
88 LXF206 January 2016 www.linuxformat.com

Python

whatever the quantity this might be, I desire to receive it”.

The king soon realised that there was not enough wheat in

the world to fulfil this demand, and once again was

impressed. There are various endings to this story, in one

Sissa is given a position within the king’s court, in another he

is executed for being a smart arse. Hopefully this tutorial’s

chess treatment will feature neither execution nor LXF towers

being buried in mountains of wheat.

Chess is a complicated game – all the pieces move

differently depending on their circumstances, there are

various extraordinary moves (eg en passent pawn capture,

castling) and pawns get promoted if they make it all the way

to the other side. As a result, a surfeit of pitfalls present

themselves to the chess-programming dilettante, so rather

than spending a whole tutorial falling into traps we’re going to

borrow the code from Thomas Ahle’s Sunfish – a complete

chess engine programmed in Python. There’s no shortage of

chess engines: from the classic GNU Chess to the Kasparov-

beating Deep Blue (1997) to the pack-leading Stockfish.

Chess engines on their own generally do not come with their

own GUI, their code being mostly devoted to the not

inconsiderable problem of finding the best move for a given

position. Some (including Sunfish) allow you to play via a text

console, but most will talk to an external GUI, such as xboard,

via a protocol such as the Universal Chess Interface (UCI) or

WinBoard. Besides providing nice pictures of the action, this

enables us to play against different engines from a single

program. Furthermore, we can pit engine against engine and

enjoy chess as a spectator sport.

The Sunfish engine
We’ll assume that you know how to play chess, but if you

don’t you can practice by playing against Thomas’s Sunfish

engine. You’ll find the code on the LXFDVD in the Tutorials/

Chess directory. Copy this directory to your home folder, and

then run it with:

$ cd ~/Chess

$ python sunfish.py

The program uses Unicode glyphs to display the pieces in

the terminal, making it look a little more chess-like than GNU

Chess. Check the box (see Installing Xbound and Interfacing

with Sunfish) to see how to enjoy graphical play. Moves are

inputted by specifying the starting and ending coordinates, so

the aggressive opening which moves the king’s pawn to e4

would be inputted e2e4. Note that this is slightly longer than

the more common algebraic notation (in which the previous

move would be written e4), but makes it much easier for

Python: Sunfish
chess engine
Jonni Bidwell analyses the innards of a small but perfectly formed chess
engine that bests him with alarming regularity.

L
egend tells of one Sissa ibn Dahir who invented the

game of Chess for an Indian king. So impressed was

that king that he offered Sissa anything he desired as a

reward. Being of a calculating bent, Sissa replied “Then I wish

that one grain of wheat shall be put on the first square of the

chessboard, two on the second, and that the number of

grains shall be doubled until the last square is reached:

 Unicode

generously

provides chess

piece icons

which enhance

the experience

of playing from

the terminal.

Jonni Bidwell

is rumoured to be
a mechanical Turk,
it would explain
the rat-a-tat of
gears as he
produces words in
exchange for
bread and beer.

Our
expert

January 2016 LXF206 89www.techradar.com/pro

Python

Never miss another issue Head to http://bit.ly/LinuxFormat

machines to understand what you mean. If you wish to castle

then just specify that you want to move your king two places

sideways, the machine knows the rules and will move the

relevant rook as well, provided that castling is a legal move at

that stage in the game. Depending on your skills you will win,

lose or draw.

In LXF203 we used PyGame to implement the ancient

board game Gomoku. For this tutorial we’ll see a slightly

different approach. Have a look at the sunfish.py code: the

shebang directive in the first line specifies that sunfish.py

should be run with the Pypy compiler, rather than the

standard Python interpreter. Installation of Pypy is trivial and

will improve Sunfish’s search-performance drastically, but for

our purposes it will be fine to proceed without it. We import

the print_function syntax for backwards compatibility with

Python 2, as well as the needed parts of other modules.

Then we initialise three global variables, which we needn’t

worry about here.

Chairman of the board
Now we begin to describe our chessboard. Its starting state is

stored as a 120-character string, initial , which may seem a

little odd, especially if you remember how nice it was to store

the GoMoku board as a two-dimensional list. Be that as it

may, this representation turns out to be much more efficient.

Before defining initial we specify what will be the indices of

the corner squares using the standard layout, so A1 is the

lower left corner and A8 the lower right etc. We divide the

string into rows of 10 characters, remembering that the

newline \n counts as a single character. The actual board

starts on the third row, where we represent black’s major

pieces with the standard lowercase abbreviations, which we’ll

list below for completeness:

p: Pawn

r: Rook

n: Knight

b: Bishop

q: Queen

 k: King

We have characters padding the beginning (a space) and

the end (\n) of each row so we know that moving a piece

one square vertically will involve adding or subtracting 10

from its index in the string. Dually, moving one square along

the horizontal axis will be done by adding or subtracting 1,

and we know that if the resulting index ends with a 0 (ie is 0

modulo 10) or 9 (ie is 9 modulo 10) then that position is not

on the board. The vertical ranks 1-9 can also be read directly

from the second digit of the index, and the horizontal rows

can be translated linearly from the first. Empty spaces on the

board are represented by periods (.) to avoid confusion with

the empty squares represented by spaces.

Using the numerology (above) we describe unit

movements in the compass directions with appropriately

named variables, and then define the possible movements of

each piece in the dictionary directions . Note that we only

define the movements for white’s material here (ie pawns go

north), their opponents can be figured by a simple

transposition. Note also that we describe all the possible

directions they can move, even though this may not be

permitted by the current position (eg pawns can only move

diagonally when they are taking and can only move two

squares on their first move. We don’t take account of major

pieces moving two or more squares in a straight line ('sliding')

here, rather dealing with that instead in the move generation

loop. Next, we define a lengthy dictionary pst . In a sense this

is the data bank of the engine, it assigns a value to each piece

for a given position on the board, so, eg, knights (N) tend to

be more useful towards the centre of the board, whereas the

queen is valueable anywhere. The king’s values are

This is how

every chess

game starts,

but after just

four moves we

could be in one

of nearly 320

million different

positions.

Sunfish used to be

limited by the lack

of a quiescence

search. This meant

that moves at the

depth limit were

not analysed,

which can lead to

so-called horizon

effects, in that the

engine can’t see

past blunders here.

Thanks to a simple

check, moves

at this limit are

analysed to ensure

they result in

quiescent positions.

Quick
tip

The Mechanical Turk and other chess-playing machines
In 1770 Baron Wolfgang von Kempelen wowed

the Viennese court with ‘The Turk', a clockwork

automaton sat before a chessboard. Kempelen

claimed that his invention would best any human

chess player. Indeed, the Baron and the Turk

travelled around Europe and wowed onlookers

with the latter’s prodigious talent.

The Turk was a hoax, and its talent actually

belonged to the poor person hiding under the

table. However, it inspired people to think more

about chess playing machines, and in 1950

Shannon and Turing both published papers on

the subject. By the 1960s computers were

playing reasonable chess: John McCarthy

(dubbed the father of AI) and Alan Kotok at MIT

developed a program that would best most

beginners. This program, running on an IBM

7090, played a correspondence match via

telegraph against an M-2 machine run by

Alexander Kronrod’s team at ITEP in Moscow.

This was the first machine versus machine

match in history, and the Soviets won 3-1. Their

program evolved into KAISSA, after the goddess

of chess, which became the computer chess

champion in 1974. By the early 80s the chess

community began to speculate that sooner or

later a computer would defeat a world champion.

Indeed, in 1988 IBM’s Deep Thought shared first

place at the US Open, though reigning world

champion Garry Kasparov resoundingly defeated

it the following year. In 1996 Deep Blue stunned

the world by winning its first game against

Kasparov, although the reigning world champion

went on to win the match 4-2. The machine was

upgraded and succeeded in beating Kasparov

the following year, though not without

controversy. Since then computers regularly beat

their inferior meatbag competition, although

their prowess is driven by algorithmic advances.

