
It is NP-hard to verify an LSF on the sphere

Thomas Dybdahl Ahle

March 2017

A locality sensitive filter system, LSF, on a sphere is a matrix A ∈ Rn×d

where the rows are vectors of approximately unit length. (It could for example
have Gaussian N (0, 1/d) elements.) The LSF can be used to create a nearest-
neighbour data-structure on a set of points on the unit sphere X ⊆ Sd−1, by
creating a ‘bucket’ Ba for each row a ∈ A. For each x ∈ X we add x to Ba

if 〈x, a〉 ≥ τ for some constant τ . We say an LSF is ‘correct’ for a value r,
0 < r < 1, if for all x ∈ X and y ∈ Sd−1 with 〈x, y〉 ≥ r there is an a ∈ A such
that 〈x, a〉 ≥ τ and 〈y, a〉 ≥ τ . Intuitively an LSF is correct if two points, that
are close to each other, are guaranteed to fall in a shared bucket.

An important problem is whether we can verify that an A is correct for a
value r. In this note we show that such a verification is not possible in time
polynomial in n, unless P = NP . In particular we show this for the case of
a data structure with just a single point. That is |X| = 1. The approach is
inspired by [1].

Definition 1 (Problem 1: Verification). Given constants 0 < τ < r < 1, a
vector x ∈ Sd−1 and a matrix A with Ax ≥ τ , return a point y ∈ Sd−1 such that
Ay < τ and 〈y, x〉 = r.

Importantly, if an LSF is correct for r, the above problem should fail for any
x. On the other hand, if the LSF is not correct, the above problem will find a
y that that proves it bad.

We show that the 3-Sat problem can be reduced to the verification problem.

Definition 2 (Problem 2: 3-Sat). Given n boolean variables, xi, and m clauses
on the form (¬)xi ∨ (¬)xj ∨ (¬)xk, determine if there is an assignment to the
variables that make all clauses true.

We will reduce 3-Sat to the vertification problem with r = 1/
√

2, τ = α/
√
n,

α =
√

2/3/(2−
√

2) and x = (1, 0, . . . , 0) ∈ Rn+1. Other values are also possible,
but these are pretty typical for the values that would be used in practice. Here
α was chosen such that α/

√
2 + 1/

√
6 = α < α/

√
2 + 3/

√
6.

TODO: Decide whether to use d or n.
For each clause (¬)xi ∨ (¬)xj ∨ (¬)xk with 1 ≤ i < j < k ≤ n we define a

row a ∈ Rn+1. We set a0 = α/
√
d and ai = 1/

√
3 if xi is positive in the clause,

and ai if xi is negative (¬) we set ai = −1/
√

3. If xi is not the the clause, we

1

set ai = 0. (Note that ‖a‖22 = 1 + α2/d ≈ 1, which is similar to what it would
be with gaussian values.)

We further define rows bi ∈ Rn+1 for 1 ≤ i ≤ 2n such that bi,0 = α/
√
d,

b2i,2i+1 = 1/
√

3 and b2i+1,2i+2 = −1/
√

3. In total we get a matrix A with m+2n

rows and n + 1 columns. For all a and b we have 〈a, x〉 = 〈b, x〉 = α/
√
d = τ .

(Note we don’t quite have ‖b‖ ≈ 1, but we could fix that by a
√

2/3 coordinate
and 0 coordinates on the other vectors.)

Visually the different vectors look like this:

y = (1/
√

2,±1/
√

2d, . . .)

x = (1, 0, . . . , 0)

a = (α/
√
d, 0, . . . ,±1/

√
3, . . . , 0)

b = (α/
√
d, 0, . . . ,±1/

√
3, . . . , 0)

Theorem 1. The vertification problem for A, τ , r, x will find a counter example
y if and only if the 3-Sat problem is satisfiable.

Proof. We first show that if the clauses are all satisfiable, we can find a y as by
the verification problem. Let xi ∈ {true, false} for 1 ≤ i ≤ n be an assignment
satisfying the clauses. We let y0 = 1/

√
2 and yi = ±1/

√
2n where the sign is

negative if xi is true and positive if xi is false.
This makes ‖y‖22 = 1 and 〈x, y〉 = 1/

√
2 = r. For each a in A we have

〈y, a〉 = α/
√

2d + {−3,−1, 1, 3}/
√

6d, depending on how many of the signs in
a match those in y. Importantly, by the way y is build from an assignment
satisfying the clause, at least once the signs differ. Hence 〈y, a〉 ≤ α/

√
2d +

1/
√

6d = α/
√
d = τ . Finally for each even i and b = bi in A, we have 〈y, b〉 =

α/
√

2d± 1/
√

6d ≤ α/
√
d = τ .

TODO: Make b a little bit smaller, so it is strictly smaller than τ , or the
intersection with a larger.

In the other direction, we’ll show that given a y from the verification problem,
we can find a satisfying assignment for the 3-Sat problem.

First notice that y0 = 〈y, x〉 = 1/
√

2. Then from the b rows, we have
yi/
√

3 + α/
√

2d ≤ τ and −yi/
√

3 + α/
√

2d ≤ τ for i ≥ 1. This implies for all
i ≥ 1 that −1/

√
2d ≤ yi ≤ 1/

√
2d. Since ‖y‖22 = 1, the extreme values have to

be achieved, hence yi ∈ {−1/
√

2d, 1/
√

2d}.
Now for each clause, there is an a ∈ A with corresponding signs. Since we

have 〈y, a〉 = α/
√

2d + {−3,−1, 1, 3}/
√

6d ≤ τ depending on the number of
satisfying clauses, we must have the signs not matching at least once, meaning
y satisfies the clause.

References

[1] Marko D Petković, Dragoljub Pokrajac, and Longin Jan Latecki. Spherical
coverage verification. Applied Mathematics and Computation, 218(19):9699–
9715, 2012.

2

