
Software Programmable DSP
Platform Analysis
Episode 2, Tuesday 21 March 2006

Contents, Goals, and Administrivia

Compilation environment
Preprocessor, Compiler, Assembler & Linker

Compiler Architecture

Lexical Analysis
Tokens, Regular Expressions

Syntactical Analysis
Context Free Grammars, Derivations
Parse Trees

Andrzej Wąsowski Episode 2: Welcome! 2–4

Goals
You will

• learn the C programming language better
• understand compilation error messages
• know abilities and limitations of compilers
• be able to program more efficiently by:

• producing more efficient code.
• using less time for development.

• understand compiler documentation
• be able to choose compiler options
• be able evaluate compiler’s suitability for your

application.
• learn objective functions for code optimization.

Andrzej Wąsowski Episode 2: Welcome! 2–6

FP8-17: Software Programmable
Signal Processing Platform
Analysis

Andrzej Wąsowski

Contents

• Structure of a compiler
• Architecture and instruction set of DSPs/VLIW
• Implementation of a compiler for DSPs
• Lexical analysis
• Parsing
• Diagnostics
• Register allocation
• Code selection
• Code optimization

Andrzej Wąsowski Episode 2: Welcome! 2–5

The course, teachers, etc.

• Teachers:
• Andrzej Wąsowski (compilers)
• Ole Wolf (architecture)
• Andreas and Michael (instructors)

• http://www.itu.dk/˜ wasowski/teach/dsp-compiler-06
• schedule, exercise sheets, slides and news

• Text: Appel. Modern Compiler Implementation
in C + website.

• Each module = 90 min. lecture + 90 min. tutorial
• Do ask questions during lectures.
• In depth understanding requires devoting more

time to the exercises than 90min.

Andrzej Wąsowski Episode 2: Welcome! 2–8

Compilation Environment (II)

• Preprocessor expands macrodefinitions
(#define’s), joins continued lines, removes
comments (in C), includes files (#include).

• Compiler translates a single source file into
assembly file

• Assembler translates .asm file to a binary .o file
• Linker consolidates bits and pieces into a single

program.
• Modern linkers can perform global program

optimizations, too.

Andrzej Wąsowski Episode 2: Compilation environment 2–10

Non objectives
You will not

• be able to modify existing compilers without
excessive effort or additional introduction.

• be able to implement a compiler from scratch,
• know how to implement advanced features of

contemporary languages like: objects,
polymorphism, garbage-collectors, aspects,
higher order functions, etc.

• learn programming languages theory (type
systems, semantics, etc)

• learn mathematical linguistics (regular,
context-free languages, etc)

Andrzej Wąsowski Episode 2: Welcome! 2–7

Compilation Environment

preprocessor

.c
&

.h
fi
le
s

compiler
single .c

file

.asm

file

librarian

assembler

linker

single .obj

file

obj & library

obj & library

files

files

single library

file

executable or image

file

Andrzej Wąsowski Episode 2: Compilation environment 2–9

Example preprocessed

hello.c

extern int printf(const char *format, ...);

int main(int argc, const char * argv[])
{

printf("Hello, world!\n");
return 0;

}

Expanded macros, removed comments, included
files (not in this example).

Andrzej Wąsowski Episode 2: Compilation environment 2–12

Example compiled (II)

• The compilation step is our main point of
interest.

• The C program is translated into a flat list of
simple instructions.

• Instructions and addresses are symbolic
(mnemonics and labels).

Andrzej Wąsowski Episode 2: Compilation environment 2–14

Compilation Environment: Example

hello.c

#define MSG "Hello, world!\n"
extern int printf(const char *format, ...);
/* A comment before the main function */
int main(int argc, const char * argv[])
{

printf(MSG);
return 0;

}

requires: preprocessing, compiling, assembling and
linking with the startup code and the C library.

Andrzej Wąsowski Episode 2: Compilation environment 2–11

Example compiled
Hello.c compiled wit GCC for x86, giving hello.s:

.file "hello.c"

.section .rodata
.LC0: .string "Hello, world!\n"

.text
.globl main

.type main, @function
main: pushl %ebp

movl %esp, %ebp
pushl $.LC0
call printf
leave
movl $0, %eax
ret

Andrzej Wąsowski Episode 2: Compilation environment 2–13

Example compiled (IV)

• The 67xx assembly is different from x86.
• Compiler translates a portable code

to a platform specific one.
• Some instructions are put in parallel

(STW||MVKH).
• NOP (no operation) instructions are inserted.
• Seemingly nonlinear execution (call place and

parameter passing).

Andrzej Wąsowski Episode 2: Compilation environment 2–16

Example assembled (II)

SYMBOL TABLE:
00000000 l df *ABS* 00000000 hello.cpp
00000000 l d .text 00000000
00000000 l d .data 00000000
00000000 l d .bss 00000000
00000000 l d .rodata 00000000
00000000 l d .eh_frame 00000000
00000000 l d .note.GNU-stack 00000000
00000000 l d .comment 00000000
00000000 g F .text 00000023 main
00000000 *UND* 00000000 printf
00000000 *UND* 00000000 __gxx_personality_v0

Andrzej Wąsowski Episode 2: Compilation environment 2–18

Example compiled III
Hello.c compiled with TI’s cl6x giving hello.asm (fragment):

SL1: .string "Hello, world!",10,0
CALL .S1 _printf
STW .D2T2 B3,*SP-(16)
MVKL .S2 RL0,B3
MVKL .S1 SL1+0,A3
MVKH .S1 SL1+0,A3
STW .D2T1 A3,*+SP(4)
|| MVKH .S2 RL0,B3 ;CALL OCCURS

RL0: LDW .D2T2 *++SP(16),B3
ZERO .D1 A4
NOP 3
RET .S2 B3

Andrzej Wąsowski Episode 2: Compilation environment 2–15

Example assembled

• Assembler resolves symbolic addresses and
translates symbolic instructions to binary
values.

• External symbols remain unresolved.
• On the next slide statistics for the object file

hello.o assembled from hello.s (GNU C/x86).

Andrzej Wąsowski Episode 2: Compilation environment 2–17

Architecture of a compiler

• Compilers are divided into layers,
called stages or passes.

• A stage inputs some program representation,
processes it and outputs a another
representation.

• The first stage typically inputs text files. The last
stage typically outputs machine code, eg. an
image that can be stored in EEPROM or a
binary file that can be executed on a PC.

• The front stages perform analyses, while the
late stages perform syntheses.

Andrzej Wąsowski Episode 2: Compiler Architecture 2–20

Lexical analysis: Tokens
• A source program is represented as a

sequence of characters
• A lexical analyzer (a lexer) breaks the sequence

of characters into a sequence of corresponding
tokens (like “words”).

ID foo n14 last
NUM 73 0 00 515 082
REAL 66.1 .5 10. 1e67 5.5e-10
IF if
NOTEQ !=
LPAR (
RPAR)

Andrzej Wąsowski Episode 2: Lexical Analysis 2–22

Example assembled (III)

• This object (.o) file needs to be linked with the C
library or another .o file that provides the
printf function.

• In modern compilers the assembling stage is
often incorporated in the compiler.

Andrzej Wąsowski Episode 2: Compilation environment 2–19

Architecture of a compiler (II)

lexer

parser

semantic analysis

translation

optimizer

register allocation

assembler

ASCII
character

stream
(file)

"v" "o" "i"
"d" " " "m"
"a" "i" "n"
. . .

stream of tokens
(words)

kwVOID id("main") LPAREN
id("int") COMMA id("argc") . . .

abstract syntax
tree (AST)

annotated
abstract syntax
tree (AST)

flat list of
instructions
(triples,
quadraples)

flat list of
instructions

(triples, quadraples)

symbolic
instructions with

labels

r123 ← r12 + r3

jz L5
jmp [r123]
. . .

r123 ← r12 + r3

jz L5
jmp [r123]
. . .

machine
instructions
without local
labels (.o file)

AX ← BX+CX
jz L5
jmp [AX]
. . .

f0 07 67 a4 5d cd . . .

Andrzej Wąsowski Episode 2: Compiler Architecture 2–21

Lexical analysis: Lexer (continued)

• Lexer also removes comments (done by the
preprocessor in C)

• Lexer removes white space from the code
• What are the words we need? How do we

specify them?

Andrzej Wąsowski Episode 2: Lexical Analysis 2–24

Regular Expressions
a An ordinary character stands for itself
ε The empty string.
M‖N Alternation, chosing from M or N
M ·N Concatenation, M followed by an N
M∗ Repetition zero or more times,

Kleene’s closure
M+ Repetition one or more times
M? Optional
[a−zA−Z] Character set
. Any single character except newline

The longest prefix of current input that can match
any regular expression is taken as the next token.

Andrzej Wąsowski Episode 2: Lexical Analysis 2–26

Lexical analysis: Tokens (continued)
The program

float match0(char *s)
{ /* find a zero */

if (!strncmp(s,"0.0", 3))
return 0.;

}

is translated to:

FLOAT ID(match0) LPAREN CHAR STAR ID(s)
RPAREN LBRACE IF LPAREN BANG ID(strncmp)
LPAREN ID(S) COMMA STRING(0.0) COMMA NUM(3)
RPAREN RPAREN RETURN REAL(0.0) SEMI RBRACE

EOF

Andrzej Wąsowski Episode 2: Lexical Analysis 2–23

Describing Tokens
An identifier is a sequence of letters and digits; the first
character must be a letter. The underscore _ counts as a letter.
Upper- and lowercase letters are different. If the input stream
has been parsed into tokens up to a given character, the next
token is taken to include the longest string of characters that
could possibly constitute a token. Blanks, tabs newlines, and
comments are ignored except as they serve to separate
tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords and constants.

• How do we detect identifiers?
• We need a precise way to describe them first.
• Regular expresssions offer such a way.

Andrzej Wąsowski Episode 2: Lexical Analysis 2–25

Lexer Generators
• Lexer generator: given regular expressions for

token types generate a lexer translating a
stream of characters to a stream of tokens.

• by translating regular expressions to
deterministic finite automata, similar to Mealy
machines.

• The translation algorithm is standard (Appel,
section 2.3–2.4)

• A popular free lexer generator targeting C is flex
(see also lex in Appel, section 2.5).

• There exist such tools for any general purpose
programming language.

Andrzej Wąsowski Episode 2: Lexical Analysis 2–28

A Sample Straight-Line Programs

a := 5+3;
b := (print (a, a+1), 10+a);
print(b)

Token representation returned by a lexer:

ID(a) ASSGN DEC(5) PLUS DEC(3)
SEMI ID(b) ASSGN LPAR PRINT LPAR
ID(a) COMMA ID(a) PLUS DEC(1) RPAR
COMMA DEC(10) PLUS ID(a) RPAR SEMI
. . .

Andrzej Wąsowski Episode 2: Syntactical Analysis 2–30

Examples of Regular Expressions

if an if keyword (IF)
[a−z][a−z0−9]∗ a simple identifier

(ID), note: no
capital letters

[0−9]+ a decimal number
(NUM)

([0−9]+”.”[0−9]∗)‖([0−9]∗”.”[0−9]+) a real number
(REAL)

(”//”[a−z]∗”\n”)‖(””‖”\n”‖”\t”)∗)∗ whitespace and
one line comment

How can we describe the C identifier token?
Andrzej Wąsowski Episode 2: Lexical Analysis 2–27

Straight-Line Programs

a := 5+3;
b := (print (a, a+1), 10+a);
print(b)

produces

8 9
18

Andrzej Wąsowski Episode 2: Syntactical Analysis 2–29

Syntactical Analysis: Parsing

• A parser inputs the stream of tokens produced
by the lexer.

• The tokens are analyzed and translated into an
Abstract Syntax Tree

• This analysis is performed by finding a
deriviation of the program with respect to a
context free grammar of the source language.

Andrzej Wąsowski Episode 2: Syntactical Analysis 2–32

A Grammar for SL Programs

Stmnt → Stmnt SEMI Stmnt
Stmnt → ID ASSGN Expr
Stmnt → PRINT LPAR List RPAR

Expr → ID
Expr → DEC
Expr → Expr PLUS Expr
Expr → LPAR Stmnt COMMA Expr RPAR

List → Expr
List → List COMMA Expr

Terminals are capitalized. Nonterminals arex Stmnt,
Expr, List. Stmnt is the start symbol. See also
Grammar 3.1, p. 41 in Appel.

Andrzej Wąsowski Episode 2: Syntactical Analysis 2–34

• How do we decide whether this token stream
constitutes a legal program?

• How do we translate it to a tree?

Andrzej Wąsowski Episode 2: Syntactical Analysis 2–31

Syntactical Analysis: Parsing (II)

• A context free grammar is a set of production
rules describing the language’s syntax.

• A production:

symbol → symbol symbol . . . symbol

• where symbol is either a token, called a
terminal symbol now,

• or a nonterminal symbol.

Andrzej Wąsowski Episode 2: Syntactical Analysis 2–33

Rightmost Derivation (example)
Stmnt →1 Stmnt ; Stmnt →1 Stmnt ; Stmnt ; Stmnt
→3 Stmnt ; Stmnt ; print(List)
→8 Stmnt ; Stmnt ; print(Expr)
→4 Stmnt ; Stmnt ; print(b)
→2 Stmnt ; b:=Expr ; print(b)
→7 Stmnt ; b:=(Stmnt, Expr); print(b)
→6 Stmnt ; b:=(Stmnt, Expr + Expr); print(b)
→4 Stmnt ; b:=(Stmnt, Expr + a); print(b)
→5 Stmnt ; b:=(Stmnt,10+a); print(b)
→3 Stmnt ; b:=(print(List),10+a); print(b)
→9 Stmnt ; b:=(print(List, Expr),10+a); print(b)
→6 Stmnt ; b:=(print(List,Expr+Expr),10+a); print(b)
→5 Stmnt ; b:=(print(List ,Expr +1),10+a); print(b)
→4 Stmnt ; b:=(print(List,a+1),10+a); print(b)
→8 Stmnt ; b:=(print(Expr,a+1),10+a); print(b)
→4 Stmnt ; b:=(print(a,a+1),10+a); print(b)
→2 a:=Expr ; b:=(print(a,a+1),10+a); print(b)
→6 a:=Expr+Expr ; b:=(print(a,a+1),10+a); print(b)
→5 a:=Expr+3; b:=(print(a,a+1),10+a); print(b)
→5 a:=5+3; b:=(print(a,a+1),10+a); print(b)

Andrzej Wąsowski Episode 2: Syntactical Analysis 2–36

Parser Generators
• The process of parsing is a reverse of

constructing a derivation.
• A parser is usually implemented as a

push-down automaton (stack automaton).
• There exists several construction algorithms.

See more in Appel, sections 3.2–3.3.
• Modern parsers are rarely hand-written.
• Parser generators translate grammars into

programs that read tokens and build parse trees
• Popular parser generators are yacc, bison,

JavaCC, jjtree, ANTLR, . . .

• Such tools exist for all popular languages.
Andrzej Wąsowski Episode 2: Syntactical Analysis 2–38

It is convenient to use literals instead of tokens:

1 Stmnt → Stmnt ; Stmnt
2 Stmnt → ID := Expr
3 Stmnt → print (List)

4 Expr → ID
5 Expr → DEC
6 Expr → Expr + Expr
7 Expr → (Stmnt , Expr)

8 List → Expr

9 List → List , Expr

A stream of tokens is a syntactically legal SL
program if it can be derived using these rules.

Andrzej Wąsowski Episode 2: Syntactical Analysis 2–35

Parse Trees

a := 5 + 3 ; b := (print (a , a + 1) , 10 + a) ; print (b)

Statement

Statement Statement

Statement StatementASSGNID Expression

Expression PLUS Expression ID ASSGN Expression PRINT LPAR List RPAR

DEC DEC

SEMI

LPAR Statement COMMA RPARExpression

SEMI

PRINT LPAR List RPAR

ListCOMMA Expression

Expression

ID

Expression

PLUS

Expression

ID DEC

Expression

IDExpression

PLUS

Expression

DEC ID

A sanitized parse tree (also called abstract syntax
tree, or AST) is the first, and perhaps most
important form of the program representation in the
entire compilation process.

Andrzej Wąsowski Episode 2: Syntactical Analysis 2–37

