n)/n. This can be used to find a non-redundant FAP set repre-
sentation of the union of two FAP sets, in the form of a set of mutually disjoint FAP
sets.

For example, to represent the union of (a1,b1,k1) = (0,2,10) and (a2,b2,k2) = (0,3,8),
notice that the least common multiple of b1 and b2 is b = lcm(2,3) = 6. We use the
“zip multiple” equivalence to rewrite the two FAP sets to use the common period
b = 6, with the multipliers n being n1 = b/b1 = 3 and n2 = b/b2 = 2 respectively:

(0,2,10) = (0,6,4) ∪ (2,6,3) ∪ (4,6,3)
(0,3,8) = (0,6,4) ∪ (3,6,4)

We see that the component FAP sets (0,6,4) are identical whereas all the other
component FAP sets are disjoint. Hence one non-redundant representation of the
union of the sets is this:

(0,2,10) ∪ (0,3,8) = (0,6,4) ∪ (2,6,3) ∪ (3,6,4) ∪ (4,6,3)

§4.3 Support graph edge families and FAP sets 63

In the above case the offsets of the two FAP sets were the same, namely a1 = a2 = 0.
When the offsets are distinct, there is not necessarily any overlap between com-
ponent FAP sets in the expansion. The two set overlap if there exist i1 and i2
with 0 ≤ i1 < k1 and 0 ≤ i2 < k2 such that a1 + i1b1 = a2 + i2b2. To see when this is
the case, let again b = lcm(b1,b2) and further let β = gcd(b1,b2) = b1b2/b so we have
n1 = b/b1 = b2/β and n2 = b/b2 = b1/β.

Now if the two sets overlap, then there exist 0 ≤ i1 < k1 and 0 ≤ i2 < k2 such that
a2 −a1 = i1b1 − i2b2 = i1βn2 − i2βn1 = β(i1n2 − i2n1), so a1 ≡ a2(mod β).

Hence if a1 6≡ a2(mod β) then the FAP sets (a1,b1,k1) and (a2,b2,k2) are disjoint
and there is no need to expand them to obtain an irredundant representation.

On the other hand, if a1 ≡ a2(mod β), it depends also on the cardinalities k1 and
k2 whether the sets overlap. Loosely speaking, if the cardinalities are large enough
the sets will overlap, otherwise not. The sets overlap iff there are 0 ≤ i1 < k1 and
0 ≤ i2 < k2 such that i1n2 − i2n1 = (a2 −a1)/β, and whether this is the case depends on
the bounds k1 and k2 on i1 and i2. Namely, since n1 and n2 are coprime, this equation
would always have a solution if there were no bounds on i1 and i2.

4.3 Support graph edge families and FAP sets

The core idea is to represent the family of support graph edges from a cell to virtual
copies of an expression by a pair of FAP sets, and hence by a pair ((ac,bc,kc),(ar,br,kr))
of triples. Namely, each copy operation giving rise to virtual copies creates a regular
rectangular grid of virtual copies, and we let the triple (ac,bc,kc) represent all the
columns containing virtual copies, and let the triple (ar,br,kr) represent all the rows
containing virtual copies. Hence the virtual copies occupy precisely the cells with
these absolute, zero-based column and row numbers:

{ (c,r) | c ∈ (ac,bc,kc), r ∈ (ar,br,kr) }

We shall refer to such a product of FAP sets as a FAP grid. For a simple example, as-
sume that cell B1 contains the formula SUM(A$1:A$10000), and assume that formula
is copied to the area B2:B5000, as shown in figure 4.2.

A B
1 0.5 =SUM(A$1:A$10000)
2 =A1*1.00001 =SUM(A$1:A$10000)
3 =A2*1.00001 =SUM(A$1:A$10000)

.
5000 =A4999*1.0001 =SUM(A$1:A$10000)

.
10000 =A9999*1.00001

Figure 4.2: A sheet with 15 000 active cells and 50 million support graph edges.

64 Support graph edge families and FAP sets §4.4

Then cell A1 must have support graph edges to cells B1, B2, . . . , B5000, and
likewise for A2, . . . , A10000. In each case, this family of support graph edges can be
represented by this FAP grid, or pair of FAP sets:

((ac,bc,kc),(ar,br,kr)) = ((1,1,1),(0,1,5000))

of triples, that is, column 1, rows 0–4999. This representation must be used for
each of the 10 000 cells in column A that support the cells in column B, but the
space needed per cell in column A has been reduced from 5 000 cell addresses to
six integers. In this case, a single pair of triples can even be shared among all the
column A cells. Clearly, cell A1 also supports A2, A2 supports A3, and so on, so the
support edges must be represented as the union of families of support graph edges,
where each family can be represented by a pair of triples.

For a more interesting example, let cell B1 contain the formula SUM(A$1:A1), as
in figure 1.5, and assume that formula is copied to the area B2:B5000. Then cell
A1 has support graph edges to cell B1; cell A2 has support graph edges to cells B1
and B2; and more generally, cell An has support graph edges to cells B1, B2, . . . , Bn.
For cell An, where 1 ≤ n, the family of support graph edges can be represented by
the pair ((1,1,1),(n−1,1,5000−n+1)). Hence six integers per cell in column A still
suffice to represent the support graph edge family, although the pairs of triples can
no longer be shared between all the cells in column A.

To illustrate the need for FAP sets rather than just integer intervals, assume
again that cell B1 contains the formula SUM(A1:A30), that the cells C1, D1, B2,
C2 and D2 contain other formulas, and that the 3× 2 block B1:D2 of formulas is
copied to the cell area B1:M30 which has 12 columns and 30 rows, or 4 · 15 = 60
virtual copies of each of the formulas from B1:D2. As outlined in figure 4.3, the
virtual copies of cell B1 are in cells B1, E1, H1, K1, B3, E3, . . . , K29. This family of
cells can be represented by the pair of triples ((1,3,4),(0,2,15)), where the column
triple (1,3,4) = {1,4,7,10} represents the columns B, E, H and K, and the row triple
(0,2,15) = {0,2,4, . . . ,28} represents rows 1,3,5,. . . , 29.

A B C D E F G . . . M
1 0.5 =SUM(A1:A30) =SUM(A1:A30) . . .
2 =A1 . . .
3 =A2 =SUM(A1:A30) =SUM(A1:A30) . . .
4 =A3 . . .

. . .
29 =A28 =SUM(A1:A30) =SUM(A1:A30) . . .
30 =A29 . . .

Figure 4.3: Making virtual copies of a 3×2 cell area.

§4.4 Creating and maintaining support graph edges 65

4.4 Creating and maintaining support graph edges

Let St be the set of absolute cell addresses of cells directly supported by the cell at
address t. The support graph must have an edge (t,s) for each s ∈ St .

Assume that the formula f , if at cell ca, contains references to a set T of cells; that
is, it directly statically depends on the cells in T . Then creation, deletion, copying
and moving of that formula affects the support set of each cell t ∈ T as follows:

• When creating the formula in the cell at address ca, we must add ca to St for
each cell t ∈ T .

• When deleting the formula from the cell at ca, we must remove ca from St for
each cell t ∈ T .

• When copying the formula from cell ca = (c,r) within a cols× rows block that
is being copied to a cell area whose upper left hand corner is (cul,rul), then
the pair of triples ((cul −c,cols,kc),(rul − r,rows,kr)) must be added to St for each
t ∈ T . Here kc is the number of columns that receive copies of the formula, and
kr is the number of rows that receive copies of the formula. This is true for
absolute cell references in formula f to the cell addresses in T .

Since relative references get adjusted by the copying, the story for those is a
little more complicated. Define f [c′,r′] to be the formula at target cell (c′,r′),
that is, with relative reference adjusted by the copying, and let refers(f [c′,r′])
denote the set of cell addresses referenced from f [c′,r′]. Then for each c′ ∈
(cul,cols,kc) and each r′ ∈ (rul,rows,kr) we must add (c′,r′) to each Sca where
ca ∈ refers(f [c′,r′]). If we do this naively as described here, then the support
graph representation may require quadratic space. Using the technique from
section 4.5.5, this can be done efficiently in a way that results in a much more
compact support graph representation.

Obviously, this operation also overwrites any formulas within the target cell
area of the copying operation, which affects the support graph.

• When moving a formula from cell ca1 to cell ca2, we must remove ca1 from and
add ca2 to the support set of each cell t ∈ T .

• When inserting N ≥ 1 new rows just before row R ≥ 0, each St that includes a
row r ≥ R must be adjusted.

More precisely, when the FAP set pair ((ac,bc,kc),(ar,br,kr)) ⊆ St satisfies that
ar +br(kr −1) ≥ R, then St must be adjusted.

When ar ≥ R too, simply add N to each member of the row FAP set (ar,br,kr) to
obtain (ar +N,br,kr).

Otherwise, when ar < R ≤ ar + br(kr − 1) we must split the row FAP set into
two. One set represents those rows preceding the insertion, and another set
representing those rows following the insertion, and then we must add N to

66 Reconstructing the support graph §4.5

each element of the latter set. Determine the integer k such that ar +br(k−1) <
R ≤ ar +bk, then the resulting row FAP sets are (ar,br,k) and (ar +N,br,kr − k).

Insertion of columns is completely similar.

• When deleting the N ≥ 1 rows numbered R,R+1, . . . ,R+N −1, those rows must
be removed from each row FAP set (ar,br,kr), and for each row FAP set, N must
be subtracted from the numbers of any rows following the deleted ones.

Let k1 be the greatest integer such that ar +br(k1 −1) < R. The idea is that k1,
if positive, is the number of rows in the row FAP set that precede the deleted
rows. Similarly, let k2 be the least integer such that R + N ≤ ar + brk2; then
kr − k2, if positive, is the number of rows in the row FAP set that follow the
deleted rows.

The original row FAP set must be replaced by zero, one or two non-empty row
support sets, as follows:

– If 1 ≤ k1 then (ar,br,k1) is part of the resulting row FAP set. These are the
rows preceding the deleted rows.
One can compute k1 by the expression k_1 = (R-a_r+b_r-1)/b_r; see sec-
tion 4.5.6.

– If k2 < kr then (ar +brk2 −N,br,kr −k2) is part of the resulting row FAP set.
These are the rows following the deleted rows.
One can compute k2 by the expression k_2 = (R+N-a_r+b_r-1)/b_r; see
section 4.5.6.

Figure 4.4 shows examples of adjustment of row FAP sets for some formula =Z1
when the shaded rows 4 through 7 are deleted. The original FAP set triples
(ar,br,kr) and the resulting k1 and k2 are shown below the spreadsheet frag-
ment.

Deletion of columns is completely similar.

It seems that it is never necessary to have more than one instance of a given row
FAP set representation in the implementation. Namely, assume FAP set S appears
in the support of two different cells. Then if any formula in a cell in S is updated
so that set S must be changed, then this change affects both cells in the same way.
Hence updates to the support graph can be made very simple; they just require
some mechanism to avoid performing the update more than once.

4.5 Reconstructing the support graph

The previous section describes how the support graph can be maintained while in-
serting, deleting, moving and copying formulas, and so on. An equally relevant
challenge is to efficiently create the support graph from a spreadsheet that does not
have one, such as a newly loaded spreadsheet created by an external program. It

§4.5 Reconstructing the support graph 67

A B C D E
1 =Z1
2 =Z1
3 =Z1
4 =Z1 =Z1 =Z1
5 =Z1
6 =Z1
7 =Z1 =Z1 =Z1
8 =Z1
9 =Z1

10 =Z1 =Z1

ar 0 1 2 3 3
br 3 3 3 3 3
kr 4 3 3 3 2
k1 1 1 1 0 0
k2 3 2 2 2 2

Figure 4.4: Effect on row FAP set for S=Z1 of deleting the grey rows (N = 4 and R = 3).

is trivial to find a poor solution to this problem, but finding an optimal one is quite
likely an NP-complete problem, as it involves finding a kind of minimal exact set
cover.

We propose a two-stage approach in which one first builds an occurrence map for
each formula (section 4.5.1), and then uses the occurrence map to build the support
graph (sections 4.5.2 through 4.5.5).

4.5.1 Building a formula occurrence map

The following procedure seems usable for building a reasonably compact occurrence
map for typical spreadsheets:

• Scan columns from left to right.

• In the scan of a column c, we maintain a map m from expressions e (in the in-
ternal, copy-invariant representation) to a sequence m(e) of triples, each triple
representing a FAP set.

The goal is that after scanning the column, the union of the members of the
triples in m(e) is exactly the set of those cells (in that column) that contain
formula e.

We maintain a map from expressions (to a sequence of triples), rather than a
map from the cells that those expressions refer to. The reason is that the latter
map could have a much larger domain: an expression such as SUM(A1:A10000)
in effect represents 10 000 cells, and clearly it is more efficient to map from
one such expression than from 10 000 individual cells.

68 Reconstructing the support graph §4.5

The map from expressions to sequences of FAP sets can be maintained as a
hash dictionary, with equality being expression object reference identity or
expression abstract syntax tree equality. The former is faster but less precise
than the latter, but imprecision just leads to a less compact representation of
the support graph, not to wrong results.

At the beginning of the scan of the column, the map m is empty.

• The rows of the column are scanned in order from row 0. Assume the cell in
row r contains a formula e, then we proceed as follows:

– If e /∈ dom(m) then set m(e) := [(r,1,1)].
The expression e has not been seen before in this column.

– Otherwise assume m(e) = [. . . ,(r′,b′,k′)].
The expression has been seen before and the most recent occurrence was
at r′ +b′(k′−1).

– If k′ = 1 then update the last item of m(e) to (r′,r− r′,2).
The most recent FAP set has only one element, and we can extend it to
have k = 2, with the step b being the difference r− r′ between this row and
the row in the FAP set.

– Otherwise, if r = r′ +b′k′ then update the last item of m(e) to (r′,b′,k′ +1).
The new row is an additional member of the most recent FAP set, so we
extend that set.

– Otherwise, add a new last item (r,1,1) to m(e).
The new row is not a member of the most recent FAP set, so we do not
extend that sequence, but begin a new one.

NOTE: This simple scheme can be defeated by writing a formula in A1, copying it to A3,
then copying the block A1:A3 to many further cells. It would give alternating distances
2,1,2,1,2,1, . . .

Hence instead we might collect the sequence of distances as above, and infer the FAP
sets (0,3,k1) and (2,3,k2) from them. This is quite easy, presumably, by considering
derived sequences of 2-sums, 3-sums etc. that are constant.

Another approach would be to use a Fast Fourier Transform (FFT) [19] of the column’s
formula identities to find the spectrum of the formula occurrences. In the example
sketched here, one would expect to find the periods 1, 2 and 3, with 3 having twice the
power of 1 and 2, which would indicate that 3 is the most interesting period for that
column. (Periods that are multiples of 3 would appear also, but with lesser power).
After noting this, one can perform a column scan that keeps for each formula up to 3
partially constructed FAP sets.

A conceptually simpler auto-correlation computation might serve the same purpose as
the FFT, but might be slower if the correlation window needs to be large. In both cases,
a possible weakness of this method is that the pattern of virtual formula copies may
not be uniform over the column.

§4.5 Reconstructing the support graph 69

Even more speculatively, could we perform a two-dimensional Fourier Transform to
find repetitive structure in columns and rows at the same time? It would seem that a
two-dimensional auto-correlation function could easily be computed. However, it would
increase computational cost a good deal, especially if we want to handle copying of
blocks up to, say, 20x20 cells.

• Let mc be the map resulting from scanning column c as outlined above. Now
scan all columns, building a map M, from pairs (f ,ts) of formulas f and triple
sequences ts, to a list of set of pairs ((ac,bc,kc),(ar,br,kr)) of triples, using a
scheme similar to the above.

• When the map M has been built, the support graph can be created as explained
in the next section.

Instead of building a map m from formulas e to sequences of triples, we could build
a map from ccars, where a ccar is a cell reference such as B7 or cell area reference
such as B7:D8. The chief advantage of this would be to permit better sharing of
support graph edge descriptions. The disadvantages are that it would exacerbate
the problem mentioned in the Note above and make a solution to that problem more
urgent, and that it would require a traversal of each expression e ∈ dom(m) when
processing a cell in a column, instead of just looking up the expression’s reference
in m. However, even if we stick to letting m map from expressions e, the processing
of each e described in the sections below would consist of processing each ccar in e.

4.5.2 From formula occurrence map to support graph

Now let us consider how to build the support graph. This is done by two nested
loops:

• For each e ∈ dom(M), for each member (C,R) ∈ M(e), find the set CA of absolute
cell addresses that is referred by at least one occurrence of formula f within
the grid of cells described by (C,R). This can be computed in constant time for
each ccar, as shown in section 4.5.4.

• Then for each such cell address ca ∈CA, compute the pair of triples that repre-
sents the subset of (C,R) that ca actually supports. For each ca this computa-
tion is a constant time operation, as shown in section 4.5.5.

4.5.3 Some examples

First let us consider some concrete examples of virtual formula copies that contain
cell area references, such as those in figure 4.5. The task is to find which cells in
column A support which cells in column B, C and D. The column B and C formula
copies are described by the triple (0,2,5); the column D formula copies are described
by the triple (1,2,5).

In column B, each of cells A1–A10 support all of the cells B1, B3, B5, B7 and B9,
which can be described by the triple (0,2,5).

70 Reconstructing the support graph §4.5

In column C, cell A1 supports C1, C3, C5, C7 and C9, described by (0,2,5); cells
A2 and A3 both support C3, C5, C7 and C9, described by (2,2,4); cells A4 and A5
both support C5, C7 and C9, described by (4,2,3); cells A6 and A7 both support C7
and C9, described by (6,2,1); cells A8 and A9 both support C7 and C9, described by
(6,2,1); and cell A10 supports nothing in column C.

In column D, cell A1 and A2 both support D2, D4, D6, D8 and D10, described by
(1,2,5); cells A3 and A4 both support D4, D6, D8 and D10, described by (3,2,4); cells
A5 and A6 both support D6, D8 and D10, described by (5,2,3); cells A7 and A8 both
support D8 and D10, described by (7,2,2); and cells A9 and A10 both support D10,
described by (9,2,1).

A B C D
1 11 SUM(A1:A10) SUM(A1:$A1)
2 12 SUM(A1:$A2)
3 13 SUM(A1:A10) SUM(A1:$A3)
4 14 SUM(A1:$A4)
5 15 SUM(A1:A10) SUM(A1:$A5)
6 16 SUM(A1:$A6)
7 17 SUM(A1:A10) SUM(A1:$A7)
8 18 SUM(A1:$A8)
9 19 SUM(A1:A10) SUM(A1:$A9)

10 20 SUM(A1:$A10)

Figure 4.5: Finding the support edges from each cell in column A.

In continuation of the above example, consider figure 4.6 and let us find which
cells in column A support which cells in column E, F and G. The column E formula
copies are described by the triple (0,2,5); the column F formula copies by (2,2,4);
and the column G formula copies are described by (1,3,3).

In column E, cells A1 and A2 both support E1 only, described by (0,2,1); cell A3
supports E1 and E3, described by (0,2,2); cell A4 supports E1, E3, E5, E7 and E9,
described by (0,2,5); cell A5 supports E5, E7 and E9, described by (4,2,3); cells A6
and A7 both support E7 and E9, described by (6,2,2); cells A8 and A9 both support
E9, described by (8,2,1); and cell A10 supports nothing in column E.

In column F, cells A1 and A2 both support F3, described by (2,2,1); cell A3 sup-
ports F3 and F5, described by (2,2,2); cell A4 supports F5, described by (4,2,1);
cell A5 supports F5 and F7, described by (4,2,2); cell A6 supports F7, described
by (6,2,1); cell A7 supports F7 and F9, described by (6,2,2); cells A8 and A9 both
support F9, described by (8,2,1); and cell A10 supports nothing in column F.

In column G, cells A1 and A2 both support G2, described by (1,3,1); cell A3
supports nothing in column G; cells A4 and A5 both support G5, described by (4,3,1);
cell A6 supports nothing in column G; cells A7 and A8 both support G8, described by
(7,3,1); and cells A9 and A10 support nothing in column G. In this case, with non-
overlapping areas of supporting cells, each triple represents a single edge, and no
space is saved by our supposedly compact support graph representation. However,

§4.5 Reconstructing the support graph 71

the number of support graph edges is already only linear in the number of formula
occurrences.

A . . . E F G
1 11 . . . SUM(A4:$A1)
2 12 . . . SUM($A1:$A2)
3 13 . . . SUM(A4:$A3) AVG($A1:$A3)
4 14 . . .
5 15 . . . SUM(A4:$A5) AVG($A3:$A5) SUM($A4:$A5)
6 16 . . .
7 17 . . . SUM(A4:$A7) AVG($A5:$A7)
8 18 . . . SUM($A7:$A8)
9 19 . . . SUM(A4:$A9) AVG($A7:$A9)

10 20 . . .

Figure 4.6: Finding the support edges from each cell in column A; more cases.

4.5.4 From occurrence map to referred cells

Now let us consider more generally the problem of finding the set of cell addresses
referred to by the occurrences of a formula; this is the first step in section 4.5.2.
For simplicity we will consider this problem in one dimension only, working on the
formula (or ccar) occurrences in one column at a time. Hence we consider triples of
the form (ar,br,kr), describing a pattern of occurrences of a single formula or ccar.
In fact, regardless of whether the occurrence map M created in the previous section
maps from formulas f or ccars ccar, we shall consider one ccar at a time, if necessary
extracted from the formulas in the domain of M.

Hence we consider a ccar that appears in a given column c and an associated
triple (a,b,k) that describes the rows of that column in which the ccar appears. The
procedure then becomes:

(1) First we find the set CA of all those absolute cell addresses ca that are referred
to by some occurrence ccar[c,r] for r ∈ (a,b,k). This set can be represented by
an interval (in the one-dimensional case) or the product of two intervals (in
the general case).

The point of computing CA in advance is to avoid analysing any ca more than
once in step (2). Namely the cell areas referenced by different occurrences of
the same formula may overlap, and certainly do in columns B, C, D, E and F
above, and processing each such cell area in turn could change a linear time
algorithm to a quadratic time algorithm.

(2) Next, for each ca∈CA we compute the triple (a′,b,k′) representing the subset of
(a,b,k) that ca actually supports. This triple then is used to represent support
graph edges from ca to cells in column c supported by ca.

72 Reconstructing the support graph §4.5

Step (1) above in principle must compute r = a+bi for all 0 ≤ i < k, and then find the
union of the sets of cells referred to by each occurrence ccar[c,r] of the cell/cell area
reference:

CA =
[

0≤i<k

refers(ccar[c,a+bi])

This looks like a potentially expensive operation, but it turns out that CA is an inter-
val and can be computed in constant time in all cases where computing it matters,
namely when the referred-to cell areas overlap, so that processing the areas one by
one would duplicate work. The CA sets for the examples in figures 4.5 and 4.6 are
shown in figure 4.7, in A1 and C0R0 format. The column G case shows that CA in
general may not be an interval.

Formula (A1) Formula (C0R0) Occurs Referred-to cells (CA)
B SUM(A1:A10) SUM(C0R0:C0R9) (0,2,5) { A1, A2, . . . , A9, A10 }
C SUM(A1:$A1) SUM(C0R0:C0R[0]) (0,2,5) { A1, A2, . . . , A9 }
D SUM(A1:$A2) SUM(C0R0:C0R[0]) (1,2,5) { A1, A2, . . . , A9, A10 }
E SUM(A4:$A1) SUM(C0R4:C0R[0]) (0,2,5) { A1, A2, . . . , A9 }
F AVG($A1:$A3) AVG(C0R[-2]:C0R[0]) (2,2,4) { A1, A2, . . . , A9 }
G SUM($A1:$A2) SUM(C0R[-1]:C0R[0]) (1,3,3) { A1, A2, A4, A5, A7, A8 }

Figure 4.7: Formula occurrences and referred-to cells in figures 4.5 and 4.6.

To see that the set CA can be computed efficiently, consider the four possible forms
of ccar, using C0R0-format references (figure 2.2) for the two corners. We assume
here that ccar is a cell area reference, since a simple cell reference such as A1 can
be represented by a cell area reference A1:A1.

• When ccar is C0Ri1:C0Ri2, that is, both corners are absolute references, the
occurrences (a,b,k) do not matter. Obviously the exact result is an interval,
namely, assuming wlog i1 ≤ i2:

CA = {i1, . . . , i2}

• When ccar is C0Ri1:C0R[i2], that is, one corner is an absolute reference, the other
is a relative one, the occurrences do matter. Still the exact result is an interval,
namely:

CA = {n1, . . . ,n2}

where

n1 = min(i1,a+ i2,a+b(k−1)+ i2) and n2 = max(i1,a+ i2,a+b(k−1)+ i2)

§4.5 Reconstructing the support graph 73

• When ccar is C0R[i1]:C0Ri2, that is, one corner is a relative reference, the other
is an absolute one, we have the same situation as above; simply swap i1 and i2
in the formulas.

• When ccar is C0R[i1]:C0R[i2], and assuming wlog i1 ≤ i2, the exact set is

CA =
[

0≤i<k

{a+ ib+ i1, . . . ,a+ ib+ i2}

This can be approximated by an interval:

CA ⊆ {a+ i1, . . . ,a+ i(k−1)+ i2}

In fact, this interval is the exact answer when the cell areas referred to from
the formula occurrences are adjacent or even overlap, that is, when i2 − i1 +1 ≥
b as in column F of figure 4.6. When this is not the case, there is no point in
building the set CA explicitly; instead step (2) described in section 4.5.5 below
should iterate over the ca in each set {a+ ib+ i1, . . . ,a+ ib+ i2} individually, for
0 ≤ i < k. Precisely because those sets do not overlap, this means that no ca
will be analysed twice.

For the formulas in figures 4.5 and 4.6, we find precisely the CA sets shown in fig-
ure 4.7.

4.5.5 The support graph edges from a referred cell

Now let us consider how to find the support graph edges from a given referred-to
cell; this is the inner loop (2) in section 4.5.4 above. We consider an absolute cell
address (c′,r′) = ca ∈CA, where CA was computed in the previous section, and recall
that the occurrences of ccar are described by (a,b,k). We must find the set

Sca = { j | ca ∈ refers(ccar[c, j]), j = a+bi, 0 ≤ i < k }

The challenge is to compute this set efficiently, and to find a compact representation
of it. Preferably, we want to find a triple (a′,b,k′) that is equivalent to Sca. Again this
computation can be performed by case analysis in the form of the ccar.

• When ccar is C0Ri1:C0Ri2 and ca ∈ CA, clearly ca supports every occurrence of
the ccar, so

Sca = (a′,b,k′) = (a,b,k)

• When ccar is C0Ri1:C0R[i2], there are three cases, according as r′ equals, pre-
cedes, or follows the anchor point i1:

74 Reconstructing the support graph §4.5

– If r′ = i1 then

Sca = (a,b,k)

– If r′ < i1, find the greatest k1 ≤ k such that i2 + a + b(k1 − 1) ≤ r′. Then if
k1 ≥ 1 then the set is non-empty:

Sca = (a,b,k1)

The number k1 can be computed as k_1 = Math.Min(k, (r’-i_2-a+b)/b).

– If i1 < r′, find the least k1 ≥ 0 such that r′ ≤ i2 +a+bk1. Then if k1 < k then
the set is non-empty:

Sca = (a+bk1,b,k− k1)

The number k1 can be computed as k_1 = Math.Max(0, (r’-i_2-a+b-1)/b).

• When ccar is C0R[i1]:C0Ri2, then the cases and solutions are exactly as above,
only with i1 and i2 swapped.

• When ccar is C0R[i1]:C0R[i2], and assuming wlog i1 ≤ i2, determine the greatest
k1 such that i2 +a+b(k1 −1) < r′ and the least k2 such that r′ < i1 +a+bk2, and
define k′1 = max(0,k1) and k′2 = min(k,k2). Then if k′1 < k′2 we have

Sca = (a+bk′1,b,k′2 − k′1)

The number k′1 can be computed as k_1’ = Math.Max(0, (r’-i_2-a+b-1)/b).

The number k′2 can be computed as k_2’ = Math.Min(k, (r’-i_1-a+b)/b).

See figures 4.9 for an example where the referred-to row ranges overlap, and
figure 4.10 for an example where the referred-to row ranges do not overlap.

Considering the formulas in figure 4.7, we find for each cell in column A the support
graph edge families shown in figure 4.8. Fortunately, these agree with the sets of
supported cells found in the informal discussion of those figures.

4.5.6 Computer integer arithmetics

Computing with integers and inequalities requires some care, both because the alge-
bra rules are different from those of arithmetics on reals, and because programming
languages (except for Standard ML [58]) traditionally implement integer division
with negative numerators in a peculiar way. Essentially, most languages let integer
division truncate towards zero rather than towards minus infinity, and therefore
satisfy (−n)/d = −(n/d) but not (n+d)/d = n/d +1 for d > 0.

Let an integer d > 0 be given.

• To find the least integer q such that n ≤ dq, where n ≥ 0,
compute q = (n+d-1)/d.

§4.5 Reconstructing the support graph 75

Cell r′ B C D E F G
A1 0 (0,2,5) (0,2,5) (1,2,5) (0,2,1) (2,2,1) (1,3,1)
A2 1 (0,2,5) (2,2,4) (1,2,5) (0,2,1) (2,2,1) (1,3,1)
A3 2 (0,2,5) (2,2,4) (3,2,4) (0,2,2) (2,2,2) {}
A4 3 (0,2,5) (4,2,3) (3,2,4) (0,2,5) (4,2,1) (4,3,1)
A5 4 (0,2,5) (4,2,3) (5,2,3) (4,2,3) (4,2,2) (4,3,1)
A6 5 (0,2,5) (6,2,2) (5,2,3) (6,2,2) (6,2,1) {}
A7 6 (0,2,5) (6,2,2) (7,2,2) (6,2,2) (6,2,2) (7,3,1)
A8 7 (0,2,5) (8,2,1) (7,2,2) (8,2,1) (8,2,1) (7,3,1)
A9 8 (0,2,5) (8,2,1) (9,2,1) (8,2,1) (8,2,1) {}

A10 9 (0,2,5) {} (9,2,1) {} {} {}

Figure 4.8: Support graph edge families for column A cells in figures 4.5 and 4.6.

i +a+bi1

k
1

Referring

Referred−to

0 1 2 3 4

i +a+bi2

a+bi =

i =

r’

k
2

Figure 4.9: Five virtual copies of a cell area reference ccar of form C0R[i1]:C0R[i2],
that is, with both endpoints relative. Non-overlapping cell areas. The row number
r′ is included in the cell areas referred by i for which k1 ≤ i < k2, in this case, i = 2.

76 Related work §4.6

i +a+bi1

k
1

k
2

2i +a+bi

Referring

Referred−to

0 1 2 3 4

a+bi =

i =

r’

Figure 4.10: Five virtual copies of a cell area reference ccar of form C0R[i1]:C0R[i2],
that is, with both endpoints relative. Overlapping cell areas. The row number r′ is
included in the cell areas referred by i for which k1 ≤ i < k2, in this case, i = 1,2,3.

• To find the greatest integer q such that dq ≤ n, where n ≥ 0,
compute q = n/d.

• To find the greatest integer q such that dq < n, where n ≥ 0,
compute q = (n-1)/d.

• To find the greatest integer q such that dq ≤ n, where n ≥−d,
compute q = (n+d)/d-1.

Computing this as q = n/d would be wrong because integer division in most
programming languages truncates the quotient towards zero rather than to-
wards minus infinity, and therefore does not satisfy the expected equivalence
(n+d)/d = n/d +1 for integers n and d > 0.

• To find the greatest integer q such that dq < n, where n ≥−d,
compute q = (n+d-1)/d-1.

• To find the greatest integer q such that d(q−1) < n, where n ≥−d,
compute q = (n+d-1)/d.

4.6 Related work

It is clear that some explicit representation of the support graph in used both in
Excel [25] and in Gnumeric [56]. However, it seems that the representation in both
cases is considerably different from what is suggested here; see section 3.3.5.

Burnett and others [14] introduces the concept of cp-similar cells, essentially
meaning that their formulas could have arisen by a copy-paste operation from one

§4.7 Applications of the support graph 77

cell to the other. This is equivalent to saying that their R1C1-representations (or
C0R0-representations) are identical. They further define a region to be a group of
adjacent cp-similar cells; which is a special case of a FAP grid of formula copies. The
purpose of grouping cells into regions is not to support recalculation, but to reduce
the task of testing to one representative from each region.

A paper by Mittermeir and Clermont proposes the highly relevant idea of a “se-
mantic class” of cells [59], which corresponds to Burnett’s notion of cp-similar cells,
but the cells in a semantic class are not necessarily adjacent. As above, the paper’s
goal is to assist users in discovering irregularities and bugs in spreadsheets, not
to implement spreadsheet programs. The paper defines semantic class using first
order logic but does not suggest how to represent semantic classes and does not
provide algorithms for reconstructing or maintaining semantic classes.

Abraham and Erwig [3] use the concept of cp-similarity to infer templates for
spreadsheets, in the sense of Gencel [31]. This paper seems to work with regular
grids of cp-similar cells, which makes this idea very similar to FAP grids, but there
is no explanation of an algorithm for discovering such regular grids. The purpose
of template inference (and Gencel) is to guide and limit the editing of a spreadsheet
and hence to prevent the introduction of errors.

4.7 Applications of the support graph

• The most obvious application of the support graph is to perform minimal re-
calculation. One needs to recalculate only those nodes (spreadsheet formulas)
in the support graph that are reachable from changed cells or volatile cells.

• This can be combined with the existing bottom-up recalculation mechanism
of CoreCalc, simply by performing (for instance) a depth-first traversal of the
support graph, recalculating cells on the way. There’s even a good chance that
cells will be recalculated in the proper order this way, though no guarantee,
because the same cell may be both directly and indirectly supported by a given
cell. The management of the uptodate and visited fields would have to be
modified, though, since only some of the workbook’s cells will be visited in
each recalculation.

• However, when the static support graph contains no (static) cycles, a better
alternative is to perform a topological sort of the reachable cells in the support
graph, to obtain a safe recalculation order. Then all referring expressions can
assume that referred-to cells are up to date, thus saving checks and recalcu-
lation time, and avoiding the need for a recursion stack. The Expr subclasses
can have a special version of the Eval method for this purpose.

• When the static support graph contains no (static) cycles, the cycle check can
be left out, thus saving recalculation time.

• If we create “efficient” versions of expressions by inter-cell type analysis, the
support graph can be used to efficiently find the cells whose type analysis may

78 Limitations and challenges §4.8

be affected by a type change in a given cell.

• The support graph could help compile expressions to sequential code, for in-
stance to generate code from function sheets.

• The support graph could help schedule recalculation for multiprocessor archi-
tectures and FPGA implementation [51].

4.8 Limitations and challenges

The FAP grid representation of the support graph provides a compact representa-
tion of the support graph for highly regular grids of formulas, that can furthermore
be efficiently constructed and maintained. However, for spreadsheets with an irreg-
ular structure, which cannot be built using only a few copy operations, the FAP grid
representation may degenerate to a representation of all single edges. For instance,
a spreadsheet to compute the discrete Fourier transform [8, 19] has a structure that
cannot easily be built using copy operations, as shown in figure 4.11.

Figure 4.11: Dependencies in a discrete Fourier transform. (Spreadsheet from [89]).

In general, and especially in the presence of SUM formulas and other functions
with cell area arguments, it may be necessary to supplement the FAP grid repre-
sentation of the support graph with other representations. One way to obtain a
compact support graph representation is to maintain only an overapproximation of
the actual support graph. This will not lead to wrong results, only to unnecessary
work during recalculation.

Such an approximation may be needed in any case due to various highly dynamic
features of spreadsheet programs. In particular, the functions HLOOKUP and VLOOKUP
are used to search for a given value in a range, and the function INDEX is used to

§4.8 Limitations and challenges 79

retrieve a cell from a range given row and column. The exact dependencies are
determined by the given value or the given row and column number, so to obtain a
static support graph, one needs to make an (easy) overapproximation: Every cell in
these functions’ range argument supports the cell in which the function is used.

Similar problems are caused by functions such as COUNTIF and SUMIF, whose
second argument is a string that dynamically gets interpreted as a formula, as
in COUNTIF(A1:A10000, "> 42"). Fortunately it seems that (in Excel) the formula
string cannot contain a reference to a cell. Since such a cell might contain any
string denoting any formula, it would potentially make the COUNTIF cell dependent
on the entire sheet. Thanks to this restriction, it is safe to assume that a COUNTIF
function application depends only on its first argument, which is a cell area. It
would be a much better design to provide a function object rather than a text as the
second argument, and preferably a sheet-defined one, see chapter 6.

80 Limitations and challenges §4.8

Chapter 5

Runtime code generation

In the CoreCalc spreadsheet implementation described in chapter 2, a spreadsheet
formula is compiled to an abstract syntax tree, which can then be evaluated by
calling its Eval method. This interpretive approach is easy to implement and ex-
periment with, but performance suffers from the repeated dispatch on the abstract
syntax, and from the need to wrap floating-point results as NumberValue objects
(section 2.7) which in turn necessitates their unwrapping. In particular the allo-
cation of very many small (NumberValue) objects may cause serious runtime over-
head.

Performance can be considerably improved by compiling formulas to the abstract
machine code for the .NET platform, called the Common Intermediate Language or
CIL [52]. This avoids the interpretive overhead, and furthermore offers the oppor-
tunity to avoid allocating many of the intermediate NumberValue objects. Compi-
lation of formulas to CIL can be thought of as a kind of specialization or partial
evaluation [46] of the Expr class’s Eval methods (section 2.6) with respect to the
formula.

In fact, the ability to perform runtime code generation (RTCG) for formulas was
a design goal when CoreCalc was created in 2005, and this is the real reason for
the design of sharable expressions (section 2.8) and for preserving sharing at row or
column insertions (sections 2.16 and 2.17). Runtime code generation is expensive in
time and memory, and we want to share that expense among all virtual copies of a
formula.

This chapter summarizes findings from the MSc thesis of Thomas S. Iversen [45]
written at DIKU, University of Copenhagen, on runtime code generation for efficient
spreadsheet implementation. Thomas Iversen’s implementation, called TinyCalc,
extended the CoreCalc code-base with runtime code generation, and with some other
interesting facilities that have been merged back into CoreCalc.

81

82 Runtime code generation levels §5.1

5.1 Runtime code generation levels

To gradually approach the problem of compiling formulas to intermediate code,
Thomas Iversen defined progressive levels of runtime code generation as shown
in figure 5.1. The definition of increasing levels of code generation aggressiveness
also permitted a study of which optimizations actually improved performance, for
different kinds of sheets and formulas. The remainder of this section describes the
RTCG levels, and section 5.2 report on their performance impact.

Level Description
0 Interpretive evaluation of formulas as described in chapter 2.
1 Generate one code fragment per subexpression; so three for A1+A2.
2 Inline subexpression code fragments; so one for A1+A2.
3 As Level 2, and also performs generation time type analysis.
4 As Level 3, and also avoids creating intermediate Value objects.
5 As Level 4, and also inlines constant values.
6 As Level 5, and also avoids generating stloc followed by ldloc.
7 As Level 5 (not 6), and also applies type analysis to cell references.
8 As Level 7, and also avoids generating dead branches in conditionals.
9 As Level 8, and also specializes spreadsheet built-in functions.

Figure 5.1: Code generation levels in TinyCalc; 8 and 9 are not implemented.

5.1.1 Calling the generated code

Generated CIL code must be enclosed in methods that must be called somehow.
Since a method generated from a spreadsheet formula is likely to be small, it is
important that generated functions can be called efficiently. Previous experiments
have shown that interface method calls are markedly faster than delegate calls on
the .NET platform version 1 as well as 2 [80], and Thomas Iversen’s experiments
have confirmed this [45, section 5.5.1].

This makes code generation via the DynamicMethod class (introduced in .NET
2.0) less attractive, since such code must be called through delegate calls. On the
other hand, to generate methods that can be called via interface calls, one needs
to generate many classes, and experiments show that the time to do so increases
quadratically with the number of classes [45, section 5.2.2]. This indicates that the
.NET runtime uses a poor algorithm or data structure internally somewhere.

Nevertheless, the experiments were conducted by generating code that can be
called through interface calls.

5.1.2 The code generation levels

Level 1 mainly serves to develop the infrastructure for code generation and to check
that things work at all; the resulting code performs too many method calls to be of

§5.1 Runtime code generation levels 83

practical interest, and no Level 1 performance results are reported below.
Level 2 code generates a special Eval method for each expression in cells, shared

between all virtual copies of that expression. The generated function has the same
header as the Eval method of the Expr class:

Value Eval(Sheet sheet, int col, int row) { ... }

Calling this method evaluates the formula at a given cell, specified by sheet, column
and row.

Level 3 additionally performs a type analysis while generating the CIL code,
thus sometimes avoiding result value tests. For instance, the expression (5+6)+7
gives rise to the Level 3 code [45, Example 9] shown below, in which the objects
representing the constants are inlined. In reality, CIL code is generated, but for
clarity we show corresponding C# pseudocode:

Value Eval(Sheet sheet int col, int row) {
NumberValue v0 = <constant5>.Value;
NumberValue v1 = <constant6>.Value;
NumberValue v2 = new NumberValue(v0.value + v1.value);
NumberValue v3 = <constant7>.Value;
return new NumberValue(v2.value + v3.value);

}

Level 4 works like Level 3 but attempts to avoid creating intermediate NumberVal-
ues when possible. At Level 4, the expression (5+6)+7 is compiled to this code [45,
Example 10] which avoids wrapping the sum v2 of 5 and 6 as a NumberValue:

Value Eval(Sheet sheet int col, int row) {
NumberValue v0 = <constant5>.Value;
NumberValue v1 = <constant6>.Value;
double v2d = v0.value + v1.value;
NumberValue v3 = <constant7>.Value;
return new NumberValue(v2d + v3.value);

}

Level 5 extends Level 4 by inlining constants, so that one can treat them as double
and String values rather than NumberValue and TextValue objects. At Level 5,
the expression (5+6)+7 is compiled to this code [45, Example 11], whose execution
creates only one NumberValue object:

Value Eval(Sheet sheet, int col, int row) {
double v0d = <constant5>.Value.value;
double v1d = <constant6>.Value.value;
double v2d = v0d + v1d;
double v3d = <constant7>.Value.value;
return new NumberValue(v2d + v3d);

}

84 Performance measurements §5.2

Level 6 attempts to improve on Level 5 by generating better CIL code. What is not
obvious from the above pseudo-code is that Level 5 uses many local variables and
frequently generates instruction sequences such as stloc followed by ldloc, where
a value is stored to a local variable only to immediately be reloaded from that local
variable. Instead Level 6 aims to use the CIL stack. In practice this rarely improves
performance (and sometimes worsens it) because the .NET runtime system’s just-
in-time compiler can optimize such apparently suboptimal code itself.

Level 7 improves on Level 5 (not 6) by performing a form of inter-cell type anal-
ysis, in contrast to Level 3 which only performs an intra-cell type analysis. Thus
the correctness of the generated code is dependent on the types of referred-to cells
remaining the same. If the contents of a referred-to cell is changed, then new code
must be generated for the referring cells. The prototype implementation does not
include code to do this.

5.2 Performance measurements

Thomas Iversen made many performance measurements with TinyCalc, primarily
to study the potential of runtime code generation. However, he included also three
“real” spreadsheet implementations in the measurements, namely OpenOffice, Gnu-
meric, and Microsoft Excel. This throws some light on CoreCalc performance, since
TinyCalc level 0 is essentially CoreCalc.

5.2.1 Some performance results

The first measurement recalculates 262144 copies of the formula =SIN(A1). The
recalculation times are shown in figure 5.2. What is remarkable is that TinyCalc
level 0, and hence CoreCalc, outperform all other spreadsheet implementations,
although written in a managed language where the others are written in C, C++
and possibly assembly language. Also, it is clear that runtime code generation is
not at all useful for a formula that simply calls a built-in function.

The second measurement concerns the evaluation of the first 14 terms of the
Taylor series for ex, when x is the value of cell A1:

1
1

+
A1
1

+
A1 ·A1

2 ·1
+

A1 ·A1 ·A1
3 ·2 ·1

+ · · ·+
A1 · . . . ·A1

14 ·13 · . . . ·2 ·1
(5.1)

A total of 131072 copies of this formula was made, and recalculation time for the
workbooks was measured. The results are shown in figure 5.3. Again CoreCalc
comfortably outperforms Gnumeric and OpenOffice, but not Excel. Runtime code
generation removes a considerable amount of overhead, and TinyCalc at the most
aggressive level of optimization outperforms Excel.

The third measurement is similar, but now the denominators are made up of cell
references also:

1
1

+
A1
B1

+
A1 ·A1
B2 ·B1

+
A1 ·A1 ·A1
B3 ·B2 ·B1

+ · · ·+
A1 · . . . ·A1

B13 ·B12 · . . . ·B2 ·B1
(5.2)

§5.2 Performance measurements 85

Figure 5.2: Evaluating mathematical function with reference argument. From [45].

Figure 5.3: Evaluating Taylor series in equation 5.1. From [45].

86 Performance measurements §5.2

The recalculation times for 131072 copies of this formula are shown in figure 5.4.
CoreCalc outperforms OpenOffice and Gnumeric, and the most aggressive RTCG
level gives performance comparable to that of Excel.

Figure 5.4: Evaluating Taylor series equation 5.2. From [45].

In the fourth measurement, each denominator simply refers to a cell in which
the factorials are computed:

1
1

+
A1
B1

+
A2
B2

+
A3
B3

+ · · ·+
A13
B13

(5.3)

The recalculation times for 131072 copies of this formula are shown in figure 5.5.
Again, CoreCalc outperforms OpenOffice and Gnumeric, but even the most aggres-
sive RTCG level is 1.7 times slower than Excel.

5.2.2 Performance results for cell area arguments

In all the preceding measurements, the dependency chains were short, and the num-
ber of direct dependencies was linear in the number of non-null cells. The fifth
measurement combines long dependency chains and a large number of direct de-
pendencies, obtained by using the formula SUM(A1:A1), as outlined in figure 5.6.
The resulting sheet has dependency chains of length up to 12 287, and the SUM for-
mulas induce 12 288 ·12 289/2 = 75 503 616 direct dependencies. A recalculation after
a change to A1 requires 12287 multiplications and 12287 ·12288 = 75491328 additions.

The recalculation times for the sheet in figure 5.6 are shown in figure 5.7. Here
TinyCalc level 0 and hence CoreCalc perform much worse than in previous mea-
surements, although still better than Gnumeric.

§5.2 Performance measurements 87

Figure 5.5: Evaluating Taylor series in equation 5.3. From [45].

A B
1 0.5 =SUM(A$1:A1)
2 =A1*1.00001 =SUM(A$1:A2)
3 =A2*1.00001 =SUM(A$1:A3)

.
12288 =A12287*1.00001 =SUM(A$1:A12288)

Figure 5.6: A sheet with long dependency chains and sum functions.

Figure 5.7: Evaluating a sheet with long dependencies and sum functions, using the
default (heavy) matrix result representation in TinyCalc. From [45].

88 Performance measurements §5.2

The reason is that CoreCalc implements function calls such as SUM(A$1:A12288)
in an overly general way. The cell area argument evaluates to a two-dimensional
array of type Value[,], each element of which contains a reference to a NumberValue
object representing the value of a spreadsheet cell. This allows a matrix to contain
a mixture of numbers and matrices, which may in turn contain matrices and so on.
However, allocating 12288 Value[,] arrays and 75.5 million NumberValue objects is
slow.

To get a better impression of the benefits that can be obtained by runtime code
generation, Thomas Iversen made prototype implementations of two leaner mecha-
nisms for evaluating cell area arguments. Two alternative implementations of ag-
gregate functions (such as SUM and AVG) were implemented, each with several levels
of code generation aggressiveness, here called MLevels, shown in figure 5.8.

MLevel FASTSUM DOUBLESUM

0 Interpretive as in CoreCalc Interpretive as in CoreCalc
2 IL code, inline argument evaluation IL code
3 MLevel 2 plus inline addition MLevel 2 plus inline addition
4 MLevel 3 plus offset calculations

moved outside of the loops
(Not implemented)

5 MLevel 4 plus assume non-null cells
contain numbers

(Not implemented)

6 MLevel 5 plus eliminate virtual calls (Not implemented)

Figure 5.8: Runtime code generation levels for matrix arguments in TinyCalc.

The DOUBLESUM representation assumes that the formulas of a cell area contain
only numbers, and replaces the Value[,] result representation with double[,]. It
therefore avoids allocating 75.5 million NumberValue objects and thereby halves
the TinyCalc recalculation time, although it still allocates 12288 arrays of doubles;
see figure 5.9.

The FASTSUM representation returns the result of the cell area argument as a
view of rectangular area of a sheet, represented as a triple (sheet, ulCa, lrCa)
of the sheet and the upper left and lower right corners of the area. This further
reduces the MLevel 0 recalculation time for TinyCalc so that it is faster than both
Gnumeric and OpenOffice, but still 3.4 times slower than Excel. Only by further
inlining the addition operation (MLevel 3), by moving loop-invariant code (MLevel
4), by assuming cells are well-typed (MLevel 5), and by eliminating a virtual call
to the Sheet indexer’s get accessor (MLevel 6), TinyCalc reaches roughly the same
speed as Excel, which really shines in this benchmark.

5.2.3 Discussion of results

In conclusion, the above measurements show that already TinyCalc level 0, and
hence the baseline implementation of CoreCalc, is usually faster than open source
spreadsheet implementations such as Gnumeric and OpenOffice. Moreover, for com-

§5.2 Performance measurements 89

LongReferenceChainsFastsum

107000

56917

14468

14685

9421

8978

8373

4403

4285

Evaluation time (ms)

Gnumeric

TinyCalc SUM −− Level 0

TinyCalc FASTSUM −− Level0

TinyCalc FASTSUM −− Level2

TinyCalc FASTSUM −− Level3

TinyCalc FASTSUM −− Level4

TinyCalc FASTSUM −− Level5

TinyCalc FASTSUM −− Level6

Excel (FullCalculation)

Figure 5.9: Evaluating a sheet with long dependencies and sum functions, using
lean matrix result representations in TinyCalc. From Iversen [44].

plex formulas, runtime code generation can provide considerable speed-ups, often
giving recalculation times comparable to those of Excel.

The main exception is functions that take cell areas or matrices as arguments,
whose relatively poor performance can be attributed to two factors. The first factor
is that the representation of argument values in TinyCalc and CoreCalc is overly
general. But even when restricting to a more standard representation, the best
result is only within a factor of two of Excel. Thus there must be a second factor,
which may be that Excel uses the “bare” IEEE754 number representation instead
of an object-oriented representation of runtime values; see section 5.3.

A tentative conclusion from Thomas Iversen’s experiments is that a spreadsheet
program can be implemented as managed code (C#) while roughly maintaining the
speed of a highly engineered and widely used commercial spreadsheet implemen-
tation written in C or C++. Runtime code generation to the .NET intermediate
language seems to offer nearly the same advantages as runtime generation of x86
machine code — something we believe Excel uses, see section 5.3 below.

Note, however, that the benchmark examples used above represent a form of
“worst case” examples for Excel, OpenOffice and Gnumeric. Namely, in each recal-
culation, every single formula had to be recalculated because all cells transitively
depend on the cell that was changed. It is likely that Excel, and perhaps also Gnu-
meric and OpenOffice, have some way of recalculating only those cells that depend
on the changed cell (and cells containing calls to volatile functions). CoreCalc and
TinyCalc currently do not, and so may perform much worse than the others when

90 Related work §5.3

only a fraction of all cells depend on the changed ones. Section 3.3 and chapter 4
discuss how CoreCalc could be enhanced to limit recalculation to those cells that
actually depend on changed or volatile cells.

Another mystery is the high time consumption of Excel’s CalculateFullRebuild
(called FullCalculationRebuild in this section’s figures), which rebuilds a depen-
dency tree for the workbook; see section 3.3.5.

5.3 Related work

Runtime code generation from spreadsheet formulas is not a new idea, as shown
by the Schlafly patents, numbers 194 and 213 in appendix A, which we discovered
after doing the work presented above. The patents describe the generation of x86
machine code from spreadsheet formulas, were originally assigned to Borland, and
were presumably exploited in Borland’s QuattroPro spreadsheet. A remarkable fea-
ture of the patents is that they exploit the NaN values of the IEEE754 floating-point
representation to avoid any wrapping of runtime values.

It is plausible that a similar runtime code generation technique and value rep-
resentation is used in Excel but not Gnumeric and OpenOffice, and that that ac-
counts for the considerable speed advantage of Excel. Moreover, Schlafly’s patent
states that the runtime code generation technique is not used when formula con-
tains transcendental functions such as SIN. This might explain how, without any
use of runtime code generation, TinyCalc level 0 and hence CoreCalc can outper-
form Excel on the formula =SIN(A1), as shown in figure 5.2.

Chapter 6

Sheet-defined functions

Simon Peyton Jones, Alan Blackwell and Margaret Burnett proposed in a 2003 pa-
per [70] and in patent application 91 that user-defined functions should be definable
as so-called function sheets using ordinary spreadsheet formulas. Their goal was to
allow “lay” spreadsheet users to define their own functions without forcing them to
use a separate programming language such as VBA. Rather, functions should be
definable using familiar concepts such as sheets, formulas, references, and so on. To
accommodate sheet-defined matrix functions, a spreadsheet cell should be allowed
to contain an entire matrix. These ideas are the subject of a patent application,
number 91 in appendix A, by the same authors.

Rather similar ideas seem to be incorporated in Nuñez’s Scheme-based spread-
sheet system ViSSh [64, section 5.2.2], subject of his 2000 MSc thesis. However,
ViSSh generalizes and modifies the spreadsheet paradigm in many other ways and
would not appear familiar to most Excel users. Hence it would possibly fail some of
the design goals of Peyton Jones et al.

6.1 Sheet-defined functions based on CoreCalc

Daniel S. Cortes and Morten W. Hansen [20] in their MSc thesis written at the IT
University of Copenhagen set out to further elaborate and implement the concept of
sheet-defined functions. This section summarizes findings from that project.

The project proceeded by developing four prototypes, described in the subsections
below. All are based on a version of the CoreCalc code base.

6.1.1 Prototype 1: Atomic values, fixed argument count

• Allow the creation of a function sheet. The declaration of a function sheet
named F must state in a named range F_signature which function sheet cells
hold the function’s arguments and which cell holds its result.

• Allow import of formulas and so on from other sheets.

91

92 Sheet-defined functions based on CoreCalc §6.1

• Allow definition of functions that have a fixed number of arguments, where
the argument values are atomic (number or text) and where the result value
is atomic.

6.1.2 Prototype 2: Atomic values, variable argument count

• Allow definition of functions that have a variable number of arguments (the
number being known only when the function is called), with argument values
and the result value being atomic.

• Allow function sheets to contain references to other sheets in the workbook.

• Allow non-strict argument passing, so that function arguments are evaluated
only if actually referred by the sheet-defined function, as for the built-in func-
tion IF.

6.1.3 Prototype 3: Matrix values

• Allow definition of matrix functions, whose argument values and result value
may be atomic or matrices. A matrix argument is passed as a single object in
a cell of the function sheet.

6.1.4 Prototype 4: Recursive and higher order functions

• Allow the definition of function sheets that can invoke themselves recursively.
This is a natural fit for the declarative computation model of spreadsheets
and fairly easy to implement. Peyton Jones et al. [70] consider that recursive
sheets should not be permitted, as they would cause confusion when inspecting
call relations between function sheets; Cortes and Hansen proposes using a
call stack metaphor to avoid such confusion.

• Allow a formula to evaluate to a function object. A formula, such as =SIN, that
simply mentions a function will evaluate to a function object. Moreover, there
is a new built-in function BIND to create function closures by binding the first n
arguments of a given function. For instance, BIND(POWER, 3) evaluates to the
function y 7→ 3y. The resulting function object can be invoked using another
built-in function, CALL, on the function object and the remaining arguments.
The defining equation is that CALL(BIND(f ,e1, . . . ,em), em+1, . . . ,en) computes
the same value as f(e1, . . . ,en).

• Allow the definition of higher order functions by function sheets. That is, al-
low argument values and result value to be function objects. This goes well
together with matrix functions, because higher-order functions such as map
and fold can naturally be used to process matrix rows and columns.

§6.2 Sheet-defined functions within Excel 93

6.1.5 Summary of Cortes and Hansen’s work

The thesis report of Cortes and Hansen [20] demonstrates the utility of all four
prototypes by application case studies, mostly actuarial computations relevant to
the life insurance business. In all cases, sheet-defined functions led to conceptual
and practical simplifications.

The prototype implementations do not provide a user interface for defining func-
tion sheets. Instead, function sheets can be defined in Excel, exported in XMLSS
format, and imported into the prototype implementations. When defining a func-
tion F, the defining sheet must be called @F, and the function’s signature, which
specifies the argument and result cells, must be given in a named range called
F_signature. This simple mechanism works very well, but should be replaced by
a more integrated user interface in a realistic implementation. However, the inter-
nal machinery for evaluation of sheet-defined functions is complete enough to run
substantial examples.

In summary, the thesis by Cortes and Hansen shows that sheet-defined functions
can be added in a natural way to spreadsheet programs while maintaining their
familiar look and feel.

6.2 Sheet-defined functions within Excel

As an alternative to using the CoreCalc codebase, Quan Vi Tran and Phong Ha
investigated how to implement function sheets using the infrastructure provided by
Microsoft Excel [40]. This section summarizes their work.

6.2.1 Implementation approach

Tran and Ha created a plug-in for Excel that allows users to define functions using
ordinary Excel sheets, and to call them as if they were defined as macros using VBA.
Other Excel macros would evaluate and copy the function’s arguments to designated
input cells in the function sheet, evaluate the sheet, and copy back the result.

However, this task turned out to be needlessly complicated because of restric-
tions imposed by Excel. Those restrictions mean that a VBA-defined function cannot
have side effects such as updating cells in a different sheet, and conversely, VBA-
defined macros, that can have such side effects, cannot be called from spreadsheet
formulas. The restrictions themselves are sensible as they prevent VBA-defined
functions from undermining the Excel recalculation strategy. However, the restric-
tions can be circumvented using so-called events, and events can be used in a rather
roundabout and non-trivial way to achieve what is outlined above.

The implementation exploits that spreadsheet formulas are side effect free and
uses a form of memoization, building a cache of (argument, result) pairs for the
sheet-defined function. Apparently this is necessary to correctly evaluate a formula
that contains nested calls to sheet-defined functions; the implementation will eval-
uate such formulas multiple times.

94 Summary of sheet-defined functions §6.3

6.2.2 Summary of Tran and Ha’s work

In Tran and Ha’s work, a functioning implementation was built, which could demon-
strate the definition and use of sheet-defined functions within Excel, but bench-
marks showed that the implementation is considerably slower than calling func-
tions defined using VBA. The overhead is most likely due to the complicated means
needed to circumvent restrictions in Excel.

6.3 Summary of sheet-defined functions

From this chapter we conclude that the concept of sheet-defined function [70] holds
considerable promise in modularizing spreadsheet applications and making them
more reusable and maintainable. Also, users without programming background are
reported to find the concept natural and attractive.

The work of Cortes and Hansen presented in section 6.1 shows that a coherent
design for sheet-defined functions can be implemented on top of the CoreCalc code
base and can be applied to real-world problems.

The work of Tran and Ha presented in section 6.2 shows that although most of
the necessary machinery for implementing sheet-defined functions must be present
inside Excel, it is complicated and inefficient to do so using only Excel’s public func-
tion interfaces.

Chapter 7

Extensions and projects

This chapter lists possible extensions to CoreCalc, and projects that could be under-
taken based on CoreCalc.

7.1 Moving and copying cells

• Check that a formula about to be edited, or about to be cut (Ctrl-X), or about
to be copied into or pasted into, is not part of a matrix formula.

• Before copy and move operations on a cell or cell area, one can inspect the
cell or the cell area’s border cells for matrix formulas; if any matrix formula
straddles the border, the copy or move should be rejected.

• Before row or column insertion, check whether the insert would split a matrix
formula, and reject the operation in that case.

• Before a row or column deletion, one should check whether the deletion would
affect a matrix formula, and reject it in that case.

• Moving of formulas is not fully implemented: The adjustment of references
previously to the donor cell has not been implemented. Implementing it should
preserve the sharing of virtual copies of formulas.

• Maybe implement a general sharing-preservation mechanism (hash-consing
style) instead of handling all the cases individually?

7.2 Evaluation mechanism

• Add new “efficient” specialized subclasses to Expr. For instance, arithmetic
operators such as + could be represented by separate classes rather than the
general FunCall class, thus avoiding argument array creation, delegate calls
and other runtime overhead.

95

96 Additional functions §7.4

• Also, one could perform type checks while building such specialized expression
representations, thus avoiding the overhead of building NumberValue wrap-
pers and allocating them.

• However, inter-cell type checks arising from this would require invalidation
of such an “efficient” expression when cells that it depends on are edited to
contain a different type of value. An explicit support graph would enable the
system to efficiently find the cells possibly affected by such an edit operation.

• The support graph enables further optimizations to the evaluation mecha-
nism, see section 4.7. Assuming an acyclic support graph, one can schedule
recalculation so that the evaluation of each cell can assume that any cell it
refers to has already been evaluated. This means that the generated code can
avoid some checks, which would seem to open new opportunities for inlining
and generation of efficient (real) machine code at the JIT compiler level.

• Implement support for very large but sparse sheets. For instance, instead of
using a single two-dimensional array of cells, use a more clever data structure.

• We should have more benchmarks on more realistic workbooks, containing a
richer mixture of dependency types and dependency directions.

• Consider multiprocessor recalculation for spreadsheets. Shared memory mul-
tiprocessors (SMP) are become very widespread on desktops, but also Cell-
style multiprocessor machines, and even FPGA-based “soft hardware” archi-
tectures would be interesting to exploit [51]. It is much easier to implement a
spreadsheet on such hardware than it is to implement general programs writ-
ten in C, C++, Fortran, Java, C# or similar. In particular, an explicit support
graph could help scheduling of operations, whether to avoid lock contention on
standard SMP or scheduling on an FPGA.

7.3 Graphical user interface for CoreCalc

• Add support for key-based navigation, and for using arrow keys or mouse
pointing to mark cells or areas.

• Make the user interface more complete, to support more of the non-patented
features from Microsoft Excel. Test it systematically.

7.4 Additional functions

7.4.1 Reflective functions

Most spreadsheet programs have reflective capabilities, via so-called “spreadsheet”
functions. For instance, INDEX(A10:C13; r; c) returns the value of row r column c of
the cell area A10:C13. Some of these functions, such as ROWS(C7), are subtler than

§7.4 Additional functions 97

in Excel or OpenOffice because in CoreCalc a cell reference C7 may refer to a cell
that contains a formula A1:B2 whose value is a matrix. In this case one would need
to evaluate the argument expression C7, but does one need to evaluate the A1:B2
cellarea also? That would create a circularity in case the ROWS(C7) formula is in
one of the cells in A1:B2 – but in Excel and OpenOffice it does not. Avoiding this
strictness would require a different recalculation mechanism than the one we have
now.

7.4.2 Additional function-related built-in functions

Additional built-in functions may be just first-order, in which case fun below must
be the name of a function, or higher-order, in which case fun may be any expression
that evaluates to a function value. Some possible function-related built-in functions:

• Add to CoreCalc some of the higher-order function machinery implemented by
Cortes and Hansen (section 6.1.4).

• MAP(fun, e0) applies fun to e0 and produces a result of the same shape as e0:
matrix-valued if e0 is matrix-valued etc. Prerequisites: fun is a one-argument
function, and may be matrix-valued.

• MAP2(fun, e0, e1) which applies fun to corresponding pairs of values of e0 and
e1, producing a result of the same shape as them; matrix-valued if value of e0
is matrix-valued etc. Prerequisites: fun is a two-argument function and may
be matrix-valued, and the values of e0 and e1 have the same shape.

• FOLD(fun, e0, e1) folds fun over e1 with e0 as starting value. Prerequisites:
fun is a two-argument function and may be matrix-valued, the value of e1 is
a matrix of values of the same type as e0. Built-in functions SUM and PRODUCT
could be defined using FOLD over (PLUS, 0) and (TIMES, 1) respectively.

• FMATRIX(fun, cols, rows) returns a cols-by-rows matrix each of whose ele-
ments are produced by applying fun to pairs (c,r) of column numbers and row
numbers c = 1, . . . ,cols and r = 1, . . . ,rows; where cols and rows must be non-
negative.

7.4.3 Additional matrix functions

• VMATRIX(e0, cols, rows) returns a cols-by-rows matrix all of whose elements
equal the value of e0; where cols and rows must be non-negative.

• INDEX(e0, e1, e2) returns the value in column e1 row e2 of e0. Prerequisites:
e0 is matrix-valued and e1 and e2 are number-valued. Could extend this to
work also when e1 and e2 are one-dimensional matrices of columns or rows.

INDEX(VMATRIX(v,c,r),1,1) is the same as v. INDEX(FMATRIX(fun,c,r),1,1) is
the same as APPLY(fun,1,1).

98 Other project ideas §7.5

• COLINDEX(e0, e1) returns column number e1 of e0. Prerequisites: e0 is matrix-
valued and e1 is number-valued. Could extend this to work also when e1 is a
one-dimensional matrix.

• ROWINDEX(e0, e1) returns row number e1 of e0. Prerequisites: e0 is matrix-
valued and e1 is number-valued. Could extend this to work also when e1 is a
one-dimensional matrix.

• HCAT(e0, ..., en) horizontally concatenates the values v0...vn of the argu-
ments (side-by-side), returning a matrix value. Each ei must either evaluate
to an atomic value or to a matrix value. All matrix values among v0...vn
must have the same number of rows. An atomic value among v0...vn will be
replicated to make a one-column matrix with that number of rows.

• VCAT(e0, ..., en) horizontally concatenates the values v0...vn of the argu-
ments (one atop the next one), returning a matrix value. Each ei must either
evaluate to an atomic value or to a matrix value. All matrix values among
v0...vn must have the same number of columns. An atomic value among
v0...vn will be replicated to make a one-row matrix with that number of
columns. This can be used to add a new constant row to a matrix.

7.5 Other project ideas

• Formalize a semantics for spreadsheets. Such a formalization should probably
include a logical specification of sheet (and workbook) consistency after recal-
culation, as well as a more operational specification of what actions must lead
to a recalculation. The semantics should avoid modelling how recalculation
is performed, leaving the implementation as much latitude in this respect as
possible.

• Implement a version of CoreCalc that exploits the IEEE floating-point number
representation, and especially the NaNs, in a way similar to Schlafly’s patents
(numbers 194 and 213) to avoid object wrapping of values. Investigate whether
this can be made compatible with (a) matrix-valued functions, (b) runtime-
time bytecode generation in Chapter 5, and (c) sheet-defined functions as in
Chapter 6.

• Augment the CoreCalc source code with non-null specifications, exception spec-
ifications, invariants, and pre- and post-specifications using Spec# [83].

• Implement import of other workbook formats, such as Open Document Format
[34] or Office Open XML (see Ecma [28] TC45).

• To handle named sheets, add a Dictionary<String,Sheet> to class Workbook.

• To handle (absolute) named cells and cell areas as in Excel and OpenOffice,
add a Dictionary<String,CellAddr> or Dictionary<String,Pair<CellAddr,CellAddr>>
mapping to class Sheet.

§7.5 Other project ideas 99

• Could a cell contain an actual sheet, complete with formulas, or just a formula
that happens to be matrix valued? The latter would seem sufficient if new
(matrix) functions can be defined by the user as sheets.

• Add serious matrix functions. Maybe using code from Lutz Roeder’s Mapack
for .NET [73]. That code has SVD but seems somewhat old and untested,
although it could at least be used for a sanity check of other implementations.
Or maybe from Christoph Rüegg’s developing Math.Net project [78]. Another
possibility is to port something from the CERN Colt library for Java [18], or
check out other Java code at NIST Java Numerics [65].

• Add serious statistics functions, presumably by translating Java code from the
CERN Colt library [18], other Java code at NIST Java Numerics [65], or code
from Statlib. Consider also the results of McCullough’s comparison between
Excel and Gnumeric statistical functions [55].

• Implement a good GOAL.SEEK function to perform numerical equation solving,
that is, find zeroes of functions. This makes it possible to design sheets that
have non-trivial computational demands, because GOAL.SEEK is likely to evalu-
ate the object function a many times before arriving at a result.

• Find or implement a good SOLVE function to perform optimization in multiple
dimensions. Linear programming, possibly bounded optimization problems,
possibly non-linear problems, and possibly integer problems. This makes for
sheets that have high computational demands, and for which a support graph-
based minimal recalculation mechanism would be extremely valuable. Possi-
bly base it on the Java code from http://www1.fpl.fs.fed.us/optimization.html,
or directly on Fortran Minpack code from Netlib [62] that must then be trans-
lated to C#, or on some BFGS implementation.

• Consider how the recalculation in a spreadsheet could be staged [47]. For in-
stance one could choose a set of random parameters, such as the environment
of a simulated population, in the first stage (using RANDOM or similar). Then the
second stage may perform a large number of simulations, such as the growth
of the population, involving further random numbers, while keeping the stage
one environment parameters fixed. Currently there seems to be no obvious
mechanism for this in spreadsheet programs.

100 Other project ideas

Appendix A

Patents and applications

This is a list of US patents (numbered USnnnnnnn) and US patent applications (la-
bel USyyyynnnnnn) in which the word “spreadsheet” appears in the title or abstract.
Documents that were obviously not about spreadsheet implementation have been
omitted from the list, but probably some documents remain that only use spread-
sheets for some purpose. The list was created on 26 July 2006 by a search on Es-
pacenet [66], and is presented in reverse order of date of inclusion in the Espacenet
database. The date shown below is the date granted for patents, and the date of
submission for applications. Misspellings in document titles have been preserved.

The full text of the patent documents themselves can be obtained in PDF from
the European Patent Office [66] and in HTML from the US Patents and Trademarks
Office [87]. In both cases, simply do a “number search” using the patent number
USnnnnnnn or the patent application number USyyyynnnnnn.

Documents marked with an asterisk (*) are discussed in the main text. In most
cases we give a brief summary of each patent or patent application below. We take
no responsibility for the legal or technical correctness of those summaries.

1. Embedded ad hoc browser web to spreadsheet conversion control; US2006156221; 2006-
07-13. By Yen-Fu Chen , John Handy-Bosma and Keith Walker. A web browser plug-in
that allows any displayed HTML table to be turned into a spreadsheet component.

2. Method, system, and computer-readable medium for determining whether to reproduce
chart images calculated from a workbook; US2006136535; 2006-06-22. By Sean Boon,
application by Microsoft. Using a hash value of data to avoid re-creating a chart when
data are unchanged.

3. Method, system, and computer-readable medium for controlling the calculation of volatile
functions in a spreadsheet; US2006136534; 2006-06-22. By Sean Boon, application by
Microsoft. How to use time stamps to mostly avoid needless recalculation of volatile
functions that vary only slowly, such as TODAY().

4. Block properties and calculated columns in a spreadsheet application; US2006136808;
2006-06-22. By Joseph Chirilov and others; application by Microsoft. How to prescribe
properties, such as formatting, for blocks, where a block is a logical area of a spread-
sheet that grows or shrinks as rows and columns are added to or removed from it.

101

102 Patents and applications

5. System and method for automatically completing spreadsheet formulas; US2006129929;
2006-06-15. By Brandon Weber and Charles Ellis; application by Microsoft. Proposing
possible completiong of a partially entered formula, in the style of “intellisense” as
known from integrated development environments.

6. Method and system for converting a schema-based hierarchical data structure into a
flat data structure; US2006117251; 2006-06-01. By Chad Rothschiller, Michael McCor-
mack and Ramakrishnan Natarajan; application by Microsoft. Using schema-derived
layout rules to allocate the elements of an XML document to cells in a spreadsheet.

7. Method and system for inferring a schema from a hierarchical data structure for use in
a spreadsheet; US2006117250; 2006-06-01. By Chad Rothschiller and others; applica-
tion by Microsoft. Inferring a schema for XML data stored in a spreadsheet program.

8. System and method for performing over time statistics in an electronic spreadsheet en-
vironment; US2006117246; 2006-06-01. By Frederic Bauchot and Gerard Marmigere;
application by IBM. Computing statistics from a stream of values, appearing one value
at a time in a particular cell.

9. Importing and exporting markup language data in a spreadsheet application docu-
ment; US2006112329; 2006-05-25. By Robert Collie and others; application by Mi-
crosoft. Processing and using XML maps and XML schemas in a spreadsheet program.

10. Method for expanding and collapsing data cells in a spreadsheet report; US2006107196;
2006-05-18. By Lakshmi Thanu and others; application by Microsoft. Showing and hid-
ing subitems in a report, as generated by the subtotals and group-and-outline features
of Excel.

11. Method, system, and apparatus for providing access to asynchronous data in a spread-
sheet application program; US7047484; 2006-05-16. By Andrew Becker and others;
patent assigned to Microsoft. Protocol for reading and using external data streams
from a spreadsheet.

12. Spreadsheet application builder; US2006101391; 2006-05-11. By Markus Ulke, Kai
Wachter and Gerhild Krauthauf. Application development by drag-and-drop in a spread-
sheet style development environment.

13. Error correction mechanisms in spreadsheet packages; US2006101326; 2006-05-11. By
Stephen Todd; application by IBM. Introduces pairs of a referencing array and a bound
array. If a cell within a referencing array refers to some cell outside the corresponding
bound array, an error is signaled.

14. Embedded spreadsheet commands; US2006095832; 2006-05-04. By Bill Serra, Salil
Pradhan and Antoni Drudis; application by Hewlett-Packard. Store commands in the
comment fields of spreadsheet cells, and interpreting those commands as ties to exter-
nal events, thus making the spreadsheet update itself – for instance, when a signal
from an RFID device indicates that an item has been moved.

15. Method and apparatus for automatically producing spreadsheet-based models;
US2006095833; 2006-05-04. By Andrew Orchard and Geoffrey Bristow. A way to de-
scribe expandable formulas. Possibly similar ideas as in application 69 and Gencel
[31].

16. Program / method for converting spreadsheet models to callable, compiled routines;
US2006090156; 2006-04-27. By Richard Tanenbaum. Closely related to application 46.

17. Two pass calculation to optimize formula calculations for a spreadsheet; US2006085386;
2006-04-20. By Lakshmi Thanu, Peter Eberhardy and Xiaohong Yang; application
by Microsoft. How to efficiently access external data such as relational databases for
OLAP queries and similar.

Patents and applications 103

18. Method and system for enabling undo across object model modifications; US2006085486;
2006-04-20. By Lakshmi Thanu, Peter Eberhardy and Vijay Baliga; application by Mi-
crosoft. Improved undo mechanism using two stacks of acts.

19. Methods, systems and computer program products for processing cells in a spreadsheet;
US2006080595; 2006-04-13. By Michael Chavoustie and others. Describes a kind in-
lining of expressions from referred-to cells.

20. Methods, systems and computer program products for facilitating visualization of in-
terrelationships in a spreadsheet; US2006080594; 2006-04-13. By Michael Chavoustie
and others. Various ways to display parts of the dependency graph or support graph.

21. Design of spreadsheet functions for working with tables of data; US2006075328; 2006-
04-06. By Andrew Becker and others; application by Microsoft. Using database-style
queries on named tables in spreadsheets. Related to application 23.

22. One click conditional formatting method and system for software programs;
US2006074866; 2006-04-06. By Benjamin Chamberlain and others; application by Mi-
crosoft. Using logical conditions to control formatting of spreadsheet cells, and using
graphical components (such as histograms) in spreadsheet cells.

23. Method and implementation for referencing of dynamic data within spreadsheet for-
mulas; US2006069696; 2006-03-30. By Andrew Becker and others; application by Mi-
crosoft. Notation for referring to tables by symbolic name in spreadsheets, as well as
parts of tables and data computed from tables. Related to application 21.

24. * Method and system for multithread processing of spreadsheet chain calculations;
US2006069993; 2006-03-30. By Bruce Jones and others; application by Microsoft. De-
scribes multiprocessor recalculation of spreadsheet formulas, and as a side effect, also
describes a uniprocessor implementation, probably similar to that of Excel.

25. Graphically defining a formula for use within a spreadsheet program; US2006053363;
2006-03-09. By Christopher Bargh, Gregory Johnston and Russell Jones. How to call a
function defined using an external graphical tool.

26. Management of markup language data mappings available to a spreadsheet applica-
tion workbook; US7007033; 2006-02-28. By Chad Rothschiller and others; application
by Microsoft. Processing and using XML maps and XML schemas in a spreadsheet
program.

27. Logical spreadsheets; US2006048044; 2006-03-02. By Michael Genesereth, Michael
Kassoff and Nathaniel Love. A spreadsheet in which logical constraints on the values of
cells can be specified, and the values of cells can be set in any order, possibly restricting
or conflicting with values in other cells. Binary decision diagrams [12] would seem ideal
for implementing this in the case of discrete cell values.

28. Support for user-specified spreadsheet functions; US2006036939; 2006-02-16. Craig
Hobbs and Daniel Clay; application by Microsoft. Permits a user to define a function
with named parameters in a spreadsheet cell and call it from other cells. Calls have the
syntax F(funcell, "arg1name", arg1, ..., "argNname", argN). Within the function
cell, an argument is referred to using the expression R("argname").

29. Method, system, and apparatus for exposing workbooks as data sources; US2006024653;
2006-02-02. By Daniel Battagin and others; application by Microsoft. Appears related
to application 40.

30. Method and apparatus for integrating a list of selected data entries into a spreadsheet;
US2006026137; 2006-02-02. By Juergen Sattler and others. Appears related to appli-
cation 37.

104 Patents and applications

31. Sending a range; US2006020673; 2006-01-26. By Terri Sorge and others; application
by Microsoft. Facility in a spreadsheet program to extract data from a spreadsheet,
format it and automatically send it by email to an indicated recipient.

32. Method and system for presenting editable spreadsheet page layout view; US2006015804;
2006-01-19. By Kristopher Barton, Aaron Mandelbaum and Tisha Abastillas; applica-
tion by Microsoft. Indicating spreadsheet page layout while maintaining the ability to
edit sheets.

33. Transforming a portion of a database into a custom spreadsheet; US2006015525; 2006-
01-19. By Jo-Ann Geuss and others. Creating a spreadsheet from a database view.

34. Networked spreadsheet template designer; US2006015806; 2006-01-19. By Wallace
Robert. Plug-in for designing spreadsheet templates.

35. Client side, web-based spreadsheet; US6988241; 2006-01-17. By Steven Guttman and
Joseph Ternasky; assigned to IBM. Describes a spreadsheet that can be run in a
browser, permitting people collaborate and share spreadsheets on the web, and permit-
ting the sheet to use real-time data from the web (such as stock quotes). How similar
is Google’s recently announced web-based spreadsheet to this?

36. System and method for role-based spreadsheet data integration; US2006010118; 2006-
01-12. By Juergen Sattler and Joachim Gaffga. Closely related to application 37.

37. System and method for spreadsheet data integration; US2006010367; 2006-01-12. By
Juergen Sattler and Joachim Gaffga. Interfacing spreadsheet program with server
data, using access control. Closely related to application 37.

38. System and method for automatically populating a dynamic resolution list;
US2006004843; 2006-01-05. By John Tafoya and others; application by Microsoft.
Closely related to application 50.

39. Method and apparatus for viewing and interacting with a spreadsheet from within a
web browser; US2005268215; 2005-12-01. By Daniel Battagin and Yariv Ben-Tovim;
application by Microsoft. Using server-side scripts and a server-side spreadsheet en-
gine to generate HTML, possibly with scripts for inactivity, that when displayed in a
client-side browser will provide a spreadsheet user interface.

40. Method, system, and apparatus for exposing workbook ranges as data sources;
US2005267853; 2005-12-01. By Amir Netz and others; application by Microsoft. Ac-
cessing parts of a spreadsheet document using the same interface (such as ODBC) as
for a database.

41. Representing spreadsheet document content; US2005273695; 2005-12-08. By Jeffrey
Schnurr. Transmitting part of a spreadsheet to display it on a mobile device.

42. Worldwide number format for a spreadsheet program module; US2005257133; 2005-
11-17. By Marise Chan and others; application by Microsoft. Using locale metadata
to control the conversion from a numeric time value (as used in spreadsheet programs,
see section 2.13.3) to a displayed date appropriate for the user: month names, weekday
names, Gregorian or non-Gregorian calendar, and so on.

43. System and method for OLAP report generation with spreadsheet report within the
network user interface; US2005267868; 2005-12-01. By Herbert Liebl, Inbarajan Sel-
varajan and Lee Harold; application by Microstrategy. Presenting server-side enter-
prise data from an OLAP cube, using a spreadsheet interface on the client side.

44. Method and apparatus for spreadsheet automation; US2005273311; 2005-12-08. By
Robert Lautt and Zoltan Grose; application by A3 Solutions. Integrating spreadsheet

Patents and applications 105

models with enterprise data, to avoid inconsistent data, replication of work, manual
re-integration of spreadsheet models.

45. * Method for generating source code in a procedural, re-entrant-compatible program-
ming language using a spreadsheet representation; US2005188352; 2005-08-25. By
Bruno Jager and Matthias Rosenau. Describes a method to implement database queries
by compiling a spreadsheet to source code in a procedural language.

46. Program / method for converting spreadsheet models to callable, compiled routines;
US2005193379; 2005-09-01. By Richard Tanenbaum. How to compile spreadsheet
formulas to C source code. Closely related to application 16.

47. Reporting status of external references in a spreadsheet without updating;
US2005097115; 2005-05-05. By Jesse Bedford and others; application by Microsoft.
Closely related to applications 48 and 136.

48. Reporting status of external references in a spreadsheet without updating;
US2005108623; 2005-05-19. By Jesse Bedford and others; application by Microsoft.
Describes how to check existence of external workbooks and so on before attempting to
update links to them. Closely related to applications 47 and 136.

49. Method of updating a database created with a spreadsheet program; US2005149482;
2005-07-07. By Patrick Dillon; application by Thales. Ensuring the correctness of
database updates performed from a spreadsheet.

50. System and method for facilitating user input by providing dynamically generated com-
pletion information; US2005108344; 2005-05-19. By John Tafoya and others; applica-
tion by Microsoft. Dynamic input completion based on multiple data sources such as
sent and received emails, text documents and other spreadsheet files. Closely related
to application 38.

51. System and method for integrating spreadsheets and word processing tables;
US2005125377; 2005-06-09. By Matthew Kotler and others; application by Microsoft.
Closely related to applications 52, 56, 57, 58 and 63.

52. System and method for integrated spreadsheets and word processing tables;
US2005055626; 2005-03-10. By Matthew Kotler and others; application by Microsoft.
Closely related to applications 51, 56, 57, 58 and 63.

53. Spreadsheet fields in text; US2005066265; 2005-03-24. By Matthew Kotler and others;
application by Microsoft. Closely related to applications 54 and 55.

54. Spreadsheet fields in text; US2005044497; 2005-02-24. By Matthew Kotler and others;
application by Microsoft. Closely related to applications 53 and 55.

55. Spreadsheet fields in text; US2005044496; 2005-02-24 By Matthew Kotler and others;
application by Microsoft. Closely related to applications 53 and 54. Provide individual
text elements, such as a text field in an HTML forms, to have spreadsheet functionality:
formulas, references to other text elements, and recalculation.

56. System and method for integrating spreadsheets and word processing tables;
US2005050088; 2005-03-03. Closely related to applications 51, 52, 57, 58 and 63.

57. User interface for integrated spreadsheets and word processing tables; US2005034060;
2005-02-10. By Matthew Kotler and others; application by Microsoft. Closely related
to applications 51, 52, 56, 58 and 63.

58. User interface for integrated spreadsheets and word processing tables; US2005044486;
2005-02-24. By Matthew Kotler and others; application by Microsoft. Closely related
to applications 51, 52, 56, 57, and 63.

106 Patents and applications

59. Method and system for handling data available in multidimensional databases using
a spreadsheet; US2005091206; 2005-04-28. By Francois Koukerdjinian and Jean-
Philippe Jauffret. Extracting data from a database to create a local database, from
which a spreadsheet can then draw its data.

60. Storing objects in a spreadsheet; US2005015714; 2005-01-20. By Jason Cahill and
Jason Allen; application by Microsoft. A mechanism to store general objects (in addition
to numbers, texts and errors) in spreadsheet cells, and to invoke methods on them from
other cells. The objects may be external and the method calls performed using COM,
so this is probably a generalization of Piersol [71] and Nuñez [64]. Very similar to
patent 135.

61. Spreadsheet to SQL translation; US2005039114; 2005-02-17. By Aman Naimat and
others; application by Oracle. A form of query-by-example, where a model is developed
on sample database data within a spreadsheet program. Then the spreadsheet model
is compiled into SQL queries that can be run on the entire database, possibly through
a web interface.

62. Modular application development in a spreadsheet using indication values;
US2004225957; 2004-11-11. By Ágúst Egilsson. Closely related to application 130 and
patent 178.

63. User interface for integrated spreadsheets and word processing tables; US2004210822;
2004-10-21. By Matthew Kotler and others; application by Microsoft. General table
architecture providing spreadsheet functionality (formulas, recalculation and so on)
also within word processors and other programs, and permitting nested tables. Closely
related to applications 51, 52, 56, 57 and 58.

64. Code assist for non-free-form programming; US2005240984; 2005-10-27. By George
Farr and David McKnight; application by IBM. Suggesting completions while typing
data into a spreadsheet or similar.

65. System and method for schemaless data mapping with nested tables; US2005172217;
2005-08-04. By Yiu-Ming Leung ; application possibly by Microsoft. Handling and
displaying nested tables of data, as from an XML document, without the need for a
predetermined schema or XML map.

66. System and method for generating an executable procedure; US2005028136; 2005-02-
03. By Ronald Woodley. Generating C++ (or other) source code from spreadsheet data
(not formulas).

67. Methods of updating spreadsheets; US2005210369; 2005-09-22. By John Damm. How
to update a cell by tapping on it and/or selecting from a drop-down list, intended for
PDAs.

68. Clipboard content and document metadata collection; US2005203935; 2005-09-15. By
James McArdle; application by IBM. An enhanced clipboard collects information about
the source of clippings (date, time, source document, URL, or the like) so that such
metadata can be saved in the target document along with the pasted text or data.

69. System and method in a spreadsheet for exporting-importing the content of input cells
from a scalable template instance to another; US2005015379; 2005-01-20. By Jean-
Jacques Aureglia and Frederic Bauchot. Extended mechanism for copying and pasting
a range of cells between scalable templates. Is a “scalable template” somehow related
to the hex and vex groups of Erwig’s Gencel [31] system?

70. Method and system in an electronic spreadsheet for handling graphical objects refer-
ring to working ranges of cells in a copy/cut and paste operation; US2004143788; 2004-
07-22. By Jean-Jacques Aureglia, Frederic Bauchot and Catherine Soler; application

Patents and applications 107

possibly by IBM. Extended mechanism for copying and pasting a range of cells and
graphical objects.

71. Systems, methods and computer program products for modeling an event in a spread-
sheet environment; US2005102127; 2005-05-12. By Trevor Crowe; application by Boe-
ing. Event-driven computation in a spreadsheet program.

72. Compile-time optimizations of queries with SQL spreadsheet; US2004133568; 2004-
07-08. By Andrew Witkowski and others; application by Oracle. Closely related to
application 73.

73. Run-time optimizations of queries with SQL spreadsheet; US2004133567; 2004-07-08.
By Andrew Witkowski and others; application by Oracle. Efficient queries and recalcu-
lation in a spreadsheet drawing data from a relational data base; pruning; paralleliza-
tion; use of a dependency graph. Closely related to application 72. This looks like a
rather substantial patent application. **

74. Determining a location for placing data in a spreadsheet based on a location of the data
source; US2005097447; 2005-05-05. By Bill Serra, Salil Pradhan and Antoni Drudis;
application possibly by Hewlett-Packard. Handling streams of input values, as from
multiple external sensors, in a continually updated spreadsheet. Mentions “depen-
dency trees”. **

75. Visual programming system and method; US2005081141; 2005-04-14. By Gunnlau-
gur Jonsson; application by Einfalt EHF. Object-oriented software development from
spreadsheets. Seems related to Piersol [71].

76. Extension of formulas and formatting in an electronic spreadsheet; US2004060001;
2004-03-25. By Wayne Coffen and Kent Lowry; application by Microsoft. Closely re-
lated to patent 154.

77. Method and apparatus for data; US2005039113; 2005-02-17. By Corrado Balducci and
others; application by IBM. Transforming a spreadsheet into server-side components
(such as Java servlets) that generate HTML for spreadsheet display in a browser at
client-side.

78. System and method for cross attribute analysis and manipulation in online analytical
processing (OLAP) and multi-dimensional planning applications by dimension split-
ting; US2005038768; 2005-02-17. By Richard Morris; application by Retek. Manipu-
lating and displaying hierarchical multi-dimensional data.

79. Flexible multiple spreadsheet data consolidation system; US2005034058; 2005-02-10.
By Scott Mills and others; application by SBC Knowledge Ventures. Consolidating
multiple spreadsheets into one.

80. Method for generating a stand-alone multi-user application from predefined spread-
sheet logic; US2004064470; 2004-04-01. By Kristian Raue; application by Jedox GmbH.
Compiling a spreadsheet to web scripts (in PHP) supporting multi-user distributed ac-
cess.

81. System and method for formatting source text files to be imported into a spreadsheet
file; US2005022111; 2005-01-27. By Jean-Luc Collet, Jean-Christophe Mestres and
Carole Truntschka; application by IBM. Using a file format profile to guide the import
of text files into a spreadsheet program.

82. * Method in connection with a spreadsheet program; US2003226105; 2003-12-04. By
Mattias Waldau. Describes a system for compiling a spreadsheet to executable code for
a different platform, such as a mobile phone.

108 Patents and applications

83. Methods, systems and computer program products for incorporating spreadsheet for-
mulas of multi-dimensional cube data into a multi-dimentional cube; US2004237029;
2004-11-25. By John Medicke, Feng-Wei Chen Russell, and Stephen Rutledge. Con-
verting a spreadsheet formula into a query on multi-dimensional data.

84. Method of feeding a spreadsheet type tool with data; US2003212953; 2003-11-13. By
Jacob Serraf; application by Eurofinancials. Transmitting spreadsheet data on a net-
work.

85. Software replicator functions for generating reports; US2004111666; 2004-06-10. By
James Hollcraft. Specifying automatic replication of formulas to grow with data.

86. Method for automatically protecting data from being unintentionally overwritten in
electronic forms; US2003159108; 2003-08-21. By Gerhard Spitz. Rules for automati-
cally determining cells whose contents should be protected from overwriting.

87. Methods and apparatus for generating a spreadsheet report template; US2004088650;
2004-05-06. By Brian Killen and others; application by Actuate. Extracting data from
a relational database and creating reports in a spreadsheet program.

88. Thin client framework deployment of spreadsheet applications in a web browser based
environment; US2004181748; 2004-09-16. By Ardeshir Jamshidi and Hardeep Singh;
application by IBM. Client and server collaborating to support a browser-based spread-
sheet program.

89. Method and system for the direct manipulation of cells in an electronic spreadsheet
program or the like; US2003164817; 2003-09-04. By Christopher Graham, Ross Hunter
and Lisa James; application by Microsoft. Describes how keys and mouse can be used
to control whether insertion of cell blocks overwrite cells or add new rows and columns.
Implemented in Excel. Appears closely related to patent 206.

90. System, method, and computer program product for an integrated spreadsheet and
database; US2004103365; 2004-05-27. By Alan Cox. Integrating relational queries
in a spreadsheet program, so that a query can create and populate a new worksheet,
containing appropriately copied and adjusted formulas .

91. * User defined spreadsheet functions; US2004103366; 2004-05-27. By Simon Peyton
Jones, Alan Blackwell and Margaret Burnett; application by Microsoft. Describes the
concepts presented also in their paper [70].

92. System and method in an electronic spreadsheet for displaying and/or hiding range of
cells; US2003188259; 2003-10-02. Much the same as application 94.

93. System and method in an electronic spreadsheet for displaying and/or hiding range of
cells; US2003188258; 2003-10-02. Much the same as application 94.

94. System and method in an electronic spreadsheet for displaying and/or hiding range of
cells; US2003188257; 2003-10-02. By Jean-Jacques Aureglia and Frederic Bauchot;
application by IBM. Hiding and displaying cells in a multi-dimensional spreadsheet
program.

95. System and method in an electronic spreadsheet for copying and posting displayed
elements of a range of cells; US2003188256; 2003-10-02. By Jean-Jacques Aureglia
and Frederic Bauchot; application by IBM. Cell copy-and-paste in a multi-dimensional
spreadsheet when some cells of the source region are hidden.

96. System and method for editing a spreadsheet via an improved editing and cell selection
model; US2003051209; 2003-03-13. By Matthew Androski and others; application by
Microsoft. Detailed description of editing gestures in a spreadsheet program.

Patents and applications 109

97. System and method for automated data extraction, manipulation and charting;
US2004080514; 2004-04-29. By Richard Dorwart. Automatically creating appropri-
ate charts from tabular spreadsheet data, and exporting the charts to a presentation
program.

98. System and method for displaying spreadsheet cell formulas in two dimensional mathe-
matical notation; US2003056181; 2003-03-20. By Sharad Marathe. Displaying spread-
sheet formulas in usual mathematical notation. This would seem to be what symbolic
mathematics programs such as Maple and Mathematica routinely perform.

99. Functions acting on arbitrary geometric paths; US2005034059; 2005-02-10. By Craig
Hobbs; application by Microsoft. Functions for a spreadsheet component used to calcu-
late and transform graphical objects as in Microsoft Visio.

100. Data-bidirectional spreadsheet; US2004044954; 2004-03-04. By Michael Hosea; appli-
cation possibly by Texas Instruments. Interfacing a spreadsheet program to an exter-
nal calculcation engine, as in an electronic graphical pocket calculcator.

101. * Parser, code generator, and data calculation and transformation engine for spread-
sheet calculations; US2003106040; 2003-06-05. By Michael Rubin and Michael Smi-
alek. Describes compilation of spreadsheets to Java source code.

102. Spreadsheet data processing system; US2004205524; 2004-10-14. By John Richter,
Christopher Tregenza and Morten Siersted; application by F1F9. A method for pro-
cessing, not implementing, a spreadsheet.

103. System and method for efficiently and flexibly utilizing spreadsheet information;
US2003110191; 2003-06-12. By Robert Handsaker, Gregory Rasin and Andrey Knourenko.
Creating and using a family of parametrized spreadsheet workbooks.

104. Method and system for creating graphical and interactive representations of input and
output data; US2003169295; 2003-09-11. By Santiago Becerra. Controlling input to
spreadsheet cells, and displaying output from them, using graphical components such
as charts, sliders, and so on. This was proposed also by Piersol [71] and Nuñez [64].

105. Interface for an electronic spreadsheet and a database management system;
US2003182287; 2003-09-25. By Carlo Parlanti. Accessing relational databases from a
spreadsheet with ODBC and UDA.

106. Systems and methods providing dynamic spreadsheet functionality; US2002169799;
2002-11-14. By Perlie Voshell. Dynamic report creation in relation to databases.

107. Individually locked cells on a spreadsheet; US2003117447; 2003-06-26. By Gayle Mu-
jica and Michelle Miller; application possibly by Texas Instruments. Allow individ-
ual locking of cells (instead of bulk locking and individual unlocking as in Excel), and
graphical marking of locked cells.

108. Calculating in spreadsheet cells without using formulas; US2003120999; 2003-06-26.
By Michelle Miller and others; application possibly by Texas Instruments. Formula
entry on a graphical calculator.

109. Spreadsheet Web server system and spreadsheet Web system; US2002065846; 2002-
05-30. By Atsuro Ogawa and Hideo Takata. A server-side spreadsheet component that
generates HTML tables for display in a web browser on the client side.

110. Method and system in an electronic spreadsheet for persistently filling by samples a
range of cells; US2002103825; 2002-08-01. By Frederic Bauchot; application by IBM.
Fill a cell range by sampling and interpolating from existing values.

111. Method and apparatus for handling scenarios in spreadsheet documents; US2002055953;
2002-05-09. By Falko Tesch and Matthias Breuer. Preserving, and displaying a tree

110 Patents and applications

structure, the scenarios explored using a spreadsheet.
112. User interface for a multi-dimensional data store; US2003088586; 2003-05-08. By

Alexander Fitzpatrick and Sasan Seydnejad. Spreadsheet user interface to multi-
dimensional data, so-called “planning data repository”.

113. Methods and systems for inputting data into spreadsheet documents; US2002055954;
2002-05-09. By Matthias Breuer. User input, undo and recalculation based on previous
value.

114. Parallel execution mechanism for spreadsheets; US2001056440; 2001-12-27. By David
Abramson and Paul Roe. A method for explicitly initiating a parallel computation from
a spreadsheet cell; not a parallel implementation of the standard recalculation mecha-
nism.

115. Method and apparatus for entry and editing of spreadsheet formulas; US2003033329;
2003-02-13. By Eric Bergman and Paul Rank. Terminate the editing of a formula on
a PDA when user selects a different cell while the cursor in the formula is at a point
inappropriate for insertion of a cell reference.

116. Method and system in an electronic spreadsheet for persistently self-replicatig multiple
ranges of cells through a copy-paste operation; US2002049785; 2002-04-25. By Frederic
Bauchot; application by IBM. Closely related to application 120.

117. Dynamic conversion of spreadsheet formulas to multidimensional calculation rules;
US2003009649; 2003-01-09. By Paul Martin, William Angold, and Nicolaas Kichen-
brand. Calculating on multidimensional data, as obtained from a relational database.
Closely related to application 118.

118. Multidimensional data entry in a spreadsheet; US2002184260; 2002-12-05. By Paul
Martin, William Angold, and Nicolaas Kichenbrand. Accessing, displaying, editing and
writing back multidimensional data, as obtained from a relational database. Closely
related to application 117.

119. Dynamic data display having slide drawer windowing; US2002198906; 2002-12-26. By
Robert Press; application by IBM. A graphical display of data in which multiple “draw-
ers”, each displaying a fragment of a spreadsheet, may be visible simultaneously, and
may automatically resize themselves.

120. Method and system in an electronic spreadsheet for persistently copy-pasting a source
range of cells onto one or more destination ranges of cells; US2002049784; 2002-04-25.
By Frederic Bauchot; application by IBM. Mechanism to make persistent copies of a
formula, so that the copies are automatically updated when the original is updated.
Closely related to application 116. This seems similar to Montigel’s Wizcell [60].

121. Method and system for automated data manipulation in an electronic spreadsheet pro-
gram or the like; US2002174141; 2002-11-21. By Shing-Ming Chen . Spreadsheet
as database front-end, addressing cells with ranges and cell collections, and recording
macros.

122. Method and system in an electronic spreadsheet for comparing series of cells;
US2002023106; 2002-02-21. By Bauchot and Daniel Mauduit; application by IBM. Use
Boolean functions to determine whether two ranges of cells overlap, are disjoint, are
equal or are contained one in the other.

123. Method and system in an electronic spreadsheet for handling user-defined options in a
copy/cut - paste operation; US2002007380; 2002-01-17. By Bauchot and Albert Harari;
application by IBM. How to control the setting of user-defined options in a cell copying
operation, when the options were set for the source range of cells.

Patents and applications 111

124. Method and system in an electronic spreadsheet for managing and handling user-
defined options; US2002007372; 2002-01-17. By Bauchot and Albert Harari; appli-
cation by IBM. How to create or change user-defined options using a table.

125. Method and system in an electronic spreadsheet for applying user-defined options;
US2002059233; 2002-05-16. By Bauchot and Albert Harari; application by IBM. How
to set options to true or false.

126. The applications US2002143811, US2002143831, US2002143810, US2004205676,
US2002143809, US2002140734, US2002143730 and US2002143830 are all by Paul
Bennett, Round Rock, Texas, USA:

• System and method for vertical calculation using multiple columns in a screen
display; US2002143811; 2002-10-03.

• System and method for calculation using spreadsheet lines and vertical calcula-
tions in a single document; US2002143831; 2002-10-03.

• System and method for calculation using vertical parentheses; US2002143810;
2002-10-03.

• System and method for calculation using a subtotal function; US2004205676;
2004-10-14. Describes a graphical way to specify subtotal computations.

• System and method for calculation using multi-field columns with hidden fields;
US2002143809; 2002-10-03.

• System and method for calculation using formulas in number fields; US2002140734;
2002-10-03.

• System and method for calculation using a calculator input mode; US2002143730;
2002-10-03.

• System and method for calculation using multi-field columns with modifiable field
order; US2002143830; 2002-10-03. Unclear what is new relative to the general
concept of a spreadsheet.

127. Method and system in an electronic spreadsheet for handling absolute references in a
copy/cut and paste operation according to different modes; US2001032214; 2001-10-18.
By Frederic Bauchot and Albert Harari; application by IBM. Describes a method and
conditions for replacing absolute cell references to the source range by (other) absolute
cell references in the target range when copying formulas.

128. Spreadsheet error checker; US2002161799; 2002-10-31. By Justin Maguire; applica-
tion by Microsoft. A rule-based error checker for individual cells of a spreadsheet.

129. Multi-dimensional table data management unit and recording medium storing therein
a spreadsheet program; US2001016855; 2001-08-23. By Yuko Hiroshige. Selecting and
manipulating three-dimensional data.

130. Graphical environment for managing and developing applications; US2002010713;
2002-01-24. By Ágúst Egilsson. Closely related to patent 178 and application 62.

131. Method and system for distributing and collecting spreadsheet information;
US2002010743; 2002-01-24. By Mark Ryan, David Keeney and Ronald Tanner. As-
signing individual sheets of a master workbook to one or more contributors, sending
copies of the sheets to the contributors for updating, and reintegrating them into the
master workbook.

132. * Method and apparatus for formula evaluation in spreadsheets on small devices;
US2002143829; 2002-10-03. By Paul Rank and John Pampuch. Describes compilation
of a spreadsheet for space-conserving execution (but not editing) on a PDA.

112 Patents and applications

133. Universal graph compilation tool; US6883161; 2005-04-19. By Andre Chovin and
Chatenay Alain; assigned to Crouzet Automatismes. Compilation of a graph of for-
mulas to code for embedded devices.

134. Enhanced find and replace for electronic documents; US2002129053; 2002-09-12. By
Marise Chan and others; application by Microsoft. A find-and-replace function that
handles multiple sheets in a workbook; can find and change formatting attributes; and
can be suspended for editing and later resumed.

135. Storing objects in a spreadsheet; US6779151; 2004-08-17. By Jason Cahill and Jason
Allen; assigned to Microsoft. Very similar to application 60.

136. Reporting status of external references in a spreadsheet without updating;
US2002091730; 2002-07-11. By Jesse Bedford and others; application by Microsoft.
Closely related to applications 47 and 48.

137. Method and apparatus for a file format for storing spreadsheets compactly;
US2002124016; 2002-09-05. By Paul Rank and others. Storing a spreadsheet on a PDA
in a number of database records.

138. Method for dynamic function loading in spreadsheets on small devices; US2002087593;
2002-07-04. By Paul Rank. On demand loading of functions and features in spread-
sheet program for PDAs.

139. Functional visualization of spreadsheets; US2002078086; 2002-06-20. By Jeffrey Alden
and Daniel Reaume. Construction, visual display and maintenance of the support
graph (chapter 4) or dependency graph, in the appliciaton called “influence diagram”.
Focus is on the visual display, not on compact representation or efficient construction.

140. Method and system in an electronic spreadsheet for adding or removing elements from
a cell named range according to different modes; US2001007988; 2001-07-12. By Fred-
eric Bauchot and Albert Harari; application by IBM. Mechanism for updating referring
formulas when rows or columns are added to or deleted from a cell range.

141. Methods and systems for generating a structured language model from a spreadsheet
model; US6766512; 2004-07-20. By Farzad Khosrowshahi and Murray Woloshin; as-
signed to Furraylogic Ltd. Compiling a spreadsheet model to code in a procedural
programming language.

142. Method and system in an electronic spreadsheet for introducing new elements in a
cell named range according to different modes; US6725422; 2004-04-20. By Frederic
Bauchot and Albert Harari; assigned to IBM. Differentiating between closed and open
named ranges of cells; the latter can be expanded by insertion of new rows and columns
in the open direction.

143. Computerized spreadsheet with auto-calculator; US6430584; 2002-08-06. By Ross
Comer and David Williams Jr; assigned to Microsoft. Closely related to patent 181.

144. * Methodology for testing spreadsheet grids; US6766509; 2004-07-20. By Andrei Shere-
tov, Margaret Burnett and Gregg Rothermel; assigned to University of Oregon. Two
methods for using du-associations to test spreadsheets; in the more advanced method,
the testing of a single representative cell can increase the testedness of a range of cells
containing similar formulas.

145. * Methodology for testing spreadsheets; US6948154; 2005-09-20. By Gregg Rother-
mel, Margaret Burnett, and Lixin Li; assigned to University of Oregon. Using du-
associations to gradually test a spreadsheet, displaying each cell’s testedness.

146. Spreadsheet recalculation engine version stamp; US6523167; 2003-02-18. By Timothy
Ahlers and Andrew Becker, assigned to Microsoft. Explains how recalculation – or not

Patents and applications 113

– at loading can be controlled by calculation engine version stamp. This technique ap-
pears to be used in Excel 2000 and later to enforce a full recalculation when loading a
workbook that was last saved by Excel’97 or older, and avoid that recalculation other-
wise. (Maybe the intention is to guard against an Excel’97 recalculation flaw; see note
under patent 182).

147. Apparatus and method for dynamically updating a computer-implemented table and
associated objects; US6411959; 2002-06-25. By Todd Kelsey; assigned to IBM. Au-
tomatically copying formulas and extending references to a table when new rows or
columns are added. Much the same idea as Microsoft’s patent 154.

148. Method and system in an electronic spreadsheet for processing different cell protection
modes US6592626; 2003-07-15. By Frederic Bauchot and Albert Harari; assigned to
IBM. Changing the protection mode of single cells.

149. Binding data from data source to cells in a spreadsheet; US6631497; 2003-10-07. By
Ardeshir Jamshidi, Farzad Farahbod and Hardeep Singh; assigned to IBM. Dynami-
cally importing data from external sources (such as databases), with no need for pro-
gramming.

150. Binding spreadsheet cells to objects; US6701485; 2004-03-02. By Mark Igra, Eric Mat-
teson and Andrew Milton; assigned to Microsoft. Binding a spreadsheet cell to an
external event source, such as a stock ticker, for instance when a spreadsheet program
(Excel) runs as component in a web browser (Internet Explorer).

151. Automatic formatting of pivot table reports within a spreadsheet; US6626959; 2003-09-
30. By Wesner Moise, Thomas Conlon and Michelle Thompson; assigned to Microsoft.
The automatic formatting of finished pivot tables as known from Excel.

152. User interface for creating a spreadsheet pivottable; US6411313; 2002-06-25.
By Thomas Conlon and Paul Hagger; assigned to Microsoft. The pivot table user inter-
face as known from Excel.

153. Method and apparatus for organizing and processing information using a digital com-
puter; US6166739; 2000-12-26. By Kent Lowry and others; assigned to Microsoft. Ini-
tiate cell editing by two single-clicks rather than one double-click when a spreadsheet
program (Excel) runs as component in a web browser (Internet Explorer).

154. Extension of formulas and formatting in an electronic spreadsheet; US6640234; 2003-
10-28. By Wayne Coffen and others; assigned to Microsoft. Describes a system by which
a previously blank but newly edited cell, which extends a list of consistently typed and
formatted cells, will automatically be formatted like those cells and will be included in
existing formulas and aggregating expressions that include all of those cells. Closely
related to patent application 76.

155. System and method for editing a spreadsheet via an improved editing and cell selection
model; US6549878; 2003-04-15.

156. Method and apparatus for accessing multidimensional data; US6317750; 2001-11-13.
By Thomas Tortolani and Nouri Koorosh; assigned to Hyperion Solutions. Manipulat-
ing and displaying data from an external (database) source, with automatic replication
of formulas.

157. Visualization spreadsheet; US2001049695; 2001-12-06. By Ed Chi and others. The
authors and the patent seem unrelated to Nuñez [64], but the general idea is the same.

158. Analytic network engine and spreadsheet interface system; US6199078; 2001-03-06.
By Philip Brittan and others; assigned to Sphere Software Engineering. A calculation
mechanism that attempts to handle circular cell dependencies.

114 Patents and applications

159. Multidimensional electronic spreadsheet system and method; US2002091728; 2002-07-
11. By Henrik Kjaer and Dan Pedersen. A three-dimensional spreadsheet in which a
usual cell (in the two-dimensional grid) can contain a stack of cells.

160. Visual aid to simplify achieving correct cell interrelations in spreadsheets; US2002023105;
2002-02-21. By Robert Wisniewski. Describes a system for visualizing which cells a
given cell depends on, and vice versa.

161. System and methods for improved spreadsheet interface with user-familiar objects;
US6282551; 2001-08-28. By Charles Anderson and others; assigned to Borland. Closely
related to patent 186.

162. Automatic spreadsheet forms; US5966716; 1999-10-12. By Ross Comer, John Misko
and Troy Link; assigned to Microsoft. Closely related to patent 179.

163. Spreadsheet view enhancement system; US6185582; 2001-02-06. By Polle Zellweger;
assigned to Xerox. Related to patent 164.

164. Animated spreadsheet for dynamic display of constraint graphs; US6256649; 2001-07-
03. By Jock Mackinlay and others; assigned to Xerox. Related to patent 163.

165. System and method for processing data in an electronic spreadsheet in accordance with
a data type; US6138130; 2000-10-24. By Dan Adler and Roberto Salama; assigned to
Inventure Technologies. Seems related to patent 189 but additionally mentions the
Java programming language.

166. Method and system for detecting and selectively correcting cell reference errors;
US6317758; 2001-11-13. By Robert Madsen, Daren Thayne and Gary Gibb; assigned
to Corel. Changing a reference in a formula from relative to absolute after copying the
formula.

167. System for displaying desired portions of a spreadsheet on a display screen by adjoining
the desired portions without the need for increasing the memory capacity; US6115759;
2000-09-05. By Kazumi Sugimura and Shuzo Kugimiya; assigned to Sharp. How to
hide and later redisplay selected rows and columns.

168. * Constraint-based spreadsheet system capable of displaying a process of execution
of programs; US5799295; 1998-08-25. By Yasuo Nagai; assigned to Tokyo Shibaura
Electric Co. A spreadsheet based on constraints in addition to formulas.

169. On-screen indentification and manipulation of sources that an object depends upon;
US6057837; 2000-05-02. By Darrin Hatakeda and others; assigned to Microsoft. Using
colors to indicate the various cell areas that a formula or graph depends on. Imple-
mented in Excel.

170. Method and apparatus for using label references in spreadsheet formulas; US5987481;
1999-11-16. By Eric Michelman, Joseph Barnett and Jonathan Lange; assigned to
Microsoft. Using names (symbolic labels) to refer to ranges in a spreadsheet. The
intersection of a row name and a column name denotes a cell.

171. Spreadsheet-calculating system and method; US5970506; 1999-10-19. By Hiroki Kiyan,
Takaki Tokuyama and Motohide Tamura; assigned to Justsystem Corporation. A cell
area can be held fixed when the sheet is scrolled.

172. Method and system for establishing area boundaries in computer applications;
US6005573; 1999-12-21. By William Beyda and Gregory Noel; assigned to Siemens.
Limiting scrolling and editing in a graphical user interface.

173. System and methods for building spreadsheet applications; US5883623; 1999-03-16.
By Istvan Cseri; assigned to Borland. Seems closely related to patent 207.

Patents and applications 115

174. Method and system for linking controls with cells of a spreadsheet; US5721847; 1998-
02-24. By Jeffrey Johnson; assigned to Microsoft. Associating graphic controls (a view
and a controller) with spreadsheet cells (a model).

175. Method and system for the direct manipulation of cells in an electronic spreadsheet
program or the like; US6112214; 2000-08-29. By Christopher Graham, Ross Hunter
and Lisa James; assigned to Microsoft. Moving or copying a marked block of cells by
dragging its border and using control keys. Implemented in Excel. Appears related to
patent 206.

176. Spreadsheet image showing data items as indirect graphical representations; US5880742;
1999-03-09. By Ramana Rao and Stuart Card; assigned to Xerox. Displaying multidi-
mensional data graphically and manipulating the graphs in the user interface.

177. Transformation of real time data into times series and filtered real time data within
a spreadsheet application; US5926822; 1999-07-20. By Mark Garman; assigned to
Financial Engineering. A spreadsheet program that permit real-time update of cells
reflecting a stream of input values.

178. Graphical environment for managing and developing applications; US6286017; 2001-
09-04. By Ágúst Egilsson. An extended spreadsheet paradigm in which a spread-
sheet may refer to external program fragments and the like. Closely related to applica-
tions 62 and 130.

179. Automatic spreadsheet forms; US5819293; 1998-10-06. By Ross Comer, John Misko
and Troy Link; assigned to Microsoft. Generating multiple spreadsheet form instances
from a template, associating each form with a database row. Closely related to patent 162.

180. Method and apparatus for suggesting completions for a partially entered data item
based on previously-entered, associated data items; US5845300; 1998-12-01. By Ross
Comer, Adam Stein and David Williams Jr; assigned to Microsoft. How to propose
completion of partially typed cell entries from a dynamically updated list.

181. Computerized spreadsheet with auto-calculator; US6055548; 2000-04-25. By Ross
Comer and David Williams Jr; assigned to Microsoft. Describes a mechanism to ap-
ply a function (such as SUM) to a selected cell area, where the user may interactively
and graphically change the selection. Excel and other spreadsheet programs imple-
ment this functionality for SUM (only?), displaying the value in the status bar. Closely
related to patent 143.

182. * Method and system of sharing common formulas in a spreadsheet program and of
adjusting the same to conform with editing operations; US5742835; 1998-04-21. By
Richard Kaethler,, assigned to Microsoft; very similar to patent 204. First, describes
a technique to identify identical formulas in a contiguous block of cells, and to share
a single representation of the formula between all cells in the block. The need for
this presupposes a particular formula representation, which is not made explicit, but
which clearly is different from that chosen in CoreCalc. Second, notes that the sharing
makes insertion and deletion of entire rows and columns more complicated, should they
happen to intersect with a block.

This problem is the same as that discussed in section 2.16 here, but the patent’s solu-
tion makes a point of creating small cell blocks, distinguishing between blocks with 1
to 4, 5 to 16, and 16 or more columns; and with 1 to 15, 16 to 31, 31 to 48, and 49 to 200
rows. The point of this is not yet clear.

Maybe a faulty implementation of this approach caused bugs number KB171339 (“Some
values not recalculated when using multiple formulas”) and KB154134 (“Functions in

116 Patents and applications

filled formulas may not be recalculated”) in Excel’97; see Microsoft Developer Network
Knowledge base at http://support.microsoft.com/kb/q174868/.

183. System and methods for reformatting multi-dimensional spreadsheet information;
US5604854; 1997-02-18. By Colin Glassey; assigned to Borland. Transforming data
from relational to multi-dimensional tabular form, and swapping axes, in the manner
of pivot tables.

184. Method and system for detecting and correcting errors in a spreadsheet formula;
US5842180; 1998-11-24. By Karan Khanna and Edward Martinez; assigned to Mi-
crosoft. Parsing of formula expressions with error recovery and display of dialog box.

185. Method and system for allowing multiple users to simultaneously edit a spreadsheet;
US6006239; 1999-12-21. By Anil Bhansali and Rohit Wad; assigned to Microsoft. De-
scribes a kind of concurrent versioning system for multiple users to edit and save the
same spreadsheet.

186. System and methods for improved spreadsheet interface with user-familiar objects;
US5664127; 1997-09-02. By Charles Anderson and others; assigned to Borland. A
workbook containing multiple spreadsheets. Closely related to patent 161.

187. System and methods for improved scenario management in an electronic spreadsheet;
US6438565; 2002-08-20. By Joseph Ammirato and Gavin Peacock; assigned to Borland.
Closely related to patent 218.

188. Method and apparatus for retrieving data and inputting retrieved data to spreadsheet
including descriptive sentence input means and natural language interface means;
US5734889; 1998-03-31. By Tomoharu Yamaguchi; assigned to Nippon Electric Co.
Translating a natural language phrase to a database query an executing it in a spread-
sheet.

189. Computer-based system and method for data processing; US5768158; 1998-06-16. By
Dan Adler, Roberto Salama and Gerald Zaks; assigned to Inventure America Inc. A
spreadsheet program in which a cell may contain any object.
Piersol’s 1986 paper [71] is mentioned in the application but apparently not considered
prior art, because a formula cannot change the value of another cell in Piersol’s system.

190. Method and apparatus for entering and manipulating spreadsheet cell data; US5717939;
1998-02-10. By Daniel Bricklin, William Lynch and John Friend; assigned to Compaq
Computer. Similar to patent 197.

191. Method and system for constructing a formula in a spreadsheet; US5890174; 1999-
03-30. By Karan Khanna and Edward Martinez; assigned to Microsoft. Displaying
information about a function and its argument types during formula editing.

192. System and methods for automated graphing of spreadsheet information; US5581678;
1996-12-03. By Philippe Kahn; assigned to Borland. Automatically proposing a graph
type (pie chart, curve, 2D or 3D bar chart, . . .) based on the number of data points and
the complexity of selected data. Similar to patent 202.

193. Method and system for mapping non-uniform table-structure input data to a uniform
cellular data structure; US5881381; 1999-03-09. By Akio Yamashita and Yuki Hi-
rayama; assigned to IBM. Pasting a table from a text document into a spreadsheet,
such that each spreadsheet cell receives one table item.

194. * Methods for compiling formulas stored in an electronic spreadsheet system;
US5633998; 1997-05-27. By Roger Schlafly; assigned to Borland. Related to patent 213.

195. Process and device for the automatic generation of spreadsheets; US5752253; 1998-05-
12. By Jean Paul Geymond and Massimo Paltrinieri; assigned to Bull SA. Generating

Patents and applications 117

a spreadsheet from the schema of a relational database.
196. System and method of integrating a spreadsheet and external program having out-

put data calculated automatically in response to input data from the spreadsheet;
US5893123; 1999-04-06. By Paul Tuinenga. Using OLE to call an external function
from a spreadsheet (when recalculating) and getting the result back into the spread-
sheet.

197. Method and apparatus for entering and manipulating spreadsheet cell data; US5848187;
1998-12-08. By Daniel Bricklin, William Lynch and John Friend; assigned to Compaq
Computer. How to read and then assign hand-written data to spreadsheet cells. Simi-
lar to patent 190.

198. Method and system for automatically entering a data series into contiguous cells of an
electronic spreadsheet program or the like; US5685001; 1997-11-04. By Brian Capson
and others; assigned to Microsoft. Use mouse and/or keyboard to quickly enter series
such as 1, 2, . . . ; or Monday, Tuesday, . . . , as used in Excel.

199. Graphic indexing system; US5867150; 1999-02-02. By Dan Bricklin and others; as-
signed to Compaq Computer. Similar to patent 209.

200. System and methods for improved spreadsheet interface with user-familiar objects;
US5590259; 1996-12-31. By Charles Anderson and others; assigned to Borland. Also
published as US5416895.

201. Location structure for a multi-dimensional spreadsheet; US6002865; 1999-12-14. By
Erik Thomsen.

202. Systems and methods for automated graphing of spreadsheet information; US5461708;
1995-10-24. By Philippe Kahn; assigned to Borland. Similar to patent 192.

203. Method and system for direct cell formatting in a spreadsheet; US5598519; 1997-01-
28. By Raman Narayanan; assigned to Microsoft. Sharing cell formatting information
between cells by storing the formatting information in a separate formatting table, and
mapping cell coordinates to entries in that table.

204. * Method and system of sharing common formulas in a spreadsheet program and of
adjusting the same to conform with editing operations; US5553215; 1996-09-03. By
Richard Kaethler, assigned to Microsoft; very similar to patent 182.

205. Methods for composing formulas in an electronic spreadsheet system; US5603021;
1997-02-11. By Percy Spencer and others; assigned to Borland. Displaying informa-
tion about a function and its argument types during formula editing.

206. Method and system for the direct manipulation of cells in an electronic spreadsheet
program or the like; US5623282; 1997-04-22. By Christopher Graham, Ross Hunter
and Lisa James; assigned to Microsoft. Appears closely related to application 89.

207. System and methods for building spreadsheet applications; US5623591; 1997-04-22.
By Istvan Cseri; assigned to Borland. Linking objects with events and actions.

208. Auto-formatting of tables in a spreadsheet program; US5613131; 1997-03-18. By Ken
Moss and Andrew Kwatinetz; assigned to Microsoft. Describes table autoformatting
using heuristics, as known from Excel.

209. Graphic indexing system; US5539427; 1996-07-23. By Dan Bricklin and others; as-
signed to Compaq Computer. Using a lasso gesture in handwriting entry to indicate
items to index. Similar to patent 199.

210. System and methods for improved scenario management in an electronic spreadsheet;
US5499180; 1996-03-12. By Joseph Ammirato and Gavin Peacock; assigned to Borland.
Closely related to patent 218.

118 Patents and applications

211. Code generation and data access system; US5544298; 1996-08-06. By Walter Kanavy
and Timothy Brown; assigned to Data Management Corporation. A system to speed up
the creation of database queries and the like.

212. Visually aging scroll bar; US5532715; 1996-07-02. By Cary Bates and others; assigned
to IBM. Visually “heating” a controlled cell as long as a scrollbar slider remains the
same position.

213. * Electronic spreadsheet system and methods for compiling a formula stored in a spread-
sheet into native machine code for execution by a floating-point unit upon spreadsheet
recalculation; US5471612; 1995-11-28. By Roger Schlafly; assigned to Borland. Com-
ments: Unusually well-written and technically substantial. See sections 1.12 and 5.3.

214. Electronic spreadsheet system producing generalized answers including formulas;
US5418902; 1995-05-23. By Vincent West and Edward Babb; assigned to Int Comput-
ers Ltd. Translate spreadsheet formulas into logic and evaluate symbolically; allows
symbolic and bidirectional computations.

215. Spreadsheet command/function callback capability from a dynamic-link library;
US5437006; 1995-07-25. By Andrzej Turski; assigned to Microsoft. Supporting call-
backs into a spreadsheet program.

216. Fuzzy spreadsheet data processing system; US5381517; 1995-01-10. By Karl Thorndike
and Joseph Vrba; assigned to Fuziware. Computing with fuzzy numbers and displaying
fuzzy results in a spreadsheet program.

217. Sorting a table by rows or columns in response to interactive prompting with a dialog
box graphical icon; US5396621; 1995-03-07. By Kathryn Macgregor and Elisabeth
Waymire; assigned to Claris. Choosing and indicating graphically whether sorting is
by row or column.

218. System and methods for improved scenario management in an electronic spreadsheet;
US5303146; 1994-04-12. By Joseph Ammirato and Gavin Peacock; assigned to Borland.
A form of version control permitting maintenance of several scenarios on the same
spreadsheet. Closely related to patent 210.

219. Data processing apparatus and method for a reformattable multidimensional spread-
sheet; US5317686; 1994-05-31. By R. Pito Salas and others; assigned to Lotus Devel-
opment Corporation. Naming and display of cells.

220. * Method of bidirectional recalculation; US5339410; 1994-08-16. By Naoki Kanai; as-
signed to IBM. Proposes to replace the standard unidirectional computation by bidirec-
tional constraints. This seems to require formulas to be inverted, which isn’t possible
in general.

221. Spreadsheet program which implements alternative range references; US5371675; 1994-
12-06. By Irene Greif, Richard Landsman and Robert Balaban; assigned to Lotus De-
velopment Corporation. Use a menu to choose between different source cell ranges in
a calculation.

222. System and method for storing and retrieving information from a multidimensional
array; US5319777; 1994-06-07. By Manuel Perez; assigned to Sinper. Networked mul-
tidimensional spreadsheet program allowing concurrent updates.

223. * Method for optimal recalculation; US5276607; 1994-01-04. By Bret Harris and Lewis
Bastian; assigned to WordPerfect Corporation. See section 3.3.7.

224. Method for hiding and showing spreadsheet cells; US5255356; 1993-10-19. By Eric
Michelman and Devin Ben-Hur; assigned to Microsoft. Hiding or showing cells that
contribute to subtotals and schematic, according to the cells’ formulas.

Patents and applications 119

225. Computer-aided decision making with a symbolic spreadsheet; US5182793; 1993-01-
26. By Rhonda Alexander, Michael Irrgang and John Kirchner; assigned to Texas In-
struments. Using a spreadsheet program to make decisions.

226. Spreadsheet cell having multiple data fields; US5247611; 1993-09-21. By Ronald Norden-
Paul and John Brimm; assigned to Emtek Health Care Systems. Display, or not,
spreadsheet cells holding mandatory as well as optional information.

227. Graph-based programming system and associated method; US5255363; 1993-10-19. By
Mark Seyler; assigned to Mentor Graphics. Generalization of formulas to actions and
event listeners, and of cell contents to graphical components.

228. Method and system for processing formatting information in a spreadsheet; US5231577;
1993-07-27. By Michael Koss; assigned to Microsoft. Cell formatting information and
how to share it among cells.

229. Method for controlling the order of editing cells in a spreadsheet by evaluating entered
next cell attribute of current cell; US5121499; 1992-06-09. By Rex McCaskill and Bev-
erly Machart; assigned to IBM. Let each cell determine which cell is “next” in editing
order.

230. Graphic file directory and spreadsheet; US5093907; 1992-03-03. By Yao Hwong and
Mitsuro Kaneko; assigned to Axa. Display and process (miniatures of) image files in a
matrix of cells.

231. Method for assisting the operator of an interactive data processing system to enter
data directly into a selected cell of a spreadsheet; US5021973; 1991-06-04. By Irene
Hernandez and Beverly Machart; assigned to IBM. Type the desired contents of a cell
into the cell – presumably unlike early DOS-based spreadsheets, in which the text was
typed in a separate editor line above the sheet.

232. System for generating worksheet files for electronic spreadsheets; US5033009; 1991-
07-16. By Steven Dubnoff. Generate new sheets by inserting variable data into a
pattern sheet, in the style of word processor merge files.

233. Intermediate spreadsheet structure; US5055998; 1991-10-08. By Terrence Wright,
Scott Mayo and Ray Lischner; assigned to Wang Laboratories. Describes an inter-
change format for multidimensional spreadsheets.

120 Patents and applications

Bibliography

[1] Eero Hyvönen and Stefano de Pascale. Interval computations on the spreadsheet. In
R. B. Kearfott and V. Kreinovich, editors, Applications of Interval Computations,

Applied Optimization, pages 169–209. Kluwer, 1996.

[2] Robin Abraham and Martin Erwig. Header and unit inference for spreadsheets
through spatial analyses. In IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC’04), pages 165–172, 2004. At
http://web.engr.oregonstate.edu/~erwig/papers/HeaderInf_VLHCC04.pdf.

[3] Robin Abraham and Martin Erwig. Inferring templates from spreadsheets. In ICSE

’06: Proceeding of the 28th international conference on Software engineering, pages
182–191. ACM Press, 2006.

[4] Robin Abraham and Martin Erwig. Type inference for spreadsheets. In PPDP ’06:

Proceedings of the 8th ACM SIGPLAN Symposium on Principles and Practice of

Declarative Programming, pages 73–84. ACM Press, 2006.

[5] Yanif Ahmad, Tudor Antoniu, Sharon Goldwater, and Shriram Krishnamurthi. A type
system for statically detecting spreadsheet errors. In 18th IEEE International

Conference on Automated Software Engineering (ASE’03), pages 174–183, 2003.

[6] Tudor Antoniu et al. Validating the unit correctness of spreadsheet programs. In ICSE

’04: Proceedings of the 26th International Conference on Software Engineering, pages
439–448. IEEE Computer Society, 2004.

[7] Yirsaw Ayalew. Spreadsheet Testing Using Interval Analysis. PhD thesis, Institut für
Informatik-Systeme, Universität Klagenfurt, 2001. At
https://143.205.180.128/Publications/pubfiles/psfiles/2001-0125-YA.ps on 22 August
2006.

[8] S.C. Bloch Excel for Engineers and Scientists. Wiley, second edition, 2003.

[9] Borland. Antique software: Turbo Pascal v1.0. Webpage. At
http://www.danbricklin.com/visicalc.htm.

[10] Dan Bricklin. Visicalc information. Webpage. At
http://www.danbricklin.com/visicalc.htm.

[11] Chris B. Browne. Linux spreadsheets. Webpage. At
http://linuxfinances.info/info/spreadsheets.html.

[12] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677–691, 1986.

121

122 Bibliography

[13] Margaret Burnett et al. Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm. Journal of Functional Programming,
11(2):155–206, March 2001.

[14] Margaret Burnett, Andrei Sheretov, Bing Ren, and Gregg Rothermel. Testing
homogeneous spreadsheet grids with the "what you see is what you test" methodology.
IEEE Transactions on Software Engineering, 28(6):576–594, 2002.

[15] Rommert J. Casimir Real programmers don’t use spreadsheets. ACM SIGPLAN

Notices, 27(6):10–16, June 1992.

[16] Chris Clack and Lee Braine. Object-oriented functional spreadsheets. In Proceedings of

the 10th Glasgow Workshop on Functional Programming (GlaFP’97), September 1997.
At http://citeseer.ist.psu.edu/clack97objectoriented.html.

[17] Michael Coblenz. Using objects of measurements to detect spreadsheet errors.
Technical Report CMU-CS-05-150, School of Computer Science, Carnegie Mellon
University, July 2005. At
http://reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-150.pdf.

[18] Colt. Homepage. Webpage. At http://dsd.lbl.gov/~hoschek/colt/.

[19] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation, 19:297–301, 1965.

[20] Daniel S. Cortes and Morten Hansen User-defined functions in spreadsheets. Master’s
thesis, IT University of Copenhagen, September 2006. At
http://www.itu.dk/people/sestoft/corecalc/CortesHansen2006.pdf.

[21] Tony Davie and Kevin Hammond. Functional hypersheets. In Eighth international

Workshop on Implementation of Functional Languages, pages 39–48, 1996. At
http://www-fp.dcs.st-and.ac.uk/~kh/papers/Hypersheets/Hypersheets.html 31 August
2006.

[22] Walter de Hoon. Designing a spreadsheet in a pure functional graph rewriting
language. Master’s thesis, University of Nijmegen, 1993.

[23] Walter de Hoon, Luc Rutten, and Marko van Eekelen. Implementing a functional
spreadsheet in Clean. Journal of Functional Programming, 5(3):383–414, 1995.

[24] Stefano de Pascale and Eero Hyvönen. An extended interval arithmetic library for
Microsoft Excel. Research report, VTT Information Technology, Espöö, Finland, 1994.

[25] Decision Models. Excel pages – calculation secrets. Website. At
http://www.decisionmodels.com/calcsecrets.htm.

[26] Decision Models. Homepage. Website. At http://www.decisionmodels.com/.

[27] Weichang Du and William W. Wadge The eductive implementation of a
three-dimensional spreadsheet. Software Practice and Experience, 20(11):1097–1114,
1990.

[28] Ecma International. Homepage. At http://www.ecma-international.org/.

[29] John English. Ada 95: The Craft of Object-Oriented Programming. Prentice-Hall, 1997.
At http://www.it.bton.ac.uk/staff/je/adacraft/.

[30] Martin Erwig and Margaret M. Burnett. Adding apples and oranges. In Shriram
Krishnamurthi and C. R. Ramakrishnan, editors, PADL ’02: Proceedings of the 4th

International Symposium on Practical Aspects of Declarative Languages. Lecture Notes

in Computer Science, vol. 2257, pages 173–191, London, UK, 2002. Springer-Verlag.

Bibliography 123

[31] Martin Erwig et al. Gencel: A program generator for correct spreadsheets. Journal of

Functional Programming, 16(3):293–325, 2006.

[32] European Spreadsheet Risks Interest Group. Homepage. Webpage. At
http://www.eusprig.org/.

[33] Marc Fisher et al. Integrating automated test generation into the wysiwyt spreadsheet
testing methodology. ACM Transactions on Software Engineering Methodology,
15(2):150–194, 2006.

[34] OASIS Foundation. Open document format for office applications (OpenDocument) TC.
Webpage. At http://www.oasis-open.org/committees/office/ on 25 August 2006.

[35] Joe Francoeur. Algorithms using Java for spreadsheet dependent cell recomputation.
Technical Report cs.DS/0301036v2, arXiv, June 2003. At
http://arxiv.org/abs/cs.DS/0301036.

[36] Joe Francoeur. Personal communication, August 2006.

[37] Gnumeric. Homepage. Webpage. At http://www.gnome.org/projects/gnumeric/.

[38] Vincent Granet. XXL spreadsheet. Webpage. At http://www.esinsa.unice.fr/xxl.html
(download site not accessible August 2006).

[39] Steve Grubb. Ploticus. Webpage. At http://ploticus.sourceforge.net/ on 6 September
2006.

[40] Phong Ha and Quan Vi Tran. Brugerdefinerede funktioner i Excel. (User-defined
functions in Excel). Master’s thesis, IT University of Copenhagen, June 2006. In
Danish.

[41] Haskell. Homepage. Webpage. At http://www.haskell.org/.

[42] Eero Hyvönen and Stefano de Pascale. A new basis for spreadsheet computing.
Interval Solver(TM) for Microsoft Excel. In 11th Conference on Innovative Applications

of Artificial Intelligence (IAAI-99), pages 799–806. AAAI Press, 1999. At
http://www.mcs.vuw.ac.nz/~elvis/db/references/NBSSC.pdf.

[43] Tomás Isakowitz, Shimon Schocken, and Henry C. Lucas Toward a logical/physical
theory of spreadsheet modeling. ACM Transactions on Information Systems,
13(1):1–37, 1995.

[44] Thomas S. Iversen Personal communication, September 2006.

[45] Thomas S. Iversen Runtime code generation to speed up spreadsheet computations.
Master’s thesis, DIKU, University of Copenhagen, August 2006. At
http://www.itu.dk/people/sestoft/corecalc/Iversen.pdf.

[46] Neil D. Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation and Automatic

Program Generation. Englewood Cliffs, NJ: Prentice Hall, 1993. At
http://www.dina.kvl.dk/~sestoft/pebook/pebook.html.

[47] U. Jørring and W.L. Scherlis. Compilers and staging transformations. In Thirteenth

ACM Symposium on Principles of Programming Languages, St. Petersburg, Florida,
pages 86–96, 1986.

[48] Brian Kahin. The software patent crisis. Technology Review, April 1990. At
http://antipatents.8m.com/software-patents.html.

[49] R. Kelsey, W. Clinger, and J. Rees (editors). Revised5 report on the algorithmic
language Scheme. Higher-Order and Symbolic Computation, 11(1), August 1998.

124 Bibliography

[50] Loreen La Penna. Recalculation in Microsoft Excel 2002. Web page, October 2001. At
http://msdn.microsoft.com/library/en-us/dnexcl2k2/html/odc_xlrecalc.asp.

[51] A. Lew and R. Halverson A FCCM for dataflow (spreadsheet) programs. In FCCM ’95:

Proceedings of the IEEE Symposium on FPGA’s for Custom Computing Machines, pages
2–10. IEEE Computer Society, 1995.

[52] Serge Lidin. Inside Microsoft .Net IL Assembler. Microsoft Press, 2002.

[53] Björn Lisper and Johan Malmström. Haxcel: A spreadsheet interface to haskell. In
14th International Workshop on the Implementation of Functional Languages, pages
206–222, 2002. At http://www.mrtc.mdh.se/publications/0435.pdf on 31 August 2006.

[54] Chuck Martin. sc. Webpage. At http://freshmeat.net/projects/sc/.

[55] B. D. McCullough Fixing statistical errors in spreadsheet software: The cases of
Gnumeric and Excel. CSDA Statistical Software Newsletter, 2003. At
http://www.csdassn.org/software_reports.cfm.

[56] Michael Meeks and Jody Goldberg. A discussion of the new dependency code, version
0.3. Code documentation, October 2003. File doc/developer/Dependencies.txt in
Gnumeric source distribution, at http://www.gnome.org/projects/gnumeric/.

[57] Microsoft. Office online. Webpage. At http://office.microsoft.com/.

[58] R. Milner, M. Tofte, R. Harper, and D.B. MacQueen The Definition of Standard ML

(Revised). The MIT Press, 1997.

[59] Roland Mittermeir and Markus Clermont. Finding high-level structures in
spreadsheet programs. In Arie van Deursen and Elizabeth Burd, editors, Proceedings

of the 9th Working Conference in Reverse Engineering, Richmond, VA, USA, pages
221–232. IEEE Computer Society, 2002. At
https://143.205.180.128/Publications/pubfiles/pdffiles/2002-0190-RMAM.pdf on 24
August 2006.

[60] Markus Montigel. Portability and reuse of components for spreadsheet languages. In
IEEE Symposia on Human Centric Computing Languages and Environments, pages
77–79, 2002.

[61] Hanspeter Mössenböck, Albrecht Wöß, and Markus Löberbauer. The compiler
generator Coco/R. Webpage. At http://www.ssw.uni-linz.ac.at/Coco/.

[62] Netlib. Homepage. Webpage. At http://www.netlib.org/.

[63] Microsoft Developer Network. Excel primary interop assembly reference. Class
ApplicationClass. Webpage. At http://msdn2.microsoft.com/en-
us/library/microsoft.office.interop.excel.applicationclass.aspx.

[64] Fabian Nuñez. An extended spreadsheet paradigm for data visualisation systems, and
its implementation. Master’s thesis, University of Cape Town, November 2000. At
http://citeseer.ist.psu.edu/543469.html.

[65] National Institute of Standards. Javanumerics. Webpage. At
http://math.nist.gov/javanumerics/.

[66] European Patent Office. Espacenet. Webpage. At http://ep.espacenet.com/.

[67] OpenOffice. Calc – the all-purpose spreadsheet. Webpage. At
http://www.openoffice.org/product/calc.html.

[68] Ray Panko. Spreadsheet research. Website. At http://panko.cba.hawaii.edu/ssr/.

Bibliography 125

[69] Einar Pehrson. Cleansheets. Webpage. At http://freshmeat.net/projects/csheets/.

[70] Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A user-centred approach
to functions in Excel. In ICFP ’03: Proceedings of the eighth ACM SIGPLAN

international conference on Functional programming, pages 165–176, New York, NY,
USA, 2003. ACM Press.

[71] Kurt W. Piersol Object-oriented spreadsheets: the analytic spreadsheet package. In
Conference proceedings on Object-oriented programming systems, languages and

applications (OOPSLA’86), Portland, Oregon, pages 385–390. ACM Press, 1986.

[72] ReportingEngines. Formula One for Java. Webpage. At
http://www.reportingengines.com/ on 19 September 2006.

[73] Lutz Roeder. Mapack for .NET. Webpage. At http://www.aisto.com/roeder/dotnet/.

[74] Boaz Ronen, Michael A. Palley, and Henry C. Lucas Spreadsheet analysis and design.
Communications of the ACM, 32(1):84–93, 1989.

[75] Gregg Rothermel et al. A methodology for testing spreadsheets. ACM Transactions on

Software Engineering Methodology, 10(1):110–147, 2001.

[76] Gregg Rothermel, Lixin Li, and Margaret Burnett. Testing strategies for form-based
visual programs. In Eighth International Symposium on Software Reliability

Engineering, pages 96–107. IEEE Computer Society, 1997.

[77] Gregg Rothermel, Lixin Li, C. DuPuis, and Margaret Burnett. What you see is what
you test: a methodology for testing form-based visual programs. In 20th International

Conference on Software Engineering, pages 198–207. IEEE Computer Society, 1998.

[78] Christoph Rüegg. Math.net project.

[79] Russell Schulz. comp.apps.spreadsheet FAQ. Newsgroup, June 2002. At
http://www.faqs.org/faqs/spreadsheets/faq/.

[80] Peter Sestoft. Runtime code generation in JVM and CLR. Technical report, Royal
Veterinary and Agricultural University, October 2002. At
http://www.dina.kvl.dk/~sestoft/rtcg/.

[81] Bradford L. Smith Abykus. an object-oriented spreadsheet for windows. Website. At
http://www.abykus.com/ on 7 September 2006.

[82] EUSES: End Users Shaping Effective Software. Wysiwyt: What you see is what you
test. Webpage. At http://eusesconsortium.org/wysiwyt.php.

[83] Spec#. Homepage. At http://research.microsoft.com/specsharp/.

[84] SpreadsheetGear LLC. SpreadsheetGear for .NET. Webpage. At
http://www.spreadsheetgear.com/ on 19 September 2006.

[85] Marc Stadelmann. A spreadsheet based on constraints. In UIST ’93: Proceedings of the

6th annual ACM symposium on User Interface Software and Technology, pages
217–224. ACM Press, 1993.

[86] United States Court of Appeals for the Federal Circuit. Refac versus Lotus. Opinion
95-1350, April 1996. At
http://www.ll.georgetown.edu/Federal/judicial/fed/opinions/95opinions/95-1350.html.

[87] United States Patent and Trademark Office. Patent full-text and full-page image
databases. Webpage. At http://www.uspto.gov/patft/.

[88] Usenet. comp.apps.spreadsheet. Newsgroup.

126 Bibliography

[89] Noah Vawter. DFT multiply demo spreadsheet. Webpage, 2002. At
http://www.gweep.net/~shifty/portfolio/fftmulspreadsheet/ on 29 August 2006.

[90] Andrew P. Wack Partitioning dependency graphs for concurrent execution: a parallel

spreadsheet on a realistically modelled message passing environment. PhD thesis,
Department of Computer and Information Sciences, University of Delaware, 1995.

[91] Guijun Wang and Allen Ambler. Solving display-based problems. In IEEE Symposium

on Visual Languages, Boulder, Colorado, pages 122–129. IEEE Computer Society, 1996.

[92] Wikipedia. OpenDocument. Webpage. At http://en.wikipedia.org/wiki/OpenDocument
on 25 August 2006.

[93] Wikipedia. Spreadsheet. Webpage. At http://en.wikipedia.org/wiki/Spreadsheet.

[94] Wikipedia. Visicalc. Webpage. At http://en.wikipedia.org/wiki/VisiCalc.

[95] Stephen Wolfram. The Mathematica Book. Cambridge University Press, 1999.

[96] Alan G. Yoder and David L. Cohn Architectural issues in spreadsheet languages. In
1994 Conference on Programming Languages and System Architectures. Lecture Notes

in Computer Science, vol. 782. Springer-Verlag, 1994. Also at
http://www.cse.nd.edu/research/tech_reports/1993.html.

[97] Alan G. Yoder and David L. Cohn Observations on spreadsheet languages, intension
and dataflow. Technical Report TR-94-22, Computer Science and Engineering,
University of Notre Dame, 1994. At ftp://www.cse.nd.edu/pub/Reports/1994/tr-94-22.ps.

[98] Alan G. Yoder and David L. Cohn Real spreadsheets for real programmers. In
Proceedings of the IEEE Computer Society 1994 International Conference on Computer

Languages, May 16-19, 1994, Toulouse, France, pages 20–30, 1994. Also at
ftp://www.cse.nd.edu/pub/Reports/1994/tr-94-9.ps.

[99] Alan G. Yoder and David L. Cohn Domain-specific and general-purpose aspects of
spreadsheet languages. In Sam Kamin, editor, DSL ’97 - First ACM SIGPLAN

Workshop on Domain-Specific Languages, Paris, France, University of Illinois Computer
Science Report, pages 37–47, 1997. At http://www-sal.cs.uiuc.edu/~kamin/dsl.

Index 127

Index

A1 reference format, 9
Abastillas, Tisha, 104
Abraham, Robin, 17, 77, 121
Abramson, David, 110
absolute reference, 8
Abykus spreadsheet program, 18
Act delegate type, 39
AddSheet method (Workbook), 25
Adjusted<T> class, 45
Adler, Dan, 114, 116
Ahlers, Timothy, 112
Ahmad, Yanif, 121
Alden, Jeffrey, 112
Alexander, Rhonda, 119
Allen, Jason, 106, 112
Ambler, Allen, 16, 126
Ammirato, Joseph, 116–118
Anderson, Charles, 114, 116, 117
Androski, Matthew, 108
Angold, William, 110
Antoniu, Tudor, 17, 121
Applier delegate type, 36
Apply method (Expr), 28
arithmetic progression, 62
atomic value, 22
Aureglia, Jean-Jacques, 106, 108
AVG function, 38
Ayalew, Yirsaw, 17, 121

Babb, Edward, 118
Balaban, Robert, 118
Balducci, Corrado, 107
Baliga, Vijay, 103
Bargh, Christopher, 103
Barnett, Joseph, 114
Barton, Kristopher, 104
Bastian, Lewis, 60, 118
Bates, Cary, 118
Battagin, Daniel, 103, 104
Bauchot, Frederic, 102, 106, 108–113
Becerra, Santiago, 109
Becker, Andrew, 102, 103, 112
Bedford, Jesse, 105, 112
Ben-Hur, Devin, 118
Ben-Tovim, Yariv, 104
Bennett, Paul, 111

Bergman, Eric, 110
Beyda, William, 114
Bhansali, Anil, 116
Blackwell, Alan, 3, 91, 108, 125
Bloch, S.C., 121
Boon, Sean, 101
bottom-up recalculation, 13
Braine, Lee, 17, 122
Breuer, Matthias, 109, 110
Bricklin, Dan, 7, 116, 117, 121
Brimm, John, 119
Bristow, Geoffrey, 102
Brittan, Philip, 113
Brown, Timothy, 118
Browne, Chris, 18, 121
Bryant, Randal, 121
Burnett, Margaret, 3, 16, 17, 76, 91, 108,

112, 122, 125

C0R0 reference format, 32
cached matrix formula, 22
CachedMatrixFormula class, 22, 27
Cahill, Jason, 106, 112
Calc, See OpenOffice Calc
Calculate (Excel interop), 59
CalculateFull (Excel interop), 59
CalculateFullRebuild (Excel interop), 59,

90
Capson, Brian, 117
Card, Stuart, 115
cardinality of FAP set, 62
Casimir, Rommert J., 122
ccar, 69
cell, 21
cell address, 22
Cell class, 21, 26
CellAddr struct, 22, 33
CellArea class, 22
CellRef class, 22
Chamberlain, Benjamin, 103
Chan, Marise, 104, 112
Chatenay Alain, 112
Chavoustie, Michael, 103
Chen, Shing-Ming, 110
Chen, Yen-Fu, 101
Chi, Ed, 113

128 Index

Chirilov, Joseph, 101
Chovin, Andre, 112
CIL bytecode, 81
Clack, Chris, 17, 122
class diagram for CoreCalc, 23
Clay, Daniel, 103
CleanSheets, 18
Clermont, Markus, 77, 124
Clinger, W., 123
Coblenz, Michael, 17, 122
Coffen, Wayne, 107, 113
Cohn, David L., 126
Cohn, Michael L., 16
Collet, Jean-Luc, 107
Collie, Robert, 102
Comer, Ross, 112, 114, 115
Common Intermediate Language, 81
Conlon, Thomas, 113
Cooley, James, 122
copy, virtual, 32
Cordel, Bruce, 19
CoreCalc

class diagram, 23
formula syntax, 24
implementation, 21–51

Cortes, Daniel S., 3, 91–93, 122
COS function, 37
COUNTIF function, 79
Cox, Alan, 108
cp-similarity, 76
Crowe, Trevor, 107
Cseri, Istvan, 114, 117
Ctrl+Alt+F9 key (Excel full

recalculation), 59
Ctrl+Shift+Enter, 11, 24, 48
cycle

dynamic, 12
static, 12

Damm, John, 106
Davie, Tony, 16, 122
de Hoon, Walter, 16, 122
de Pascale, Stefano, 17, 121–123
Decision Models (company), 18, 59, 122
dependence

direct, 12
dynamic, 12
static, 12
transitive, 12

dependency tree (Excel), 59
Dillon, Patrick, 105
direct support, 12
Dorwart, Richard, 109
Drudis, Antoni, 102, 107
Du, Weichang, 15, 122
Dubnoff, Steven, 119
DuPuis, C., 125
dynamic cycle, 12

Eberhardy, Peter, 102, 103
eductive evaluation, 15
Egilsson, Ágúst, 106, 111, 115
Ellis, Charles, 102
English, John, 18, 122
Erickson, Joe, 18
Error class, 22
ErrorValue class, 22
Erwig, Martin, 17, 77, 106, 121–123
EUSES consortium, 17
Eval method

Cell, 26
CellArea, 30
CellRef, 29
Expr, 28
FunCall, 31
NumberConst, 28
TextConst, 29

Excel, See Microsoft Excel
Expr class, 22, 27
expression, 22

F9 key (Excel recalculation), 59
FAP grid, 63
FAP set, 62

equivalences, 62
Farahbod, Farzad, 113
Farr, George, 106
Fast Fourier Transform, 68
Fisher, Marc, 123
Fitzpatrick, Alexander, 110
Format class, 48
Forms/3 spreadsheet program, 16
formula, 7, 21

audit, 12
Formula class, 21, 22, 27
Formula One for Java, 18
Formulate spreadsheet program, 16
FPGA implementation, 17, 96

Index 129

Francoeur, Joe, 16, 123
Frankston, Bob, 7
Friend, John, 116, 117
full recalculation, 59
Fun delegate type, 36
FunCall class, 22, 30
function, 35–41

non-strict, 14
strict, 14, 36
volatile, 14

Function class, 22, 36
Functional Hypersheets, 16

Gaffga, Joachim, 104
Garman, Mark, 115
Gencel system, 77
Genesereth, Michael, 103
Geuss, Jo-Ann, 104
Geymond, Jean Paul, 116
Gibb, Gary, 114
Glassey, Colin, 116
Gnumeric, 7, 90

performance, 84–90
XML export format, 50

GOAL.SEEK function, 13
Goldberg, Jody, 60, 124
Goldwater, Sharon, 121
Gomard, Carsten K., 123
Gosling, James, 18
Graham, Christopher, 108, 115, 117
grammar of CoreCalc formulas, 24
Granet, Vincent, 18, 123
Greif, Irene, 118
Grose, Zoltan, 104
Grubb, Steve, 123
Guttman, Steven, 104

Ha, Phong, 3, 93–94, 123
Hagger, Paul, 113
Halverson, R., 17, 124
Hammond, Kevin, 16, 122
Handsaker, Robert, 109
Handy-Bosma, John, 101
Hansen, Morten W., 3, 91–93, 122
Harari, Albert, 110–113
Harold, Lee, 104
Harper, Robert, 124
Harris, Bret, 60, 118
Hatakeda, Darrin, 114

Haxcel, 16
Hernandez, Irene, 119
Hirayama, Yuki, 116
Hiroshige, Yuko, 111
HLOOKUP function, 78
Hobbs, Craig, 103, 109
Hollcraft, James, 108
Hosea, Michael, 109
Hunter, Ross, 108, 115, 117
Hwong, Yao, 119
Hyvönen, Eero, 17, 121–123

IF function, 14, 40
Igra, Mark, 113
INDEX function, 78
infix operator, 48
InsertCell method (Sheet), 25
InsertMatrixCell method (Sheet), 25
InsertRowCols method

Cell, 26
Expr, 28
Sheet, 25

InsertRowCols method, 45
integer arithmetics, 74–76
Irrgang, Michael, 119
Isakowitz, Tomás, 9, 123
Iversen, Thomas S., 3, 50, 81–90, 123

Jørring, Ulrik, 123
Jager, Bruno, 105
James, Lisa, 108, 115, 117
Jamshidi, Ardeshir, 108, 113
Jauffret, Jean-Philippe, 106
Johnson, Jeffrey, 115
Johnston, Gregory, 103
Jones, Bruce, 103
Jones, Neil D., 123
Jones, Russell, 103
Jonsson, Gunnlaugur, 107

Kaethler, Richard, 115, 117
Kahin, Brian, 123
Kahn, Philippe, 116, 117
Kanai, Naoki, 118
Kanavy, Walter, 118
Kaneko, Mitsuro, 119
Kassoff, Michael, 103
Keeney, David, 111
Kelsey, R., 123

130 Index

Kelsey, Todd, 113
Khanna, Karan, 116
Khosrowshahi, Farzad, 112
Kichenbrand, Nicolaas, 110
Killen, Brian, 108
Kirchner, John, 119
Kiyan, Hiroki, 114
Kjaer, Henrik, 114
Knourenko Andrey, 109
Koss, Michael, 119
Kotler, Matthew, 105, 106
Koukerdjinian, Francois, 106
Krauthauf Gerhild, 102
Krishnamurthi, Shriram, 121
Kugimiya, Shuzo, 114
Kwatinetz, Andrew, 117

La Penna, Loreen, 58, 124
Landau, Remy, 19
Landsman, Richard, 118
Lange, Jonathan, 114
Lautt, Robert, 104
Leung, Yiu-Ming, 106
Lew, A., 17, 124
Li, Lixin, 112, 125
Lidin, Serge, 124
Liebl, Herbert, 104
LINEST function, 40
Link, Troy, 114, 115
Lischner, Ray, 119
Lisper, Björn, 16, 124
Lotus 1-2-3, 7
Love, Nathaniel, 103
Lowry, Kent, 107, 113
Lucas, Henry C., 123, 125
Lynch, William, 116, 117

Macgregor, Kathryn, 118
Machart, Beverly, 119
Mackinlay, Jock, 114
MacQueen, David B., 124
Madsen, Robert, 114
Maguire, Justin, 111
MakeFunction method (Function), 36, 37
MakePredicate method (Function), 37
Malmström, Johan, 16, 124
Mandelbaum, Aaron, 104
Marathe, Sharad, 109
Marmigere, Gerard, 102

Martin, Chuck, 18, 124
Martin, Paul, 110
Martinez, Edward, 116
matrix

formula, 11, 22
value, 22

MatrixFormula class, 21, 22
MatrixValue class, 22, 27
Matteson, Eric, 113
Mauduit, Daniel, 110
MAX function, 38
Mayo, Scott, 119
McArdle, James, 106
McCaskill, Rex, 119
McCormack, Michael, 102
McCullough, B. D., 124
McKnight, David, 106
Medicke, John, 108
Meeks, Michael, 60, 124
Mestres, Jean-Christophe, 107
Michelman, Eric, 114, 118
MicroCalc spreadsheet program, 18
Microsoft Excel, 7

2007, 59
performance, 84–90
sheet-defined functions, 93
XML export format, 50

Miller, Michelle, 109
Mills, Scott, 107
Milner, Robin, 124
Milton, Andrew, 113
MIN function, 38
Misko, John, 114, 115
Mittermeir, Roland, 77, 124
MMULT function, 40
Mogensen, Torben, 3
Moise, Wesner, 113
Montigel, Markus, 110, 124
Morris, Richard, 107
Moss, Ken, 117
Move method (Expr), 28
MoveCell method (Sheet), 26
MoveContents method (Cell), 26
moving a formula, 41
Mujica, Gayle, 109

Nagai, Yasuo, 114
Naimat, Aman, 106
Narayanan, Raman, 117

Index 131

Natarajan, Ramakrishnan, 102
Netz, Amir, 104
Noel, Gregory, 114
non-strict function, 14
Norden-Paul, Ronald, 119
normalized FAP set, 62
Nouri Koorosh, 113
NOW function, 14, 38
NumberCell class, 21, 27
NumberConst class, 22
NumberValue class, 22
Nuñez, Fabian, 15, 16, 91, 124

OASIS ODF file format, 50
Office Open XML file format, 50
offset of FAP set, 62
Ogawa, Atsuro, 109
OOXML, See Office Open XML file format
OpenDocument file format, 50
OpenOffice Calc, 7, 90

performance, 84–90
Orchard, Andrew, 102

Palley, Michael A., 125
Paltrinieri, Massimo, 116
Pampuch, John, 111
Panko, Ray, 124
Pardo, Rene K., 19
Parlanti, Carlo, 109
Parse method (Cell), 27
Pastecell method (Sheet), 26
patent, 18–20, 101–119
Peacock, Gavin, 116–118
Pedersen, Dan, 114
Pehrson, Einar, 18, 125
Perez, Manuel, 118
performance measurement, 50, 84–90
period of FAP set, 62
Peyton Jones, Simon, 3, 91, 108, 125
Piersol, Kurt W., 9, 15, 107, 109, 116, 125
PlanPerfect, 7
Ploticus program, 50
Pradhan, Salil, 102, 107
Press, Robert, 110
prettyprinting, 48

QuattroPro, 7, 90

R1C1 reference format, 9

Rüegg, Christoph, 99, 125
RAND function, 14, 38
Rank, Paul, 110–112
Rao, Ramana, 115
RARef class, 22, 32
Rasin, Gregory, 109
Raue, Kristian, 107
Reaume, Daniel, 112
Recalculate method

Sheet, 26
Workbook, 25

recalculation
bottom-up, 13
Excel, 59
full (Excel), 59
top-down, 13

Rees, J., 123
reference

absolute, 8
relative, 8

reference format
A1, 9
C0R0, 32
R1C1, 9

relative reference, 8
relative/absolute reference, 22
Ren, Bing, 122
Reset method

Cell, 27
Sheet, 26

Richter, John, 109
Robert, Wallace, 104
Roe, Paul, 110
Roeder, Lutz, 99, 125
Ronen, Boaz, 125
Rosenau, Matthias, 105
Rothermel, Gregg, 112, 122, 125
Rothschiller, Chad, 102, 103
ROUND function, 37
RTCG, See runtime code generation
Rubin, Michael, 109
runtime code generation, 81–90
Russell, Feng-Wei Chen, 108
Rutledge, Stephen, 108
Rutten, Luc, 122
Ryan, Mark, 111

Salama, Roberto, 114, 116
Salas, R. Pito, 118

132 Index

Sattler, Juergen, 103, 104
sc (spreadsheet calculator), 18
Scherlis, Bill, 123
Schlafly, Roger, 19, 90, 116, 118
Schnurr, Jeffrey, 104
Schocken, Shimon, 123
Schulz, Russell, 125
Selvarajan, Inbarajan, 104
semantic class of cells, 77
Serra, Bill, 102, 107
Serraf, Jacob, 108
Seydnejad, Sasan, 110
Seyler, Mark, 119
sheet, 21
Sheet class, 21, 25
sheet-defined function, 91–94
SheetTab class, 48
Sheretov, Andrei, 112, 122
Show method

Cell, 27
Expr, 28, 48
Sheet, 26

ShowAll method
Sheet, 26

ShowValue method
Cell, 27
Sheet, 26

Siersted, Morten, 109
SIN function, 37
Singh, Hardeep, 108, 113
Smialek, Michael, 109
Smith, Bradford L., 18, 125
Soler, Catherine, 106
SOLVER function, 13
Sorge, Terri, 104
source file organization, 51
Spencer, Percy, 117
Spitz, Gerhard, 108
SpreadsheetGear for .NET, 18
Stadelmann, Marc, 17, 125
staged recalculation, 99
static cycle, 12
Stein, Adam, 115
strict function, 14
Sugimura, Kazumi, 114
SUM function, 38
SUMIF, 79
support

direct, 12

graph, 56, 61–79
transitive, 12

syntax of CoreCalc formulas, 24

Tafoya, John, 104, 105
Takata, Hideo, 109
Tamura, Motohide, 114
Tanenbaum, Richard, 102, 105
Tanner, Ronald, 111
Ternasky, Joseph, 104
Tesch, Falko, 109
TextCell class, 21, 27
TextConst class, 22
TextValue class, 22
Thanu, Lakshmi, 102, 103
Thayne, Daren, 114
this[] method

Sheet, 26
Workbook, 25

Thompson, Michelle, 113
Thomsen, Erik, 117
Thorndike, Karl, 118
TinyCalc, 81–90

performance, 84–90
Todd, Stephen, 102
Tofte, Mads, 124
Tokuyama, Takaki, 114
top-down recalculation, 13
topological sorting, 57
Tortolani, Thomas, 113
Tran, Quan Vi, 3, 93–94, 123
transitive support, 12
TRANSPOSE function, 40
Tregenza, Christopher, 109
Truntschka, Carole, 107
Tuinenga, Paul, 117
Tukey, John, 122
Turski, Andrzej, 118

Ulke, Markus, 102
uptodate flag, 34
US2001007988 (patent 140), 112
US2001016855 (patent 129), 111
US2001032214 (patent 127), 111
US2001049695 (patent 157), 113
US2001056440 (patent 114), 110
US2002007372 (patent 124), 111
US2002007380 (patent 123), 110

Index 133

US2002010713 (patent 130), 106, 111,
115

US2002010743 (patent 131), 111
US2002023105 (patent 160), 114
US2002023106 (patent 122), 110
US2002049784 (patent 120), 110
US2002049785 (patent 116), 110
US2002055953 (patent 111), 109
US2002055954 (patent 113), 110
US2002059233 (patent 125), 111
US2002065846 (patent 109), 109
US2002078086 (patent 139), 112
US2002087593 (patent 138), 112
US2002091728 (patent 159), 114
US2002091730 (patent 136), 105, 112
US2002103825 (patent 110), 109
US2002124016 (patent 137), 112
US2002129053 (patent 134), 112
US2002140734 (patent 126), 111
US2002143730 (patent 126), 111
US2002143809 (patent 126), 111
US2002143810 (patent 126), 111
US2002143811 (patent 126), 111
US2002143829 (patent 132), 19, 111
US2002143830 (patent 126), 111
US2002143831 (patent 126), 111
US2002161799 (patent 128), 111
US2002169799 (patent 106), 109
US2002174141 (patent 121), 110
US2002184260 (patent 118), 110
US2002198906 (patent 119), 110
US2003009649 (patent 117), 110
US2003033329 (patent 115), 110
US2003051209 (patent 96), 108
US2003056181 (patent 98), 109
US2003088586 (patent 112), 110
US2003106040 (patent 101), 19, 109
US2003110191 (patent 103), 109
US2003117447 (patent 107), 109
US2003120999 (patent 108), 109
US2003159108 (patent 86), 108
US2003164817 (patent 89), 108, 117
US2003169295 (patent 104), 109
US2003182287 (patent 105), 109
US2003188256 (patent 95), 108
US2003188257 (patent 94), 108
US2003188258 (patent 93), 108
US2003188259 (patent 92), 108
US2003212953 (patent 84), 108

US2003226105 (patent 82), 19, 107
US2004044954 (patent 100), 109
US2004060001 (patent 76), 107, 113
US2004064470 (patent 80), 107
US2004080514 (patent 97), 109
US2004088650 (patent 87), 108
US2004103365 (patent 90), 108
US2004103366 (patent 91), 91, 108
US2004111666 (patent 85), 108
US2004133567 (patent 73), 107
US2004133568 (patent 72), 107
US2004143788 (patent 70), 106
US2004181748 (patent 88), 108
US2004205524 (patent 102), 109
US2004205676 (patent 126), 111
US2004210822 (patent 63), 105, 106
US2004225957 (patent 62), 106, 111, 115
US2004237029 (patent 83), 108
US2005015379 (patent 69), 102, 106
US2005015714 (patent 60), 106, 112
US2005022111 (patent 81), 107
US2005028136 (patent 66), 106
US2005034058 (patent 79), 107
US2005034059 (patent 99), 109
US2005034060 (patent 57), 105, 106
US2005038768 (patent 78), 107
US2005039113 (patent 77), 107
US2005039114 (patent 61), 106
US2005044486 (patent 58), 105, 106
US2005044496 (patent 55), 105
US2005044497 (patent 54), 105
US2005050088 (patent 56), 105, 106
US2005055626 (patent 52), 105, 106
US2005066265 (patent 53), 105
US2005081141 (patent 75), 107
US2005091206 (patent 59), 106
US2005097115 (patent 47), 105, 112
US2005097447 (patent 74), 107
US2005102127 (patent 71), 107
US2005108344 (patent 50), 104, 105
US2005108623 (patent 48), 105, 112
US2005125377 (patent 51), 105, 106
US2005149482 (patent 49), 105
US2005172217 (patent 65), 106
US2005188352 (patent 45), 20, 105
US2005193379 (patent 46), 20, 102, 105
US2005203935 (patent 68), 106
US2005210369 (patent 67), 106
US2005240984 (patent 64), 106

134 Index

US2005257133 (patent 42), 104
US2005267853 (patent 40), 103, 104
US2005267868 (patent 43), 104
US2005268215 (patent 39), 104
US2005273311 (patent 44), 104
US2005273695 (patent 41), 104
US2006004843 (patent 38), 104, 105
US2006010118 (patent 36), 104
US2006010367 (patent 37), 103, 104
US2006015525 (patent 33), 104
US2006015804 (patent 32), 104
US2006015806 (patent 34), 104
US2006020673 (patent 31), 104
US2006024653 (patent 29), 103
US2006026137 (patent 30), 103
US2006036939 (patent 28), 103
US2006048044 (patent 27), 103
US2006053363 (patent 25), 103
US2006069696 (patent 23), 103
US2006069993 (patent 24), 19, 103
US2006074866 (patent 22), 103
US2006075328 (patent 21), 103
US2006080594 (patent 20), 103
US2006080595 (patent 19), 103
US2006085386 (patent 17), 102
US2006085486 (patent 18), 103
US2006090156 (patent 16), 20, 102, 105
US2006095832 (patent 14), 102
US2006095833 (patent 15), 102
US2006101326 (patent 13), 102
US2006101391 (patent 12), 102
US2006107196 (patent 10), 102
US2006112329 (patent 9), 102
US2006117246 (patent 8), 102
US2006117250 (patent 7), 102
US2006117251 (patent 6), 102
US2006129929 (patent 5), 102
US2006136534 (patent 3), 101
US2006136535 (patent 2), 101
US2006136808 (patent 4), 101
US2006156221 (patent 1), 101
US5021973 (patent 231), 119
US5033009 (patent 232), 119
US5055998 (patent 233), 119
US5093907 (patent 230), 119
US5121499 (patent 229), 119
US5182793 (patent 225), 119
US5231577 (patent 228), 119
US5247611 (patent 226), 119

US5255356 (patent 224), 118
US5255363 (patent 227), 119
US5276607 (patent 223), 19, 60, 118
US5303146 (patent 218), 116–118
US5317686 (patent 219), 118
US5319777 (patent 222), 118
US5339410 (patent 220), 17, 118
US5371675 (patent 221), 118
US5381517 (patent 216), 118
US5396621 (patent 217), 118
US5418902 (patent 214), 118
US5437006 (patent 215), 118
US5461708 (patent 202), 116, 117
US5471612 (patent 213), 19, 54, 59, 90,

98, 116, 118
US5499180 (patent 210), 117, 118
US5532715 (patent 212), 118
US5539427 (patent 209), 117
US5544298 (patent 211), 118
US5553215 (patent 204), 54, 115, 117
US5581678 (patent 192), 116, 117
US5590259 (patent 200), 117
US5598519 (patent 203), 117
US5603021 (patent 205), 117
US5604854 (patent 183), 116
US5613131 (patent 208), 117
US5623282 (patent 206), 108, 115, 117
US5623591 (patent 207), 114, 117
US5633998 (patent 194), 19, 54, 59, 90,

98, 116
US5664127 (patent 186), 114, 116
US5685001 (patent 198), 117
US5717939 (patent 190), 116, 117
US5721847 (patent 174), 115
US5734889 (patent 188), 116
US5742835 (patent 182), 54, 113, 115,

117
US5752253 (patent 195), 116
US5768158 (patent 189), 114, 116
US5799295 (patent 168), 17, 114
US5819293 (patent 179), 114, 115
US5842180 (patent 184), 116
US5845300 (patent 180), 115
US5848187 (patent 197), 116, 117
US5867150 (patent 199), 117
US5880742 (patent 176), 115
US5881381 (patent 193), 116
US5883623 (patent 173), 114
US5890174 (patent 191), 116

Index 135

US5893123 (patent 196), 117
US5926822 (patent 177), 115
US5966716 (patent 162), 114, 115
US5970506 (patent 171), 114
US5987481 (patent 170), 114
US6002865 (patent 201), 117
US6005573 (patent 172), 114
US6006239 (patent 185), 116
US6055548 (patent 181), 112, 115
US6057837 (patent 169), 114
US6112214 (patent 175), 115
US6115759 (patent 167), 114
US6138130 (patent 165), 114
US6166739 (patent 153), 113
US6185582 (patent 163), 114
US6199078 (patent 158), 113
US6256649 (patent 164), 114
US6282551 (patent 161), 114, 116
US6286017 (patent 178), 106, 111, 115
US6317750 (patent 156), 113
US6317758 (patent 166), 114
US6411313 (patent 152), 113
US6411959 (patent 147), 113
US6430584 (patent 143), 112, 115
US6438565 (patent 187), 116
US6523167 (patent 146), 112
US6549878 (patent 155), 113
US6592626 (patent 148), 113
US6626959 (patent 151), 113
US6631497 (patent 149), 113
US6640234 (patent 154), 107, 113
US6701485 (patent 150), 113
US6725422 (patent 142), 112
US6766509 (patent 144), 17, 112
US6766512 (patent 141), 19, 112
US6779151 (patent 135), 106, 112
US6883161 (patent 133), 19, 112
US6948154 (patent 145), 17, 112
US6988241 (patent 35), 104
US7007033 (patent 26), 103
US7047484 (patent 11), 102

value, 22
atomic, 22
matrix, 22

Value class, 22, 31
van Eekelen, Marko, 122
Vawter, Noah, 126
virtual copy, 32

visited flag, 34
ViSSh system, 16, 91
VLOOKUP function, 78
volatile function, 14
Voshell, Perlie, 109
Vrba, Joseph, 118

Wachter, Kai, 102
Wack, Andrew P., 17, 126
Wad, Rohit, 116
Wadge, William W., 15, 122
Waldau, Mattias, 107
Walker, Keith, 101
Wang, Guijun, 16, 126
Waymire, Elisabeth, 118
Weber, Brandon, 102
West, Vincent, 118
Williams, David Jr, 112, 115
Wisniewski, Robert, 114
Witkowski, Andrew, 107
Wizcell implementation, 110
Wolfram, Stephen, 126
Woloshin, Murray, 112
Woodley, Ronald, 106
workbook, 11, 21
Workbook class, 21, 25
WorkbookForm class, 48
Wright, Terrence, 119
WYSIWYT testing approach, 17

XMLSS file format, 50
XXL spreadsheet program, 18

Yamaguchi, Tomoharu, 116
Yamashita, Akio, 116
Yang, Xiaohong, 102
Yanif, Ahmad, 17
Yoder, Alan G., 16, 126

Zaks, Gerald, 116
Zellweger, Polle, 114

