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Abstract

We show how the design of pension and life insurance products, and
their administration, reserve calculations, and audit, can be based on a
common formal notation.

This notation is human-readable and machine-processable, and spe-
cialized to the actuarial domain, achieving great expressive power com-
bined with ease of use and safety. In essence, this is a specialized actuarial
programming language, a so-called domain-specific language. The lan-
guage comprises (a) product definitions based on standard actuarial mod-
els, including arbitrary continuous-time Markov and semi-Markov models,
with cyclic transitions permitted; (b) calculation descriptions for reserves
and other quantities of interest, based on differential equations; and (c)
administration rules.

1 Introduction

Our vision is to enable a formalized description of life insurance and pension
products that supports automated administration and reporting, yet still is
readable and manageable by humans. This should ensure consistency between
all company operations: distributing incoming payments across coverages, gen-
erating annual statements for customers, paying benefits, calculating expected
net present values (that is, reserves), producing reports for accounting and tax
purposes, and so forth. Quantitative aspects such as reserves are calculated
by a calculation kernel, incorporating high-performance numerical differential
equation solvers.

∗Work supported by the Danish Advanced Technology Foundation (Højteknologifonden)
(017-2010-3)
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The approach taken is to design and implement a domain-specific language,
called the Actulus Modeling Language (AML) to describe life-based pension or
life insurance products, and computations on them.

Because of the specialized nature of the language and its direct basis in actu-
arial theory, we can provide automated tools for early detection of certain kinds
of errors and inconsistencies in the design of an insurance product. Moreover,
even though the notation reflects a high-level actuarial view of products and
reserve calculations, the calculations can be optimized automatically. The short
distance from actuarial thought and notation to efficient computation enables
much faster and less expensive development of new pension products.

1.1 Contributions

We present a domain-specific formal language in which actuaries can describe
life insurance and pension products. This language relies on a calculation kernel,
a general software framework that can express and perform a range of compu-
tations on such products, for instance to compute reserves, stress scenarios and
cash flows.

We split what is specific to a given product (this is described in the domain-
specific language) from what is common to all products (this is implemented
by the calculation kernel). Via this split we expect to avoid the intricate and
opaque program code typically tailor-made for each insurance product in IT
systems for life insurance and pension administration.

Moreover, we achieve coherence across the entire life insurance company.
Actuaries can use the domain-specific language (and the calculation kernel)
for rapid experiments with new product designs, and the exact same product
description can then be used in subsequent administration, reporting, solvency
computations, and so on.

The separation into a specific product description and a general calcula-
tion kernel is expected to bring long-term benefits to the development and
maintenance of the IT infrastructure of life insurance companies. For instance,
when the underlying technological platform (operating system, compute clus-
ters, cloud computing, programming languages, database systems) evolves, this
affects the implementation of the calculation kernel only; the product descrip-
tions are not affected at all. This simplifies software evolution considerably,
compared with the current situation in which products are implemented as
scattered company-specific adaptations of a common software code basis. It
will no longer be necessary to perform error-prone changes to multiple copies of
the common code base when the technological platform changes.

1.2 Actuarial concepts and notation

The AML system uses continuous-time Markov models for life insurance and
pension products; these are more general than discrete-time state models. In
this section, we informally describe the models and terminology that underlie
AML.
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Figure 1: State models

A continuous-time Markov model consists of a finite number of states, typi-
cally denoted by the numbers 0, 1, 2, . . . and transition intensities between these
states. The transition intensity µij(t) from state i to state j, when integrated
over a time interval, gives the probability that a transition from state i to state
j will occur in the interval. These models exhibit the Markov property, which
is to say that future transitions depend on the past only through the current
state. In some cases, we also allow definitions based on semi-Markov models,
in which the transition intensities can additionally depend on the duration of
sojourn in the source state.

A simple two-state Markov model, as seen in Figure 1a, can be used to
represent the mortality of a single person. State 0 represents that the insured
is alive, while state 1 represents that he or she is dead. The mortality intensity
µ01(t) represents the rate of mortality for the insured, which will be determined
from information such as the age, sex, and occupation of the insured.

A slightly more complicated model must be used for products offering disabil-
ity insurance. These products can be modeled with three states, representing
active labor market participation, disability that precludes employment, and
death, respectively represented as 0, 1 and 2 (Figure 1b). There are transitions
from active participation to disability and to death, and from disability to death.
Additionally, some products may allow for reactivation, where a previously dis-
abled customer begins active labor again. Many current actuarial systems are
restricted to acyclic models. Because the AML system uses a numerical differ-
ential equation solver, it can be used with cyclic models.

Life insurance and pension products are modeled by identifying states in a
Markov model (of the life of the insured), by attaching payment intensities to
the states, and by attaching lump-sum payments to the transitions. We use
bi(t) to denote the payment stream in state i and use bij(t) to denote the lump
sum due on transition from i to j at time t.

An example product in a two-state model is the temporary life annuity,
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Figure 2: Products

where repeated payments are made to the policy holder until some expiration
date n, provided that he or she is alive. Our model contains two states: 0,
in which the policy holder is alive, and 1, in which the policy holder is dead.
Obviously, there is just a single transition: from 0 to 1. We have some mortality
intensity µ01(t), and because no payment is to occur at or following death, we
know that b01(t) = 0 and b1(t) = 0. Using the syntax 1φ to represent a function
that returns 1 just in case φ holds, and 0 otherwise, we have b0(t) = 1t<n. That
is, the policy pays a constant stream of one unit of currency until t ≥ n or until
the policy holder dies. Figure 2a shows this product.

We can extend our temporary life annuity with a disability sum. A disability
sum pays a lump sum when the policy holder is declared unfit to work prior
to some expiration g. For this task, we use a three-state model where state 0
represents active labor-market participation, state 1 represents disability, and
state 2 represents death. Clearly, we have transitions from 0 to 1, from 1 to
2, and from 0 to 2. It would be possible to have a transition from 1 to 0,
representing the policy holder returning to the labor market after a period of
disability, but we will assume that this product pays its disability benefit at
most once. Because both able-bodied and disabled holders are alive, we have
b0(t) = b1(t) = 1t<n, just as in our original product. Additionally, assuming
that the disability sum is one unit of currency, we have b01(t) = 1t<g. Figure
2b shows the extended product.

In the AML system, we divide our product models into two components: a
risk model consisting of the transition intensities and a product consisting of
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d

dt
Vj(t) =

r(t) +
∑
k;k 6=j

µjk(t)

Vj(t) −
∑
k;k 6=j

µjk(t)Vk(t)

− bj(t) −
∑
k;k 6=j

bjk(t)µjk(t)

where
Vj(t) is the statewise reserve for state j at time t
r(t) is the interest rate at t

µjk(t) is the transition intensity from j to k at t
bj(t) is the payment intensity in state j at t
bjk(t) is the lump-sum payment due on transition from j to k at t

Figure 3: Thiele’s differential equations

the payment streams and lump-sum payments. We use the term state model
to refer to the collection of states and transitions that are available in a given
Markov model, as separate from the risk model and the product. A risk model
and product can be combined if they are defined within the same state model.

The statewise reserve Vj(t) is the reserve at time t given that the insured is
in state j at time t. This is the expected net present value at time t of future
payments in the product, given that the insured is in state j at that time, and
given information up to time t. The principle of equivalence states that the
reserves at the beginning of the product should be 0 — that is, the expected
premiums should equal the expected benefits.

We compute the statewise reserves using Thiele’s differential equations (see
Figure 3). While it is beyond the scope of this paper to explain Thiele’s differ-
ential equations in detail, note that the parameters can be divided into three
categories: those that come from a product (the bj(t) and bkj(t)), those that
come from a risk model (the µjk(t)) and the interest rate, which is a property
of neither. The resulting system of equations will contain one equation for each
state in the product model.

In AML, a calculation basis for some product consists of a risk model that
matches the product’s state model, a model of the interest rate r(t), and any ad-
ditional information that might be necessary to construct the differential equa-
tions for the product.

2 Domain-specific languages

A domain-specific language (DSL) is a formal notation that is specifically tai-
lored to a particular application area, such as digital electronic hardware design
[10, 3] or financial contracts [11]. Typically, the term refers to programming lan-
guages: it is possible to construct programs, rather than just describe raw data.
These domain-specific languages should be contrasted with general-purpose pro-
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gramming languages, such as C or Java, which do not provide specific, special-
ized support for one domain.

In general, a domain-specific language allows a domain expert (in this case,
an actuary) to succinctly and precisely express concepts from the domain (in
this case, life insurance and pension products). By using a domain-specific
language, experts can write programs that may have been too complicated to
write in a general-purpose language. Additionally, they do not need to learn the
details of programming in a modern, complicated language. This enables a very
short turnaround between coming up with an idea and seeing it run, enabling
greater productivity and creativity through easy experimentation. Additionally,
the communication overhead between the domain expert and dedicated software
developers is eliminated.

Some DSLs are defined inside of a general purpose programming language,
rather than being implemented in a stand-alone manner. These languages are
referred to as embedded domain-specific languages (EDSL). EDSLs tend to be
best for skilled programmers working in one of their domains of expertise, while
stand-alone DSLs have the flexibility to adapt to the needs of users who aren’t
professional programmers.

The Actulus Modeling Language, or AML, is a stand-alone domain-specific
language. AML contains three primary components: product descriptions, com-
putation definitions, and administrative information.

Product descriptions, described in detail in Section 3, describe insurance
products and some of the associated information that is necessary for calculating
reserves. There is special support in AML for preventing common mistakes in
AML product definitions without having to run the code.

Computation definitions define calculations to be performed on the products
and associated data that were defined using AML product descriptions. They
resemble a functional programming language, which is a programming language
based on mathematical notation and functions, with added safety features.

Finally, administration information supports managing the “lifecycle” of a
pension product instance: creating the instance, maintaining and evolving the
information associated with the instance, handling of monthly payments, pro-
duction of annual statements, and so on.

3 AML product descriptions

In this section, we present an extended example of AML. We demonstrate state
models, product definitions, and risk models, with a final calculation of the
reserves for a product. In AML, the order of definitions is of no significance —
users are free to structure their models how they wish.

3.1 A customer

We now present an AML program for computing the reserve of a whole life
insurance for our favorite customer Jane who was born day one of Year 2000:
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value jane : Person = Person("Jane", TimePoint(2000,1,1), Female)

The AML statement above defines the variable jane of type Person to be a
record for which:

• jane.Name is "Jane"

• jane.BirthDate is January 1, 2000

• jane.Gender is Female

The Person type and the Person(...) operation are defined in a standard
library.

3.2 A state model

As far as a whole life insurance is concerned, a customer may be alive or dead.
Furthermore, a customer may die but cannot be resurrected. This corresponds
to the state model in Figure 1a. Instead of numbering states, AML state model
definitions name them.

statemodel LifeDeath(p : Person) where

states =

alive

dead

transitions =

alive -> dead

The AML code above defines LifeDeath(p) to be a state model with two states
and one transition which describes the behaviour of some person p from the point
of view of a whole life insurance. In particular, LifeDeath(jane) describes the
behaviour of Jane.

Inside the definition of LifeDeath(p) there are no references to p, so p seems
superfluous. As we shall see in Section 4, however, the parameter p turns out
to be useful for the early detection of certain errors.

3.3 A risk model

Jane dies according to the law of Gompertz-Makeham:

riskmodel RiskLifeDeath(p : Person) : LifeDeath(p) where

intensities =

alive -> dead by gompertzMakehamDeath(p)

The gompertzMakehamDeath(p) construct is defined in the standard library; it
returns the mortality intensity of the person p as a function of time. Thus, at
time t the mortality of p is gompertzMakehamDeath(p)(t).
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3.4 A whole life insurance

Jane’s whole life insurance specifies that the insurance company has the obli-
gation to pay an amount of money when Jane dies. For simplicity, we assume
that the insurance company pays $1. A whole life insurance looks like this:

product WholeLifeInsurance(p : Person) : LifeDeath(p) where

obligations =

pay $1 when(alive -> dead)

In particular, WholeLifeInsurance(jane) describes Jane’s whole life insurance.

3.5 A calculation basis

An AML calculation basis specifies the assumptions under which a reserve should
be computed:

basis BasisLifeDeath(p : Person) : LifeDeath(p) where

riskModel = RiskLifeDeath(p)

interestRate = (t : TimePoint) => 0.05

maxtime = p.BirthDate + 120

The calculation basis above specifies that the person p dies as specified by the
given risk model except that no person can reach the age of 120. The interest
rate specification (t : TimePoint) => 0.05 denotes a function that, given any
time t, returns 0.05. In other words, the interest rate is always five percent.
The three parameters riskModel, interestRate and maxtime are common to
all calculation bases, but some will require extra information.

3.6 A reserve computation

Now define:

value r : Money = reserve(TimePoint(2030, 1, 1), alive,

WholeLifeInsurance(jane),

BasisLifeDeath(jane))

The quantity r above is the reserve at January 1, 2030 of Jane’s whole life
insurance, provided Jane is alive at that time.

To get a complete AML program one may glue the boxed AML snippets
of Sections 3.1–3.6 together. Running that program through the AML system
computes the reserve r; see Section 5 for details. Afterwards, the AML system
allows users to inspect the reserve in various ways.

Figure 4 shows the statewise reserves as a function of time for the example
whole life insurance.
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Figure 4: Statewise reserves for a whole life insurance as functions of time. The
solid line represents the reserve in the alive state; the dotted line represents
the reserve in the dead state.

3.7 A term insurance

Now consider a term insurance with expiration e:

product TI(p : Person, e : TimeSpan) : LifeDeath(p) where

obligations =

at t pay $1 when(alive -> dead)

provided(t < p.BirthDate + e)

As an example, TI(jane, TimeSpan(years=65)) specifies that the insurance
company has the obligation to pay $1 when Jane dies, provided Jane is less than
65 years old at that time.

Or, put another way, the term insurance expires at time p.BirthDate + e

and the insurance company only pays if the time t is less than that. The
obligation starts with at t which effectively says that t denotes time.

3.8 A life annuity

Now consider a state model for which alive customers can be disabled or active,
corresponding to Figure 1b:
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statemodel Disability(p : Person) where

states =

active

disabled

dead

transitions =

active -> disabled

active -> dead

disabled -> active

disabled -> dead

The associated risk model must supply intensities for all four transitions. Having
the state model above, we may express a life annuity LA with retirement year r
for which disabled customers do not have to pay premiums:

product LA(p : Person, r : TimePoint) : Disability(p) where

obligations =

at t pay $1 per year provided(not dead and t >= r)

premiums =

at t pay $1 per year provided(active and t < r)

The P per year construct converts a payment P into a payment intensity. A
payment intensity represents a continuous flow of money; it is a convenient
approximation of payments which occur regularly.

The P provided(C) construct modifies a payment or payment intensity P

according to the condition C. Conditions can be made up of states like dead

and comparisons like t >= r using the logical connectives and, or and not.

3.9 A two life insurance

Now consider a state model for a couple:

statemodel TwoLife(insured : Person, coinsured : Person) where

states =

alive_alive

alive_dead

dead_alive

dead_dead

transitions =

alive_alive -> alive_dead

alive_alive -> dead_alive

alive_dead -> dead_dead

dead_alive -> dead_dead
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As an example, alive_dead is the state in which the insured is alive and the
co-insured is dead. In Danish insurance practice, insured and co-insured cannot
die simultaneously, so the state model only has four transitions. A first to die
insurance could read:

product FirstToDie(p : Person, q : Person) : TwoLife(p, q) where

obligations =

pay $1 when(alive_alive -> any)

The contract above pays $1 when the first among insured and co-insured dies.
The P when(E) construct takes a payment P and an event E as parameters and
returns a payment intensity.

An event can have form t == t0 which indicates that payment should occur
when the time t equals some value t0. Furthermore, an event can have form
S -> T where S and T are state sets.

In the example above, alive_alive is a singleton set whose sole member is
the alive_alive state. Furthermore, any is the set of all states of the state
model.

A transition S -> T from state set S to state set T denotes the set of tran-
sitions which go from a member of S to a member of T and which furthermore
is listed as a possible transition in the state model. The following three events
are equivalent:

alive_alive -> any

alive_alive -> alive_dead or dead_alive

alive_alive -> not alive_alive

The AML compiler does not permit state models to contain transitions like
alive_alive -> alive_alive from a state to the state itself.

3.10 A more complex basis

Recall the calculation basis used for Jane:

basis BasisLifeDeath(p : Person) : LifeDeath(p) where

riskModel = RiskLifeDeath(p)

interestRate = (t : TimePoint) => 0.05

maxtime = p.BirthDate + 120

The calculation basis above specifies a constant five percent interest rate. An
alternative could be a interest rate specified and tabulated by some Financial
Services Authority (FSA):

value yieldcurvedata : List(Real * Real) =

[ (0.25, 0.0040560),

(0.5, 0.0040560),
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(1, 0.0040560),

(2, 0.0063869), ...]

The calculation basis, however, needs the yield curve as a function interestRate,
presumably interpolating the FSA yield curve data:

basis FsaBasisLifeDeath(p : Person) : LifeDeath(p) where

riskModel = RiskLifeDeath(p)

interestRate = (t : TimePoint) => fsaYieldCurve(t)

maxtime = p.BirthDate + 120

In AML, the interpolation may be done by externally defined C# functions such
as fsaYieldCurve(t).

The example above indicates how an FSA yield curve may be used. FSA
mortality data can be treated similarly.

4 Static correctness checking

The AML system is able to detect a number of errors before a program is even
run. This is achieved through the use of a static type system, in many ways
similar to the type systems found in languages such as Java or C#. Because AML
is specifically designed for actuarial calculations, the type system has support
for detecting errors related to the actuarial domain.

In a language without static types, it is possible to confuse numbers that
represent different quantities. For example, it should make sense to add two
spans of time, but not to add two dates. Nevertheless, both may be specified in
years, months, and days. Given the definitions:

value birthdate : TimePoint = TimePoint(1984, 7, 12)

value millenium : TimePoint = TimePoint(2001, 1, 1)

value age : TimeSpan = TimeSpan(years=30)

value halfYear : TimeSpan = TimeSpan(months=6)

AML will accept operations such as:

age + halfYear // yielding a TimeSpan(years=30, months=6)

birthdate + halfYear // yielding a TimePoint(1985, 1, 12)

millenium - birthdate // yielding a TimeSpan

yet it will reject meaningless operations such as:

birthdate + millenium
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If mere numbers were used to represent dates and times, then it might be
possible to confuse time points and time spans.

In addition to these simple errors, which can be caught in almost any
statically-typed programming language, AML can catch errors that are specific
to the actuarial domain. A simple example of such an error involves using the
wrong state model. In this erroneous version of DisabilityInsurance, a state
model is used that lacks the disabled state:

product DisabilityInsurance(p : Person) : LifeDeath(p) where

obligations = pay $1 provided(disabled)

This error is detected before the program is even run.
Additionally, AML is able to check the correspondence between products

and calculation bases. A calculation basis is compatible with a product if it
can provide all of the information that is necessary to perform computations
using the product. At a minimum, it must provide an interest rate model and
transition intensities for each transition in the product’s state model. Some
products, however, require more information.

The product SpouseBenefits provides a one-time payment at the death of
the insured, but only if he or she is married. The marital status of the insured is
first checked upon his or her death — a deathbed marriage entitles the surviving
spouse to full benefits. Thus, our evaluation of the product depends on having
a model for whether the insured is married.

product SpouseBenefits(p : Person) : LifeDeath(p) where

obligations = at t pay $1

when(alive -> dead)

provided(married)

given(married ~ basis.marriageProb(p, t))

The P given(V ~ D) construct states that inside P, the variable V is dis-
tributed according to the distribution D. Above, married is a Boolean variable
which is true with a probability prescribed by basis.marriageProb(p, t).

The dot-notation means that marriageProb must be defined in the calcu-
lation basis. AML examines products and calculation bases, and checks that
each of a product’s basis variables exists and that it has the correct type in the
applied basis. An applicable basis could read

basis SpouseBasis(p : Person) where

riskModel = RiskLifeDeath(p)

interestRate = (t : TimePoint) => 0.5

maxtime = p.BirthDate + 120

marriageProb = marriage

where

13



function marriage(p : Person, t : TimePoint) : Dist(Bool) =

boolDist(if p.Gender == Male then 0.8 else 0.55)

The definition above makes the approximation that males and females are
married with probability 0.8 and 0.55, respectively, independent of age. The
boolDist library function converts a probability to a distribution. A basis like

basis ThisIsNotASpouseBasis(p : Person) where

riskModel = RiskLifeDeath(p)

interestRate = (t : TimePoint) => 0.5

maxtime = p.BirthDate + 120

cannot be used with SpouseBenefits, as it contains no model of marriage
probabilities.

AML’s type system is able to check types that include AML values. This
means, for example, that the system can use the Person parameter to a product
or basis to ensure that a product whose payments are calculated based on a 20
year old woman is not accidentally calculated in a basis for a 70 year old man.
This is why state models often take the person whose life they measure as a
parameter. In order to use a product with a calculation basis, they must be
defined in the same state model, with all parameters equal. Including the person
as a parameter to the state model ensures that it must match.

Thus, the AML compiler would protest against

value r : Money = reserve(2030, "alive",

WholeLifeInsurance(jane),

BasisLifeDeath(John))

because the reserve function requires the product and the calculation basis to
be built upon the same state model. Above, however, the product builds upon
LifeDeath(jane) whereas the calculation basis builds upon LifeDeath(John).
Because the type system is aware of the values John and jane, it can check
whether they are equal.

5 Computing reserves

One use of AML product descriptions, risk models and calculation bases is to
compute the reserve, that is, the expected present value of the future payments
to be made in a product. Here we consider an example and describe how such
reserves are computed in AML.
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5.1 Example reserve calculation

The AML reserve function call shown in Section 3.6 computes the reserve of the
example product developed in Sections 3.1 through 3.5. Concretely, the AML
implementation generates and then numerically solves this specialized instance
of Thiele’s differential equations from Figure 3:

d

dt
Valive(t) = r(t)Valive(t) − balive(t)

− µalive,dead(t) (balive,dead(t) + Vdead(t) − Valive(t))

d

dt
Vdead(t) = r(t)Vdead(t) − bdead(t)

where

Valive(t) is the reserve at time t if Jane is alive (and similar for rdead(t)).

r(t) is the interest rate at t. From our product definition, we have that r =
BasisLifeDeath(jane).interestRate, so r(t) = 0.05 for all t. The inter-
est rate may depend on time, but it does not in this case.

balive(t) is the payment intensity (in dollars per year) at time t provided Jane is
alive. Since the whole life insurance product does not specify any payments
while Jane is alive we have balive(t) = 0. Likewise, bdead(t) = 0.

µalive,dead(t) is Jane’s mortality intensity at time t. We have µalive,dead(t) =
BasisLifeDeath(jane).riskModel(alive->dead)(t) =

gompertzMakehamDeath(jane)(t).

balive,dead(t) is the payment upon death at time t, that is, $1 as specified by the
product.

As initial conditions, the differential equation solver employed by the AML re-
serve function takes

Valive(tmax) = 0
Vdead(tmax) = 0

where tmax is BasisLifeDeath(jane).maxtime which is jane.BirthDate+120

(Jane’s 120 year birthday).
The function call reserve(2030, "alive", ...) in Section 3.6 solves this

specialized instance of Thiele’s equations right to left and returns Valive(2030).

5.2 Implementation of reserve computations

Reserves are calculated by numerical solution of Thiele’s differential equations,
so that all risk models can be handled, even those containing cycles, for instance
because of reactivation (Section 6.1).
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First, the relevant instance of Thiele’s differential equations are generated
from the AML specifications of product, risk model and calculation basis.

Then, the generated equations are solved. This can be done in a number of
ways:

• By interpreting a representation of the equations in a general ODE solver,
such as a fixed-step Runge-Kutta 4th order solver on a standard CPU.
This is done in the current AML prototype calculation kernel.

• By interpreting a representation of the equations in a general solver as
above, but using a farm of standard CPUs, for instance via Amazon’s
Elastic Compute Cloud. We have successfully experimented with this
approach.

• By compiling the equations into CUDA C code [14] that represents a solver
specialized to those particular equations. This CUDA C code can then
be executed on general-purpose graphics processors (GPGPUs), which
may have 200–1500 simple parallel processors and may achieve 100-fold
speedup over CPU-based solvers. Extensive experiments in this direction
have been conducted; see further below.

• By a combination of the above approaches, such as generating specialized
CUDA C code and running it on GPGPU-equipped systems in the cloud.
We have not yet attempted this.

This range of possible solutions highlights one advantage of using AML: the
author of the product, risk model and calculation basis specifications need not
care what technology is subsequently used to compute the reserves. Conversely,
a change in underlying technology, for instance to use adaptive-step solvers
or a new generation of GPGPUs, does not require any change in the AML
specifications at all.

Also note that because of the automated pipeline from AML product descrip-
tion and so on to numeric solution, an actuary may experiment with product
definitions, risk models and calculation bases and have the reserve (and similar
quantities) recalculated immediately without tedious low-level programming in
C#, Java, C, C++, or similar general-purpose languages.

A companion ICA 2014 paper [4] describes how to automatically gener-
ate numeric solvers for Thiele’s differential equations from given AML product,
risk model and calculation basis specifications. That paper also describes how
the generated code should be structured for very high performance on GPG-
PUs. Comprehensive experiments have been conducted with this approach,
using Runge-Kutta 4th order solvers which seem particularly amenable to exe-
cution on current (2013) hardware. The differential equations corresponding to
a portfolio of products can be solved in parallel with high efficiency.
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6 Computation examples

The AML system provides built in support for computing quantitative aspects
of products defined in the language, such as reserves, cashflow, transition proba-
bilities, etc. We give examples of computations based on reserves and illustrate
how one can compute reserves in different scenarios, stress the computations,
and post process quantities.

6.1 Disability product with reactivation

Our computational model is based on solving differential equations numerically.
As a consequence, it is straightforward to compute reserves for products in-
volving cycles in the underlying state and risk models; for example, disability
products with reactivation. This is decidedly non-trivial in computational mod-
els based on analytical solutions.

Recall the Disability state model in Section 3.8:

statemodel Disability(p : Person) where

states =

active

disabled

dead

transitions =

active -> disabled

active -> dead

disabled -> active

disabled -> dead

and note that the model allows not only a transition from active to disabled,
but also the reactivation transition from disabled to active.

As an example involving reactivation, we consider a disability annuity DA,
where the insurance company pays an annuity during disability until expiry e:

product DA(p : Person, e : TimePoint) : Disability(p) where

obligations =

at t pay $1 per year provided(t < e and disabled)

The risk model of the calculation basis allows us to include or exclude reac-
tivation:

riskmodel RiskDisability(p : Person, r : Bool) : Disability(p)

where

intensities =

active -> disabled by gompertzMakehamDisability(p)

active -> dead by gompertzMakehamDeath(p)

disabled -> active by
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if r then reactivation(p) else (t : TimePoint) => 0.0

disabled -> dead by gompertzMakehamDeath(p)

where r is a boolean controlling whether to include reactivation. Reactivation
is excluded by specifying an intensity of zero. For example purposes, we choose
a very simple intensity function when reactivation is included:

function reactivation(p : Person) : TimePoint -> Real =

(t : TimePoint) => 10 ^ (-0.03 * (t - p.BirthDate))

Note that the return type of the function reactivation contains an arrow.
Arrows in types denote functions — in this case, reactivation takes a person
as its argument and returns a new function from points in time to the real
numbers.

Define a basis BasisDisability for the risk model, as previously, which
propagates reactivation inclusion/exclusion to the risk model:

basis BasisDisability(p : Person, r : Bool) : Disability(p)

where

riskModel = RiskDisability(p, r)

interestRate = (t : TimePoint) => 0.05

maxtime = p.BirthDate + 120

We can now easily compare the reserve for the product in a model with
reactivation, r0, to the reserve for the product without, r1:

value r0 : Reserve =

reserve(2030, DisabilityAnnuity(jane, 2065),

BasisDisability(jane, true))

value r1 : Reserve =

reserve(2030, DisabilityAnnuity(jane, 2065),

BasisDisability(jane, false))

Figure 5 shows the results. With a positive reactivation intensity, the reserve in
the computation with reactivation is smaller than the reserve in the computation
without, because the product only pays in the disabled state. The example
reactivation intensity tends towards zero, and thus the reserve in the disabled

state with reactivation tends towards the reserve without reactivation.

6.2 Solvency II stress

The EU Solvency II legislation specifies a number of stresses to be used when
computing the solvency capital requirements for an insurance company. We give
examples of implementing such stresses directly in AML for a product instance.

The Solvency Capital Requirements (SCR) Life underwriting risk module [6]
specifies a number of stresses to the intensities of the risk model. Define a
stressed risk model StressedRiskLifeDeath as:
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Figure 5: Reserves for a disability annuity with and without reactivation. The
red reserves are computed for a model with reactivation; the blue reserves for
model without.

riskmodel StressedRiskLifeDeath

(p : Person,

s_mu : (TimePoint -> Real) -> (TimePoint -> Real))

: LifeDeath(p)

where

intensities = alive -> dead by s_mu(gompertzMakehamDeath(p))

The syntax s_mu : (TimePoint -> Real) -> (TimePoint -> Real) declares
that s_mu is a function which transforms the original mortality intensity function
which has type TimePoint -> Real (in this case gompertzMakehamDeath) to
new stressed intensity function with that same type. For example, the Lifemort

mortality risk specifies a permanent 15% increase in mortality rates:

function LifeMort(mu : TimePoint -> Real) : TimePoint -> Real =

(t: TimePoint) => 1.15 * mu(t)

The function LifeMort applies the mortality stress to an existing intensity func-
tion mu, resulting in a new intensity. Giving the identity function for the stress
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s_mu parameter in StressedRiskLifeDeath results in a risk model with no
stress.

Next define a basis StressedBasisLifeDeath which propagates the stress
to the risk model:

basis StressedBasisLifeDeath

(p : Person,

s_mu : (TimePoint -> Real) -> (TimePoint -> Real))

: LifeDeath(p)

where

riskModel = StressedRiskLifeDeath(p, s_mu)

interestRate = (t : TimePoint) => 0.05

maxtime = p.BirthDate + 120

As above, it is straightforward to compute reserves with and without the stress,
and compare the results. Figure 6 shows the effect of the mortality stress for a
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V dead   (r0)
V alive   (r1)
V dead   (r1)

Figure 6: Reserves for a term insurance. The red reserves (r0) are computed
without stress; the blue reserves (r1) with a mortality stress by a permanent
15% increase in mortality rates.

term insurance product. As expected increasing mortality rates leads to larger
reserves since the product pays a sum upon death of the insured.

We may further extend StressesBasisLifeDeath to also include a stress to
the interest rate:
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basis StressedBasisLifeDeath

(p : Person,

s_mu : (TimePoint -> Real) -> (TimePoint -> Real)

s_int : (TimePoint -> Real) -> (TimePoint -> Real))

: LifeDeath(p)

where

riskModel = StressedRiskLifeDeath(p, s_mu)

interestRate = s_int(r)

maxtime = p.BirthDate + 120

where r is the original interest rate, as a function of time.
For example, the Solvency Capital Requirements (SCR) Market risk module

specifies an interest rate risk. This stress is specified as a table of relative
changes, both up and down, for maturities ranging from 0.25 to 30 years. It is
possible to express the table in AML and to use it to stress the interest rate.

6.3 Duration

As a final example, we show how computed reserves can be post-processed to
compute the sensitivity of a product to changes in the interest rate (see for
example Fabozzi [7, Chapter 4]).

The duration D is computed as

D =
V [r + ∆r] − V [r − ∆r]

2∆r

and the modified duration as

ModD =
D

V [r]

where V [r] denotes the computed reserve for the product in question with an
interest rate of r.

To express such post processing in AML we start by parametrizing our cal-
culation basis with the interest rate:

basis LifeDeathBasis(p : Person, r : TimePoint -> Real)

: LifeDeath(p)

where

riskModel = RiskLifeDeath(p)

interestRate = r

maxtime = p.BirthDate + 120

It is then straightforward to compute the quantities in the equations for the
duration and the modified duration:
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function interest(t : TimePoint) : Real = 0.05

function shift(r : TimePoint -> Real,

s : Real) : TimePoint -> Real =

(t : TimePoint) => r(t) + s

value V0 : Money =

reserve(2030, "alive", P, LifeDeathBasis(jane, interest))

value Vplus : Money =

reserve(2030, "alive", P,

LifeDeathBasis(jane, shift(interest, 0.001)))

value Vminus : Money =

reserve(2030, "alive", P,

LifeDeathBasis(jane, shift(interest, -0.0001)))

value D : Real = (Vplus - Vminus) / (2 * 0.001)

value ModD : Real = D / V0

where P is the product instance, for example

value P : Product = LA(jane, 35)

7 Future work

Future work includes the design of a more general calculation language AML
Computation, for describing interest rate stress, mortality stresses, and so on,
and possibly for aggregating the results of computations and simulations. Also,
we are actively pursuing a range of approaches to scalable high-performance
computation on AML product portfolios [4]. Finally, we will consider whether
to develop an actual domain-specific language AML Administration for the man-
agement of life insurance contracts (creation, monthly updates, annual reports,
and so on), or whether a more classical library-style application programmers
interface (API) would serve the various use contexts for AML better.

8 Related work

To the best of our knowledge, there are no previous proposals for domain-
specific languages within the life insurance and pension domain. However, there
are several well-known domain-specific languages in related areas, in particular
finance; we give a brief overview here.
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Cash Flow Reengineering Perhaps the earliest financial DSL in the liter-
ature is Risla, described in Arnold et al. [2]. Risla was used to create new
financial products by composing already-existing cash flows, providing a high-
level specification that was accessible to experts. COBOL code could then be
generated from the Risla specification. This code integrated the new product
into the business processes of Bank MeesPierson and CAP Volmac, the lan-
guage’s developers. In 2003, Mogensen [12] presented a language used for much
the same purpose as Risla. The most interesting feature of this language is
its ability to ensure that payment streams are not used twice, which can be
non-trivial to verify in complex products. The resulting language was used by
an unnamed major Danish bank, which had originally approached Mogensen’s
institute for help because their prior practice of implementing pricing code by
hand in a general purpose language was unsatisfactory, and they concluded that
the custom language was helpful.

Financial Contracts Jones et al. present a language for building complex
financial contracts by combining simple contracts [11]. This language is an
EDSL in the programming language Haskell. This work has been expanded upon
throughout the years by Andersen et al. [1], Frankau et al. [9] and Flænø Werk
et al. [8].

Controlled Natural Languages Pace and Rosner [13] have an alternate ap-
proach for formulating a DSL for financial products. Instead of following the
conventions of programming languages, they provide an outline of a controlled
natural language — a subset of a natural language with a precise formal seman-
tics — that can be used to describe financial contracts. This language is based
on a formalized deontic logic for describing these contracts.

Legal Specifications In 2010, the United States’ Securities and Exchange
Commission released a recommendation [15, pp. 213-214] that investors rep-
resent certain kinds of financial instruments using Python code. The response
of ACM SIGPLAN (the leading professional organization for programming lan-
guage experts) [5] agrees that a formal, algorithmic specification of these fi-
nancial products and their analysis is worthwhile, though they recommend a
functional language such as F# or a domain-specific language or application
library as being more suited to the problem.

9 Conclusion

We have described a domain-specific language, or notation, for use by actuaries
when designing and evaluating life insurance and pension products. A product
description in this language can be used for a range of purposes within a life
insurance company, thus ensuring coherence between product administration,
reporting, solvency computations and so on.
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We also described a general calculation kernel that can compute reserves
and other quantities of interest, given product descriptions expressed in the
domain-specific language.

The separation into a specific product description and a general calculation
kernel is expected to bring long-term benefits. For instance, changes to the
underlying technological platform will affect the calculation kernel only, not the
product descriptions; these remain isolated from the technological change that
will inevitably happen over a pension product’s multidecade lifespan.
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