How to Model and Augment Player Satisfaction: A Review

Georgios N. Yannakakis
Center for Computer Games Research
IT-University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
yannakakis@itu.dk

ABSTRACT
This is a review on approaches for modeling satisfaction perceived by users interacting with entertainment systems. Experimental studies with adult and children users of games (screen-based and physical-interactive) are outlined and the most promising approaches for augmenting player satisfaction while the game is played (i.e. in real-time) are discussed.

1. INTRODUCTION
Cognitive user models of playing experience promise significant potential for the design of digital interactive entertainment systems such as screen-based computer or augmented-reality physical games. Quantitatively modeling entertainment or satisfaction — fun, player satisfaction and entertainment will be used interchangeably in this paper — as a class of user experiences may reveal game features or user features of play that relate to the level of satisfaction perceived by the user (player). That relationship can then be used to adjust digital entertainment systems according to individual user preferences to optimize player satisfaction in real-time.

This paper reviews the state-of-the-art literature on qualitative and quantitative approaches to player satisfaction modeling derived from studies with children and adult users. Approaches covered include design and construction of both cognitive and affective models for capturing entertainment. Moreover, the promise of real-time adaptive techniques for optimizing entertainment of the user in real-time is outlined and open research questions in entertainment modeling and augmentation are discussed.

2. ENTERTAINMENT MODELING AND OPTIMIZATION
We classify approaches for capturing the level of player satisfaction into qualitative and quantitative. The first includes qualitative features and criteria that collectively contribute to engaging experiences in entertainment systems, derived from experimental psychology studies; the latter includes studies for quantifying the reported qualitative criteria of entertainment and constructing models that quantify (in some appropriate way) the complicated mental state of satisfaction perceived while interacting with digital interactive systems [1]. Work on methodologies for improving player satisfaction in real-time is presented at the end of this section.

2.1 Qualitative Approaches
Several researchers have been motivated to identify what is ‘fun’ in a game and what engages people playing computer games. Psychological approaches include Malone’s principles of intrinsic qualitative factors for engaging game play [22], namely challenge, curiosity and fantasy, as well as the well-known concepts of the theory of flow [10]. Incorporating flow in computer games as a model for evaluating player enjoyment has been a focus of few studies [34, 9]. A comprehensive review of the literature on qualitative approaches for modeling player enjoyment demonstrates a tendency for proposed criteria to overlap with Malone’s and Csikszentmihalyi’s foundational concepts. An example of such an approach is Lazzaro’s work on ‘fun’ clustering [19]. Lazzaro focuses on four entertainment factors derived from facial expressions and data obtained from game surveys on players: hard fun, easy fun, altered states and socialization. Koster’s theory of fun [18], which is primarily inspired by Lazzaro’s four factors, defines ‘fun’ as the act of mastering the game mentally. An alternative approach to fun capture is presented in [30] where fun is composed of three dimensions: endurability, engagement and expectations.

A few indicative studies among the vast literature of the user and game experience field are considered in this section. The work of Pagulayan et al. [27, 26] provides an extensive outline of game testing methods for effective user-centered design of games that generate enjoyable experiences. Ijsselstein et al. [17] describe the challenge of adequately characterizing and measuring experiences associated with playing digital games and highlight the concepts of immersion [7] and flow [10] as potential candidates for evaluating gameplay. Ryan et al. [32] have considered human motivation of play in virtual worlds, attempting to relate it to player satisfaction. Their survey experiments demonstrate that perceived in-game autonomy and competence are associated with game enjoyment.

Vorderer et al. [39] present an analysis of the impact of competition (i.e. challenge) on entertainment and identify challenge as the most important determinant of the enjoyment perceived by video game (Tomb Raider) players. They claim that successful completion of a task generates sympathetic arousal — especially when the challenge of the task matches the player’s abilities, which is consistent with the flow concept [11]. Finally, according to Choi et al. [8], challenge and satisfaction appear as independent processes, in contrast to the views of Malone [22] and Yannakakis et al.
Those studies introduce the notion of given appropriate estimators of the challenge and curiosity estimator of player satisfaction than a human-designed one, Additional experiments [44] have shown that artificial neur-ants. A quantitative measure of posed interest metric in different prey/predator game vari-
tables generated in both screen-based [47] and physical game test-beds [46].

2.2 Quantitative approaches
Advances in quantitative player satisfaction modeling have established a growing community of researchers that investig-ate dissimilar methodologies for modeling and improving gameplay experience [1]. Generated cognitive and affective modeling approaches are classified here according to the input source data used for building the models: player-game interaction or physiological data.

2.2.1 Player-Game Interaction Data
Iida’s work on metrics of entertainment in board games is considered pioneering, being the first attempt at modeling ‘fun’ quantitatively. He introduced a general metric of enter-
tainment for variants of chess games, based on average game length and possible moves [16]. Other work in the field of quantitative entertainment capture is based on the hypothesis that the player-opponent interaction — rather than the audiovisual features, the context or the genre of the game — is the property that contributes the majority of the quality features of entertainment in a computer game [40]. Given this fundamental assumption, a metric for measuring the real time entertainment value of predator/prey games was designed, using quantitative estimators of game characteristics (such as challenge and curiosity) based on the player-game interaction. The developed metric was established as efficient and reliable by validation against human judgement [48, 41]. Further experimental survey studies by Beume et al. [4, 5] demonstrate the generality of the proposed interest metric in different prey/predator game vari-
ants. A quantitative measure of flow derived from subject’s perceived gameplay duration is introduced in those studies. Additional experiments [44] have shown that artificial neural networks and fuzzy neural networks can extract a better estimator of player satisfaction than a human-designed one, given appropriate estimators of the challenge and curiosity of the game and data on human players’ preferences [47]. Those studies introduce the notion of comparative fun analysis, opposed to Likert scale, for eliciting genuine and subjective complex notions like ‘fun’ and ‘enjoyment’ out of test subjects. Using 2-alternative forced choice survey questions — e.g. ‘which of these two games was more fun to play?’ — minimizes the assumptions made about subject’s notions of ‘fun’ and allows a fair comparison between the answers of differ-
ent subjects. The reliability of comparative fun analysis is shown through the highly accurate entertainment mod-
els generated in both screen-based [47] and physical game test-beds [46].

2.2.2 Physiological Data
A further step toward entertainment capture is to equip games with richer human-computer interaction through aff-
ector recognizers which are able to identify correlations be-
tween physiological signals and the human notion of enter-
tainment. Measurements of physiological quantities have been used extensively within the affective computing re-
search area for emotion recognition in children and adults. Heart rate (HR) signals have been monitored to effect discrimi-
between children’s exploration, problem-solving and play tasks [6]. Experiments with two-year old children further showed suppression of heart rate variability (HRV) during exploration, and solution of a puzzle, suggesting that the task demands for these two activities were greater than those during play [14].

Correlations between physiological signals — galvanic skin response (GSR), jaw electromyography (EMG), respiration and cardiovascular measures — and reported adult user experiences in computer games are emphasized by Mandryk et al. [24]. In [23], a fuzzy model with rules grounded in psychophysiology theory indicates that high arousal and positive valence (a combination corresponding to ‘fun’ and excitement) is present when HR and GSR are high and the jaw electromyography corresponds to a smiling player. Working on the same basis as Mandryk et al. [24], Ravaja et al. [29] examined whether the nature of the game opponent influences the physiological state of players. In addi-
tion, Hazlett’s [13] work focused on the use of facial EMG to distinguish positive and negative emotional valence dur-
ing interaction with a racing video game. Moreover, Rani et al. [28] propose a methodology for detecting the anxiety level of the player and appropriately adjusting the level of challenge (e.g. speed) in the game of ‘Pong’. Physi-

2.3 Optimizing Player Satisfaction
Approaches towards optimizing player satisfaction can be classified as implicit or explicit. Within the first class of approaches we meet use of machine learning techniques for adjusting a game’s difficulty — based on the assumption that challenge is the only factor that contributes to enjoy-
able gaming experiences — which implies entertainment augmentation. Such approaches include applications of reinforcement learning [2], genetic algorithms [38], probabilistic models [15] and dynamic scripting [33, 20]. Moreover, user models have been constructed for the generation of adaptive interactive narrative systems that potentially optimize the
experience of the user [3, 31, 35]. User preference modeling towards content (race track) creation in racing games has also shown a potential for enhancing the quality of playing experience in those games [36, 37]. However, human survey experiments verifying the assumption that player satisfaction is enhanced have not been reported in all aforementioned approaches.

Within the explicit methods for optimizing player satisfaction, robust adaptive learning mechanisms have been built to optimize the human-verified ad-hoc ‘interest’ (entertainment) metric for prey/predator games introduced in [40, 48]. Experiments showed that an on-line neuro-evolution mechanism [41, 42, 43, 53] and a player modeling technique through Bayesian learning [55] were each capable of maintaining or increasing the game’s entertainment value while the game was being played. Effectiveness and robustness of the adaptive (neo-evolution) learning mechanism in real-time has been evaluated via human survey experiments [48]. Furthermore, studies with the “Playware” [21] augmented-reality playground have shown that ad-hoc rule-based mechanisms [12], and gradient search approaches [50] applied to artificial neural network entertainment models [46], can successfully adapt a physical interactive game in real-time according to a user’s individual play features and improve children’s gameplay experience.

3. DISCUSSION
The limitations of the quantitative approaches to entertainment modeling lie in the complexity of entertainment as a mental state. The generated entertainment values cannot be regarded as a mental cognitive or affective state approximators but should be viewed rather as numerical correlates of expressed user entertainment preferences. These correlates, however, serve the purpose of capturing the human notion of perceived satisfaction for generating enjoyable playing experiences.

The existing explicit mechanisms for improving player satisfaction in real-time can be used as baseline approaches for future implementations of adaptive learning in games. The next obvious step is the use of more sophisticated machine learning tools (most likely via reinforcement learning) for augmenting player satisfaction in real-time. Current state-of-the-art indicates that modeling player satisfaction, in simple games at least (e.g. arcade and augmented-reality games for children), is possible. The key open question that remains is whether such approaches can scale up to commercial-standard complex screen-based and/or physical games. Future research endeavors in that direction will exploit the promise of the player satisfaction modeling field and provide further insight to human notion of gameplay entertainment.

4. ACKNOWLEDGMENTS
The author would like to thank Anders Tyachen and John Hallam for valuable comments and discussions.

5. REFERENCES


