
Environments
Handling several meanings of the same identifier

0 void f(int a, int b, int c) {

1 int j = a + b;

2 printf("%d", a+c);

3 {

4 const char * a = "hello";

5 printf("%s", a);

6 printf("%d", j);

7 }

8 printf("%d", b);

9 }

Two a vars: a hides a in the inner block.
Compilers use environments (symbol tables) to
represent the semantic meaning of a given syntactic
symbol at a given program point.

Andrzej Wąsowski Episode 3: Environments (Symbol Tables) 3–2

Type Environments

0 void f(int a, int b, int c) {

1 int j = a + b;

2 printf("%d", a+c);

3 {

4 const char * a = "hello";

5 printf("%s", a);

6 printf("%d", j);

7 }

8 printf("%d", b);

9 }

σ0 = [a 7→ int,b 7→ int,
c 7→ int]

σ1 = σ0 † [j 7→ int];
σ2 = σ3 = σ1

σ4 = σ3 †
[a 7→ const char *]

σ5 = σ6 = σ7 = σ4
σ8 = σ9 = σ2

Andrzej Wąsowski Episode 3: Environments (Symbol Tables) 3–4

FP8-17: Episode 3, 29 March, 2006
Environments (Symbol Tables)

Type and Value Environments
Types and Type Analysis

Typechecking expressions and variables
Pointer Dereference
Integer Type Promotion

Activation Records
Parameter Passing, Return Value

Calling Conventions of TMS320C6xxx
Register Conventions
Parameter Passing, Return Value
Caller/Callee Perspective
Accessing Variables and Arguments

Andrzej Wąsowski Episode 3: 3–1

Value Environments
0 void f(int a, int b, int c) {

1 int j = a + b;

2 printf("%d", a+c);

3 {

4 const char * a = "hello";

5 printf("%s", a);

6 printf("%d", j);

7 }

8 printf("%d", b);

9 }

σ0 = [a 7→ 1,b 7→ 2,c 7→ 3]
σ1 = σ0 † [j 7→ 3]
σ2 = σ3 = σ1

σ4 = σ3 † [a 7→ "hello"]
σ5 = σ6 = σ7 = σ4
σ8 = σ9 = σ2

The † operator overrides previously defined value
Andrzej Wąsowski Episode 3: Environments (Symbol Tables) 3–3



Type Systems and Type Checking

• Type system provides an abstraction of program
execution that ensures absence of some errors.

• Type checking is fast and can be done statically,
at compile time, without executing the program.

• Typically type systems detect type mismatch
errors like an attempt to multiply a number by a
string constant, or calling a function with an
unappropriate number of parameters.

• A type checker performs a traversal over an
abstract syntax tree checking and inferring
types of all expressions and objects (variables
and functions in case of C).

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–6

Type Checking (III)

struct expty tycheckExp (S_table venv, S_table tenv, A_exp a) {
switch (a->kind) {
...
case A_opExp: {

A_oper oper = a->u.op.oper;
struct expty left = tycheckExp(venv,tenv,a->u.op.left);
struct expty right = tycheckExp(venv,tenv,a->u.op.right);
if (oper==A_plusOp) {

if (left.ty->kind!=Ty_int)
EM_error(a->u.op.left->pos, "integer required");

if (right.ty->kind!=Ty_int)
EM_error(a->u.op.right->pos, "integer required");

return expTy(NULL,Ty_Int());
...

Appel, p. 117 top

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–8

Multiple Symbol Tables

• Environments store info about identifiers
• Usually created on the fly, while traversing the

abstract syntax tree.
• Scope is entered: add local symbols
• Scope is left: remove local symbols, restore the

ones belonging to outer scope.

• Symbol tables are also used to rename
variables so that no conflicts (hiding) remains.

• Usually achieved by assigning integers instead
of symbolic names

• Typically implemented using hash tables.
• More info in Appel, section 5.1.

Andrzej Wąsowski Episode 3: Environments (Symbol Tables) 3–5

Type Checking (II)

Type checking of expression e1 +e2:
• t1← type check e1

• t2← type check e2

• ensure that both types are int: t1 = t2 = int
• return int as the type of the entire expression.

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–7



Typechecking variables (II)

struct expty tycheckVar(S_table venv, S_table tenv, A_var v) {
switch(v->kind) {

case A_simpleVar: {
E_enventry x = S_look(venv,v->u.simple);
if (x && x->kind==E_varEntry)

return expTy(NULL, actual_ty(x->u.var.ty));
else {EM_error(v->pos, "undefined variable %s", S_name(v->u.simple));

return expTy(NULL,Ty_int());}
}
...

source: Appel, p. 117 bottom

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–10

Typechecking pointer dereference (II)

Type deref(Type ty) {
if (isptr(ty))

ty = ty->type;
else

error("type error: %s\n", "pointer expected");
return isenum(ty) ? unqual(ty)->type : ty;

}

source: lcc CVS, types.c, rev.1.1 as of 20050410

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–12

Typechecking variables

• The typeckecker constructs a type environment,
storing types for all declared variable.

• For each variable used the typechecker checks,
whether it has been declared in the current
environment.

• If it was not: an “undeclared variable” error is
reported.

• If it was, the type is propagated further into the
typechecking algorithm

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–9

Typechecking pointer dereference

Corresponds to removing the pointer
star from the type:
• Only pointers can be dereferenced, so first

check whether dereferenced expression has a
pointer type.

• If so, then return the type of the expression
without the indirection.

• Otherwise report a type error.

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–11



Typecheckers: odds & ends

• A complete typechecker has also rules for:
other operators, type casts, arrays, subscripting,
field access, variable and function declarations,
type declarations, address operator, . . .

• See more in Appel, sections 5.2–5.4.
• Modern languages have sophisticated type

systems (object-oriented, functional)
• Some are equipped with a type inference that

allows omitting type annotations. Types are
inferred automatically from the context

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–14

Activation Records
Also known as Stack Frames

• In C functions have local variables
• Function invocations existing at the same time,

each of them has an own copy of local variables

int f(int x) {
int y = x + x;
if (y < 10) return f(y);
else return y-1; }

• New copies of y, x created at recursive calls to f
• They are destroyed when f returns
• A stack can be used to store local variables
• The same stack maintains return addresses
• Often parameters are also passed on the stack

Andrzej Wąsowski Episode 3: Activation Records 3–16

Integer Type Promotion
An excerpt implementing integer type promotion:

Type promote(Type ty) {
ty = unqual(ty);
switch (ty->op) {
case ENUM: return inttype;
case INT:

if (ty->size < inttype->size) return inttype;
break;

case UNSIGNED:
if (ty->size < inttype->size) return inttype;

if (ty->size < unsignedtype->size)
return unsignedtype;

break;
case FLOAT:

if (ty->size < doubletype->size)
return doubletype;

}
return ty;

}

source: lcc CVS, types.c, rev.1.1 as of 20050410

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–13

C type system: warning!

• Beware: The type system of C is very weak. It
does not protect you from many typical
programming errors. By means of type
casts/pointer arithmetic you can interpret any
value under any arbitrary type. This typically
leads to unpredictable program behavior. Alas
no compile time error is generated.

• Safer languages include: Java, C#, Standard
ML,... so only use C when the application
requires it.

Andrzej Wąsowski Episode 3: Types and Type Analysis 3–15



• caller — a function calling another function.
• callee — the function being called.
• In the example of our previous slide f was both

the caller and the callee.
• This is usual for recursive functions.

Andrzej Wąsowski Episode 3: Activation Records 3–18

• Stack pointer (SP) points to the first empty
place in the stack

• Frame pointer (FP) points to the beginning of
current stack frame.

• Current parameter values belong to the
previous stack frame.

• Local variables can be addressed with negative
offsets from FP

• Arguments can be addressed with positive
offsets from FP.

Andrzej Wąsowski Episode 3: Activation Records 3–20

Consider the following recursive function:

int f(int x) {
int y = x + x;
if (y < 10) return f(y);
else return y-1;

}

The (abstract) stack during the evaluation of f (1):

1 2 2 4 4 8 8 16

x y x y x y x y return 15;

SP addresses growing increasing stack depth

· · ·

Andrzej Wąsowski Episode 3: Activation Records 3–17

• Often the stack grows from higher to lower
addresses (pushing decreases the top pointer)

• For this reason the sides are now reversed:

a
rg

u
m

en
t

1

a
rg

u
m

en
t

2

·
·
·

a
rg

u
m

en
t

m

sa
v
ed

re
g
is

te
rs

te
m

p
o
ra

ri
es

re
tu

rn
a
d
d
re

ss

lo
ca

l

v
a
ri

a
b
le

s

a
rg

u
m

en
t

1

a
rg

u
m

en
t

2

·
·
·

a
rg

u
m

en
t

n

lo
w

er
a
d
d
re

ss
es

h
ig

h
er

a
d
d
re

ss
es

next

frame
previous framecurrent frame

stack pointer (SP) frame pointer (FP)

source: Appel, p.128

Andrzej Wąsowski Episode 3: Activation Records 3–19



Parameter Passing

• Nowadays parameters are passed in registers
• Faster than via stack, as only for non-leaf calls

values need to be spilled to stack
• Even then, spilling is not always needed. Dead

values do not have to be preserved. Register
windows can be switched.

• Also values needed may already reside in
necessary registers (due to interprocedural
register allocation)

• If arguments need to be passed on the stack,
then they are allocated by the caller and stored
in the caller’s stack frame

Andrzej Wąsowski Episode 3: Activation Records 3–22

Register conventions TMS320C6xxx
A selection

• A4, A5: the first argument or/and the return
value (A5 used for double, long, long long)

• Odd register contains the sign, the exponent,
and the most significant part of the mantissa

• The even register contains the rest
• Remaining arguments (2–10) in similar manner:

B4 (B5), A6 (A7), B6 (B7), A8 (A9), B8 (B9), A10 (A11),
B10 (B11), A12 (A13), B12 (B13)

• A15: frame pointer (FP), B3: return address,
B14: data pointer (DP), B15: stack pointer (SP),
points to the next free location

Details: p.8-18, spru187
Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–24

• Modern architectures have many registers and
as many variables, arguments, etc is allocated
in the registers.

• Stack still remains the main resort in case of:
• memory spilling (if there is not enough registers)
• storing temporary register values (in order to

prepare a stack frame for the next call)
• some expressions take address of variables or

arguments (one cannot take addresses of registers).
• structures are passed.

Andrzej Wąsowski Episode 3: Activation Records 3–21

Return Value & Return Address

• Return value is most often left in a register
• After its body is executed, callee performs an

indirect jump to the value hold in the return
address register

• For non leaf calls the return address is stored
on the stack

Andrzej Wąsowski Episode 3: Activation Records 3–23



Calling Conventions in TMS320C6xxx
Caller’s tasks when calling the callee:
• Place arguments passed in registers (or stack)
• Arguments placed on the stack must be aligned

to a value appropriate for their size
• Arguments not declared in prototypes whose

size is less than the size of int passed as int
• Undeclared floats passed as double
• Structures passed as address
• It is up to the callee to make a local copy
• Save registers A0–A9 and B0–B9 on the stac, if

their values needed after the call
• Call the callee. Upon returning, reclaim stack

space by increasing the stack pointer
Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–26

• If the callee makes any calls, the return address
is saved on the stack

• Otherwise the address is left in the return
register(B3) to be overwritten by the next call

• If the callee modifies any registers numbered
A10 to A15 or B10 to B15, it must save them,
either in other registers or on the stack.

• The callee can modify any other registers
without saving them.

Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–28

Parameter passing in TMS3206xxx

Examples:

int func1(int a,int b,int c);
A4 A4 B4 A6

int func2(int a,float b,int *c,struct A d,float e,int f,int g);
A4 A4 B4 A6 B6 A8 B8 A10

int func3(int a,double b,float c,long double d);
A4 A4 B5:B4 A6 B7:B6

struct A func4(int y);
A3 A4

Discuss this in exercise session.

source: p.8-20, spru187

Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–25

Calling Conventions in TMS320C6xxx
Callee’s tasks:
• Allocate space on the stack for local variables,

temporaries, arguments to functions to be
called (occurs once at the beginning)

• The frame pointer is used to read arguments
from the stack and to handle register spilling

• If any arguments are placed on the stack or if
the frame size exceeds 128K bytes:
• Save the old FP (A15) on the stack
• Set A15 to current SP (B15)
• Allocate the frame (decrease SP by a constant)
• Neither A15 nor B15 is decreased anywhere else

• Otherwise allocate the frame by subtracting a
constant from B15

Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–27



• If the callee returns any integer, pointer, or float
type, the return value is placed in A4.

• If the callee returns a double, long double, long,
or long long type, the value is placed in A5:A4.

• If the callee returns a structure, the caller
allocates space for the structure and passes the
address of this space to the callee in A3.

• To return a structure, the callee copies the
structure to the memory block pointed to by the
extra argument (A3).

Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–30

Accessing Arguments and Local
Variables on TMS320C6xxx
• Stack arguments and local nonregister

variables are accessed indirectly through
register A15 (FP) or through register B15 (SP)

• The stack grows toward smaller addresses, so
the local and argument data for a function are
accessed with a positive offset from FP or SP.

• Local variables, temporary storage, and the
area reserved for stack arguments to functions
called by this function are accessed with offsets
smaller than the constant subtracted from FP or
SP at the beginning of the function.

Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–32

• If the callee expects a structure argument, it
receives a pointer to the structure instead.

• If writes are made to the structure from within
the callee, space for a local copy of the
structure must be allocated on the stack and
the local structure must be copied from the
passed pointer to the structure.

• If no writes are made to the structure, it can be
referenced in the callee indirectly through the
pointer argument.

• The called function executes the code for the
function.

Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–29

Finally
• Any register numbered A10 to A15 or B10 to

B15 that was saved earlier is restored.
• If A15 was used as a frame pointer (FP), the old

value of A15 is restored from the stack. The
space allocated for the function is reclaimed by
adding a constant to B15 (SP).

• The function returns by jumping to the value of
the return register (B3) or the saved value of the
return register.

Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–31



• Stack arguments passed to this function are
accessed with offsets greater than or equal to
the constant subtracted from register FP or SP
at the beginning of the function.

• The compiler attempts to keep register
arguments in their original registers if
optimization is used or if they are defined with
the register keyword.

• Otherwise, the arguments are copied to the
stack to free those registers for further
allocation.

Andrzej Wąsowski Episode 3: Calling Conventions of TMS320C6xxx 3–33


