/* mosml/src/runtime/gc_ctrl.c Updated 2008-03-05 to prevent malloc from using mmap() */ #include #include "alloc.h" #include "debugger.h" #include "gc.h" #include "gc_ctrl.h" #include "major_gc.h" #include "minor_gc.h" #include "mlvalues.h" #include "memory.h" long stat_minor_words = 0, stat_promoted_words = 0, stat_major_words = 0, stat_minor_collections = 0, stat_major_collections = 0, stat_heap_size = 0; /* bytes */ extern asize_t major_heap_increment; /* bytes; cf. major_gc.c */ extern int percent_free; /* cf. major_gc.c */ extern int verb_gc; /* cf. misc.c */ #define Chunk_size(c) (((heap_chunk_head *) (c)) [-1]).size #define Chunk_next(c) (((heap_chunk_head *) (c)) [-1]).next #define Next(hp) ((hp) + Bhsize_hp (hp)) /* This will also thoroughly verify the heap if compiled in DEBUG mode. */ value gc_stat (value v) /* ML */ { value res; long live_words = 0, live_blocks = 0, free_words = 0, free_blocks = 0, largest_free = 0, fragments = 0, heap_chunks = 0; char *chunk = heap_start, *chunk_end; char *cur_hp, *prev_hp; header_t cur_hd; Assert (v == Atom (0)); while (chunk != NULL){ ++ heap_chunks; chunk_end = chunk + Chunk_size (chunk); prev_hp = NULL; cur_hp = chunk; while (cur_hp < chunk_end){ cur_hd = Hd_hp (cur_hp); switch (Color_hd (cur_hd)){ case White: if (Wosize_hd (cur_hd) == 0){ ++fragments; Assert (prev_hp == NULL || (Color_hp (prev_hp) != Blue && Wosize_hp (prev_hp) > 0)); Assert (Next (cur_hp) == chunk_end || (Color_hp (Next (cur_hp)) != Blue && Wosize_hp (Next (cur_hp)) > 0)); break; } /* FALLTHROUGH */ case Gray: case Black: Assert (Wosize_hd (cur_hd) > 0); ++ live_blocks; live_words += Whsize_hd (cur_hd); break; case Blue: Assert (Wosize_hd (cur_hd) > 0); ++ free_blocks; free_words += Whsize_hd (cur_hd); if (Whsize_hd (cur_hd) > largest_free){ largest_free = Whsize_hd (cur_hd); } Assert (prev_hp == NULL || (Color_hp (prev_hp) != Blue && Wosize_hp (prev_hp) > 0)); Assert (Next (cur_hp) == chunk_end || (Color_hp (Next (cur_hp)) != Blue && Wosize_hp (Next (cur_hp)) > 0)); break; } prev_hp = cur_hp; cur_hp = Next (cur_hp); } Assert (cur_hp == chunk_end); chunk = Chunk_next (chunk); } Assert (live_words + free_words + fragments == Wsize_bsize (stat_heap_size)); /* Order of elements changed for Moscow ML */ res = alloc (13, 0); Field (res, 11) = Val_long (stat_minor_words + Wsize_bsize (young_ptr - young_start)); Field (res, 12) = Val_long (stat_promoted_words); Field (res, 9) = Val_long (stat_major_words + allocated_words); Field (res, 10) = Val_long (stat_minor_collections); Field (res, 8) = Val_long (stat_major_collections); Field (res, 4) = Val_long (Wsize_bsize (stat_heap_size)); Field (res, 3) = Val_long (heap_chunks); Field (res, 7) = Val_long (live_words); Field (res, 6) = Val_long (live_blocks); Field (res, 2) = Val_long (free_words); Field (res, 1) = Val_long (free_blocks); Field (res, 5) = Val_long (largest_free); Field (res, 0) = Val_long (fragments); return res; } value gc_get (value v) /* ML */ { value res; Assert (v == Atom (0)); /* Order of elements changed for Moscow ML */ res = alloc (4, 0); Field (res, 1) = Wsize_bsize (Val_long (minor_heap_size)); Field (res, 0) = Wsize_bsize (Val_long (major_heap_increment)); Field (res, 2) = Val_long (percent_free); Field (res, 3) = Val_bool (verb_gc); return res; } static int norm_pfree (int p) { if (p < 1) return p = 1; return p; } static long norm_heapincr (long i) { i = ((i + (1 << Page_log) - 1) >> Page_log) << Page_log; if (i < Heap_chunk_min) i = Heap_chunk_min; if (i > Heap_chunk_max) i = Heap_chunk_max; return i; } static long norm_minsize (long s) { if (s < Minor_heap_min) s = Minor_heap_min; if (s > Minor_heap_max) s = Minor_heap_max; return s; } value gc_set (value v) /* ML */ { int newpf; /* Order of elements changed for Moscow ML */ verb_gc = Bool_val (Field (v, 3)); newpf = norm_pfree (Long_val (Field (v, 2))); if (newpf != percent_free){ percent_free = newpf; gc_message ("New space overhead: %d%%\n", percent_free); } if (Bsize_wsize (Long_val (Field (v, 0))) != major_heap_increment){ major_heap_increment = norm_heapincr (Bsize_wsize (Long_val (Field(v,0)))); gc_message ("New heap increment size: %ldk\n", major_heap_increment/1024); } /* Minor heap size comes last because it will trigger a minor collection (thus invalidating [v]) and it can raise [Out_of_memory]. */ if (Bsize_wsize (Long_val (Field (v, 1))) != minor_heap_size){ long new_size = norm_minsize (Bsize_wsize (Long_val (Field (v, 1)))); gc_message ("New minor heap size: %ldk\n", new_size/1024); set_minor_heap_size (new_size); } return Atom (0); } value gc_minor (value v) /* ML */ { Assert (v == Atom (0)); minor_collection (); return Atom (0); } value gc_major (value v) /* ML */ { Assert (v == Atom (0)); minor_collection (); finish_major_cycle (); return Atom (0); } value gc_full_major (value v) /* ML */ { Assert (v == Atom (0)); minor_collection (); finish_major_cycle (); finish_major_cycle (); return Atom (0); } void init_gc (long minor_size, long major_incr, int percent_fr, int verb) { #ifdef DEBUG gc_message ("*** camlrunm: debug mode ***\n", 0); #endif verb_gc = verb; /* Added 2008-03-05 to prevent malloc from using mmap() */ mallopt(M_MMAP_MAX, 0); set_minor_heap_size (Bsize_wsize (norm_minsize (minor_size))); major_heap_increment = Bsize_wsize (norm_heapincr (major_incr)); percent_free = norm_pfree (percent_fr); init_major_heap (major_heap_increment); init_c_roots (); gc_message ("Initial space overhead: %d%%\n", percent_free); gc_message ("Initial heap increment: %ldk\n", major_heap_increment / 1024); gc_message ("Initial minor heap size: %ldk\n", minor_heap_size / 1024); }