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Abstract
Tailorability is generally regarded as a key property of groupware systems due to the
dynamics and differentiation of cooperative work. This article investigates the use of software
components as a generic architectural concept for designing tailorable groupware
applications. First, the issues raised by this approach are discussed in the context of an
exploratory experiment during which component-based tailorability was applied to a real
tailoring problem in the POLITeam project. The experiment’s results led us to concentrate on
questions concerning the support of distributed CSCW applications. As a consequence, we
have developed the EVOLVE platform whose design concepts are described. Furthermore, a
concrete example for the application of the approach to the design of a tailorable distributed
coordination tool is given. We discuss related work, summarize the current state of the
component-based tailorability approach and propose venues of further research.

1. Introduction
While only a few years ago computers were mainly used by highly educated information
technology specialists, today almost everybody has to deal with them. As a consequence,
tailorability to diverse and changing requirements is becoming an increasingly important
quality of software systems. End users are tired of organizing their work around the antics and
technological idiosyncrasies of software designed for large market segments or based on
incomplete or fallacious knowledge about the application domain. They require software
matching their particular work situation, preferences, and style. We call a system tailorable, if
it can be changed by end users (or others) to achieve this match (some authors – e.g.
(Oberquelle 1994) – differentiate between tailorability and configurability, with the latter
referring to changes to the system after development but before its first use. This distinction is
not relevant in the context of this paper). Tailorability is certainly no panacea for creating
perfectly fitting  software systems. However, it gives end-users (or more generally: all non-
developers involved) a stronger role in the system lifecycle by permitting some decisions
which usually have to be made during the design-phase to be transferred into the use-phase.
In CSCW (Computer Supported Cooperative Work) systems tailorability is especially
important, because the group dimension adds a number of requirement-dependencies on
factors which are less or even not at all relevant for single user application design. Regard, for
instance, country specific laws or even company specific agreements governing the access to
sensitive (e.g. personnel related) documents. If a company-wide groupware systems cannot be
appropriately adapted to restrict access to these documents according to the applying laws and
agreements, the success of the system's introduction is in serious doubt. Another example are
notification (or awareness) services in groupware. They are supposed to make users aware of
activities which are relevant for the coordination of cooperative work (e.g. a users is notified,
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whenever a  certain document - perhaps containing company rules - is edited). Since –
depending on his or her role in the organization and the nature of the assigned tasks – the
user's need to be aware of certain events can vary substantially, a non-tailorable awareness
service could cause a flood of unwanted notifications or a scarcity of needed ones (or even
both at the same time).
Additionally, the introduction and subsequent tailoring of groupware systems has a high
potential for conflict (see e.g. Wulf 1995), which – apart from CSCW-“induced” technical
issues like distribution and concurrency – is one of the challenges in the design and
implementation of groupware tailorability. Regard, for instance, the example of tailoring a
workflow system which has been in use for some time and thereby upsetting the established
division of labor within one department, e.g. by assigning certain tasks differently. As soon as
some members of the organization perceive themselves as losers in this development, the
adaptation becomes a source of conflict and confrontation within the organization.
However, tailorability can also alleviate or even avoid conflicts in the context of groupware
projects. If, for instance, a rigid system imposes a certain style of cooperation (e.g. highly
structured workflows) across several – perhaps rather differentiated – groups within one
organization, some groups may be forced to work in an unsuitable fashion. Conflicts are the
obvious consequence. A tailorable system permitting the adaptation of the cooperation style
for certain groups, i.e. for a certain scope of validity see (see Wulf et al. 1999), can alleviate
such conflicts. Alternatively, Herrmann (1995) suggested in the context of workflow
management systems to offer negotiation mechanisms within the groupware system itself
which permit users affected by adaptations to reject, accept, modify or comment on them.
Because of the relevance of tailorability for the design of CSCW systems, a lot of current
research in tailorability is motivated by and conducted in the context of complex groupware
projects, which is also the background of the work presented here (the PoliTeam project, see
Klöckner et al. 1995). Abstracting from concrete projects and applications, design for
tailorability raises three major questions (Stiemerling et al. 1997):
How can we determine the necessary points and degree of tailorability? This question
concerns the design process and is driven by three factors (Trigg 1992): fluidity, diversity,
and uncertainty of requirements. Especially the first and third factor involve the future use of
the system and thus we will never have a complete methodological solution. However, current
requirements capturing and design techniques can be extended to take anticipated future
changes into account (see e.g. the change case methodology by Ecklund et al. 1996).
How can we control and implement adaptations after initial system development? Assuming
we have a tailorable system, this questions concerns the way, how the need for an adaptation
is discovered, how an appropriate adaptation is developed, how the decision for or against the
adaptation is made, and how it is finally implemented. (Kühme et al. 1992) suggest these four
factors as basis for a taxonomy of adaptation control mechanisms. They distinguish, which
step is controlled by the user or by the system. We call a system adaptive, if the control
resides mostly with the system, and user tailorable otherwise. In the latter case, user
interfaces for tailorability become a major issue. Furthermore, tailoring software systems has
been identified as a cooperative activity, involving persons of different technical skill levels
and domain knowledge (see e.g. Mackay 1990,  or Oberquelle 1994). These group aspects
raise new questions concerning tailoring rights and exchange of adaptations between users
and groups of users.
How can we support tailorability in the software architecture? Regardless whether
adaptations are controlled by user or system, they have to be supported on the software
technical level. An at least partial specification of the system has to be available in effectively
manipulatable form (Stiemerling and Cremers 1998). Some systems (e.g. LINKWORKS which
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is used in the POLITeam project as groupware platform) are partially implemented in
application specific high-level languages. The implementation can be made accessible for
system administrators or even end users in order to permit the tailoring of the system.
Traditional initialization files can be seen in this context as very simple (parameter)
languages.
When designing a specific application, these three questions – especially in user centered
design processes – are usually addressed in the order given above. Our goal, however, is to
develop a generic approach to tailoring which can be applied to a variety of software systems.
From this perspective, the first two questions rely on the choices made to address the third:
The type and power of a possible tailoring user interface is constrained by the underlying
architecture, as is the design of adaptive control mechanisms. The architectural level also
determines which and how flexibility requirements can be accommodated. Therefore, it
appears sensible to first address the question of appropriate architectural concepts and then
design adaptation control mechanisms and development methodologies specific for the
chosen architecture.
According to these thoughts, the EVOLVE project at the University of Bonn has developed an
approach which provides generic (i.e. application independent) tailorability based on the
concept of hierarchically structured component architectures. The second section of this paper
describes the basic concepts of component-based tailorability and raises the questions
addressed in the project. Section three describes the results of a first exploratory experiment
applying component-based tailorability in the POLITeam project. The section also relates the
different aspects of the approach to the current literature and identifies issues motivating the
work presented in the following sections. In section four the architecture of the EVOLVE
platform is described, together with an example for a distributed tailorable CSCW application.
Section five presents a cross-section of CSCW research systems which explicitly address the
issue of tailorability. Section six summarizes and gives an overview of future work.

2. Component-based Tailorability
Component-oriented programming (see Szyperski 1998) is motivated by the successes
classical engineering disciplines like electronic or mechanical engineering have had with
building complex artifacts from standardized components (e.g. transistors, resistors, cogs, or
screws). Taking into account this motivation, a software component can be defined as “a unit
of composition with contractually specified interfaces and explicit context dependencies only.
Components can be deployed independently and are subject to composition by third parties.”
(Szyperski and Pfister 1996, p. 130).
Components have to be distinguished from objects. The latter are concerned with structure
and behavior (in the form of attributes and methods), the former with composability. The
interface definition of an object only contains the services (methods) provided, while the
object might additionally require services of other objects. These required services are not
part of the explicit interface description, but are implicit in the implementation of the methods
(in the form of calls to methods of other objects).Thus the “explicit context dependencies
only” condition of the above definition is not met. Furthermore, components can consist of a
large number of objects, and are thus potentially more abstract than objects, i.e. on a higher
level of granularity.
In the context of our work, components are also different from processes, because they do not
necessarily have to be active entities, but can become active or passive, depending on how
processes or threads traverse the component system. In the field of distributed systems, this
distinction is often blurred.
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We say that a system built from components has a component architecture. On the component
level such a system can be described using an appropriate composition language (see
Nierstrasz and Meijler 1995). The possible form of the composition language depends on the
underlying component model. Later on in this paper we describe CAT (Component
Architecture for Tailorability) which is the composition language we are using in our work
(for a specification of the language see Stiemerling 1997).
Advantages which component oriented programming hopes to provide include facilitation of
reuse (especially by third parties), speed-up of development processes, reduction of
development costs, and higher quality (standard components are less prone to exhibit errors if
they have already been used and tested in prior projects).
Components have been successfully employed to support the design of graphical user
interfaces. Application builders like MICROSOFT VISUAL BASIC (component model: VBX,
OCX, see Microsoft 1996) or LOTUS BEANMACHINE (component model: JavaBeans, see
JavaSoft 1997) provide often used generic visual design elements (e.g. buttons, text-boxes,
combo-boxes), which are configured and composed during the design process to yield
domain-specific applications.
The notion of components, however, has been applied to areas of software engineering other
than GUI-design, as well. Formal component models and composition languages have been
employed to describe the architecture of complex (even distributed) systems (see e.g. Wright
described in Allen and Garlan 1994, or Darwin described in ).
An advantage of viewing complex systems as compositions of components is that one can
reason about the system on a high level (high in the sense of conceptually close to the
application domain, or further away from implementation details). The level depends on the
granularity of the components employed. The current discussion, however, exploits this
advantage mostly in the design process. During the design process the component structure is
often lost and with the final system the users are confronted with a monolithic application. In
the EVOLVE project we are investigating the use of components for tailorability after initial
development (also see Stiemerling and Cremers 1998, Stiemerling et al. 1999). Figure 1
shows the different uses of components for development and tailorability:

Component architectures are attractive for tailoring, because they support a number of
different tailoring interfaces, from simple parameterization (Henderson and Kyng 1991), over
visual programming (Nardi 1993), to programming by modification of examples (Nardi 1993,
Mørch 1997). If the architecture consists of multiple layers of nested components
(hierarchical component architecture), tailoring operations at several different levels of
abstraction and complexity are possible. Components on the higher levels of the hierarchy can

components monolithic application components tailorable application

Figure 1: (left) components are used only during development, resulting in a
monolithic application; (right) the component structure of the application is
maintained after initial development, resulting in an application providing
component-based tailorability.
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be closer in semantics to the application domain (e.g. the bookkeeping component of a
business software package), while components further down can be more technically oriented
(e.g. the TCP/IP-protocol component). Thus, a hierarchical component architecture can
provide appropriate levels of tailoring for both a bookkeeper and a system administrator.
The collaborative aspect of tailoring is supported by the component approach, as well.
Mackey noted in her dissertation (Mackay 1990) that users of computer systems often
exchange configuration files, allowing others to share good adaptations which, for instance,
make certain task more efficient or build a nice desktop environment. Components can easily
be shared, because they are – by definition (compare Szyperski and Pfister 1996) – made for
assembly by third parties.
Another reason why components are attractive for tailoring is that they seem to allow a clear
separation of application-dependent concerns (encapsulated within the components of the
framework) and tailoring functionality (provided by an application independent tailoring and
run-time environment in form of generic compositional tailoring operations).
When going beyond component-oriented programming towards component-based
tailorability, several issues arise anew or have to be rethought. In the EVOLVE project we
investigate the following four questions which we believe to be central to component-based
tailorability:
! What is an appropriate component model for component-based tailorability
! How do we build a platform allowing the flexible deployment of software components?
! How does one design applications suited for component-based tailorability?
! What are appropriate user interfaces for component-based tailoring?
We have formulated and explored these questions by applying the component-based tailoring
approach to a real tailoring problem in the POLITeam project. This project is concerned with
providing electronic support for the cooperative work of the distributed German government
in Bonn and Berlin (see Klöckner et al. 1995). The example application was the search tool
employed in the POLITeam system to search for documents (e.g. Microsoft Word documents)
in the shared document base. In (Stiemerling and Cremers 1998, Stiemerling 1998) we have
reported in detail on this work. The next section gives an overview of the results of this first
application of the approach in relation to the four questions posed above.

3. The Application of Component-Based Tailorability in the POLITeam Project
The first subsection section briefly outlines the search tool tailoring problem and the
technology used for the first version of the tool. The second subsection discusses the
experiences made during the initial design process (finding the appropriate decomposition)
and the workshop evaluation of the 2D user interface. The third subsection deals with the
more technical issues of the component model and the tailoring platform.

The search-tool tailoring problem
In several workshops the POLITeam users articulated very diverse opinions about how the
search-tool is supposed to present results and how the privacy of document-owners can be
protected by limiting the possible search space of the tool. Another important issue was the
handling of search results. Some users preferred a link (a basic POLITeam concept supporting
the sharing of documents) to the found documents, while others wanted to create a copy of it.
It became obvious that there was no one-best-way solution to the design problems, thus the
search-tool constituted an excellent example application for exploring the component-based
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tailoring approach. The range of different requirements is documented in (Kahler 1996) and
served as basis for the experiment (see question one in the introduction).
We have implemented the tailorable search tool using the JAVABEANS component model see
(see JavaSoft 1997). While this component model proved sufficient for the simple search tool
example, we will describe how we have extended JAVABEANS in order to allow the support of
more complex, distributed applications.
As platform, we have employed the JavaSoft BEANBOX which is supplied in source code
together with the component model as an example development environment. By modifying
an existing development environment we focussed on and learned about the technical
differences between component-based system development and component-based tailorability
(see figure 1). The modification also concerned the user interface which in the original
BEANBOX was mainly aimed at developers and proved to be not very usable.

Empirical results
This subsection discusses these aspects of component-based tailorability which involved the
end users of the POLITeam search tool, namely the participatory design process during which
the decomposition of the search tool’s functionality was determined and the user interface for
tailoring the tool.

Designing applications suited for component-based tailorability: finding the
appropriate decomposition
The hierarchical decomposition of a software system is application-dependent and should
reflect the flexibility needed in the respective field of application. Thus, for any application
the questions of which functionality should be encapsulated within a component, what
granularity the most primitive components should have, and how these primitive components
are hierarchically composed to finally yield the application have to be answered individually.
Furthermore, we believe that from different perspectives there may be different sensible
decompositions of the same application, e.g. that if we aim at decomposition for distribution
we end up with a different result than what we get when we decompose for tailorability.
Currently we view every perspective as an additional constraint on the space of possible
decompositions which has to be taken into account.
Prior work on the POLITeam search tool (Kahler 1996) employed methods from the field of
Participatory Design (PD, for an overview see e.g. Greenbaum and Kyng 1991, or Grønbæk et
al. 1995). They were quite useful, since the active involvement of all prospective users of a
groupware system helps in finding the nuances in usage differences and dynamics, which
make up the need for tailorability. One user, for instance, who was responsible for preparing
the weekly vote in the German state representative body (the Bundesrat), wanted the search
tool to present the search results split in two groups, according to a certain document creation
date. The reason for this requirements was the fact that laws are voted on twice in the German
Bundesrat separated by a specific time interval. The user needed to quickly distinguish
between documents relating to the first and the second vote.
Other users articulated the need to group the result by the found documents’ location within
the virtual desktop environment of the POLITeam system in order to be able to distinguish
between documents from their own private desktop and other documents found in shared
work spaces. Since access to documents in the system could be regulated by moving
documents to shared spaces, this distinction proved important for efficient cooperation
support. These (and other) requirements indicated the need for flexible grouping strategies for
search results. As a consequence, we based the decomposition of the result presentation part
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on a data flow metaphor (the data obviously being the search results). The lower part of figure
3 give the reader an impression of the application of this metaphor. The result stream is
produced by the search engine (the component marked with “SQL”). It arrives at a switch-
component which – in this case – splits up the result stream according to the first letter of the
documents name. Other switch-components we implemented split up the result stream
according to the documents’ location or creation date. A switch component has two output
ports which can be connected to other switch-components to further refine the grouping or to
an output window which displays the search results (see figure 3). In a similar fashion, we
developed the rest of the component framework, resulting in a “component language” which
covered all diversities and dynamics of requirements discovered during the participatory
design process. It is our experience that once the designers have gained some insight into the
diversities and dynamics of a certain field of application, the decomposition of the
application’s functionality into components follows quit naturally.
While the PD methods worked quite well for requirement elicitation for one specific field of
application, the literature reports on other approaches to the problem of finding appropriate
decomposition for easy modifiability.
OVAL (Malone et al. 1995), for instance, represents an early approach to find the one
decomposition of groupware functionality into components. The authors present a set of only
four basic building blocks (Objects, Views, Agents, Links = OVAL) which they claim
encapsulate functionality central to many groupware applications. They support this claim
with an experiment during which a number of different existing CSCW applications were
composed within OVAL. The result was that most applications could be build with “only
modest amounts of system level programming” (p. 197) or with omitting of irrelevant
functionality. While the authors interpret this result as success for their approach of “radical
tailorability”, it also shows clearly that any approach attempting to find “the one”
decomposition for a vast number of different application classes is not suitable as basis for
component-based tailorability.
In his dissertation Henri ter Hofte (1998) presents a very general approach which not so much
aims at finding the one decomposition, but develops structuring guidelines for component-
based groupware. These guidelines are much less restrictive than giving a concrete
decomposition, since they are only supposed to support a groupware developer in finding a
decomposition for a specific application. We do not discuss details of these guidelines here as
they are rather deeply rooted in the special terminology of the models ter Hofte employs.
However, note that his approach is based on the systematic structural analysis of a number of
existing groupware applications and thus embraces a lot of what is know about groupware
functionality today.

Users interfaces for component-based tailoring
The initial attractiveness of using components as basis for tailorability was fueled  in part by
the intuition that the process of tailoring component-based applications could be as easy (and
perhaps as enjoyable) as playing with LEGO bricks. However, our experiences with software
components and end users are rather ambivalent. In the context of the POLITeam search tool
design we conducted a workshop with users from one of our fields of application in order to
discuss the component-based design of the tool. We made two qualitative observations:
First, the end users had no problem whatsoever understanding the concept of software
components. They readily grasped the LEGO metaphor and not only discussed different
compositions of search tool components with us, but also demanded new components with
additional or different functionality. Note that they did not simply talk about required
functionality but components with a specific functionality. Thus, we are confident that in
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principle software components can be employed explicitly as underlying concept for tailoring
interfaces.
Second, the end users had problems with actually executing tailoring operations. Currently,
we have implemented a 2D visual programming style interface which is depicted in figure 3:

Figure 3: A 2D visual programming interface for tailorability. The white boxes
represent different levels of the component hierarchy. Using the mouse and a tool box
(not shown here) the tailoring user can change component connections, instantiate,
delete, and position components.
While the end users managed to solve small tailoring problems during the workshop (along
the lines of: “Now try to add another output-list to the search tool.”), they felt not really
comfortable with the interface. Points of criticism were the visualization of components which
were invisible during regular use of the tool (e.g. a component that managed the connection to
the database of the groupware system), the empty spots in the regular use interface caused by
these invisible components, and the cumbersome, mouse-based manipulation operations in
general. We concluded that current visual programming techniques (at least our
implementation of them) do not adequately support component-based tailorability by non-
experienced end users.
An appropriate user interface for tailoring should allow the end user to quickly switch
between use and tailoring mode in order to be able to adapt the system when the need for an
adaptation arises. Furthermore, the tailoring mode should start out presenting the application’s
component structure in a way which is close to the use mode, i.e. for instance visual
components should be arranged geometrically in the same way as in the regular use interface.
The move from the known and understood to the new and unknown (the application’s
component-based implementation) should be as gradual and gentle as possible. A major
problem is the arrangement and visualization of usually invisible components. A button is
easily recognizable for an end user; but what about a database connection component?
Furthermore, the hierarchical structure of an application should be presented in a way that end
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users can move between different levels of granularity and perform manipulations on arbitrary
levels.
We are currently working on a visual tailoring interface which is based on 3D representation
of an application’s component-structure and attempts to solve or at least alleviate the
problems stated above (see section 6, “Summary and Future Work”).

Technical issues
It was mentioned at the beginning of this section that we employed the JAVABEANS
component model and a modified version of the JAVA BEANBOX as underlying technology for
the component-based search tool application. These choices were made in order to quickly
produce a first working version of an application providing component-based tailorability and
gain empirical results. This subsection discusses the questions of component model and
platform from a more theoretical and technical perspective. However, the considerations
presented here were motivated by the experiences made during the implementation of the
search tool application.

Component model: from JAVABEANs to FLEXIBEANS
Since component-based tailoring necessitates maintaining the component structure of an
application after initial development, one has to regard components as blueprints for parts of
the running systems. A component can occur in several instances within the final system (for
simplicity we sometimes say only “component”, when it is clear from the context that actually
an instance of that component is meant). A component instance has its own state. The state
can either change when the component instance is in possession of a control flow, i.e. a
processor is traversing the control structures (code) which are associated with the instance’s
state; or it can change through interaction with another component instance which is in
possession of a control flow. The composition of the application determines which component
instances can interact. Our work focuses on component models which provide the notion of
named, typed, and polarized ports as basis for interaction. The polarization of a port
determines the role it can play in a two-sided, asymmetric interaction (e.g. source or receiver
in a data flow-like connection). Figure 2 shows a component which has three ports (the filled
and empty circles at the edges of the rectangle). Two components can be connected when they
each have a port of the same type and different polarity. In the context of a specific
component, port names distinguish different ports of the same type and polarity (see
output_high and output_low figure 2):

frequency switch

input <Sound signal>
output_high  <Sound signal>

output_low  <Sound signal>

Figure 2: This example component provides three ports of type <Sound signal>. One is
named input and has a different polarity than the other two, named output_high and
output_low.
The input port in figure 2 could, for example, be connected to the output_high port of another
instance of the same component. Port-based component models like this have also been used
as conceptual basis for the DARWIN (Magee et al. 1995) and OLAN (Bellissard et al. 1996)
configuration languages.
However, there are other possible component models. (Teege 1999), for instance, discusses
feature composition as another basis for the design of tailorable applications. Features are
components which do not have to be explicitly composed by connecting ports, but are simply
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added to a set of features which makes up the final artifact. The feature composition approach
has the advantage that possible user interfaces (which only have to support the adding and
removing of elements) can be very simple to use. However, the downside is, that a set of
components – while being a simpler concept – cannot contain as much information (i.e.
support as many alternatives) as a net of explicitly connected components. This becomes
obvious, when considering different compositions of the same set of basic component
instances. Because of this advantage we employ a port based model as basis for our work1.
We also call the type of a port an interaction primitive. An interaction primitive specifies how
two components connected via ports of that type interact. Industrial component models like
JAVABEANS usually offer one basic interaction primitive (or a small set of these), because
components have to be designed by human programmers who are adverse to spend time
learning a lot of different interaction styles, but rather construct more complex interactions
employing simple, well-understood primitives. The JAVABEANS model, for instance, provides
events as primitives. Events permit a push-like interaction, transferring a reference to a
stateful entity (event object) together with the control flow to another software component.
The other component is supposed to return the control flow.
In the context of the EVOLVE project, we have addressed the questions of what interaction
primitives are appropriate for the approach of  component-based tailoring with the help of a
formal model (based on data space theory, see Cremers and Hibbard 1978, Cremers and
Hibbard 1986). This model provides a mathematical notion of interacting, hierarchically
decomposable computational entities and permits the precise investigation and comparison of
different interaction primitives. Based on the theoretical investigation we have modified the
JAVABEANS component model in order to support our approach. In addition to events, our
FLEXIBEANS component model (for a detailed description, see Stiemerling 1998) offers
shared objects as a “pull-like” interaction primitive without transfer of control flow. Shared
objects are by nature a symmetric interaction style, because two components sharing an object
can potentially both induce the same state-transitions on this object. In FLEXIBEANS, however,
one component in the interaction is assigned the responsibility to instantiate the shared object
in the beginning. Therefore, we model shared objects as asymmetric component connections,
as the reader will notice in the example given in section four.
One can show with the help of the formal model that together, events and shared objects
permit the construction of arbitrary, complex interaction styles. Another modification
concerns the naming of ports. JAVABEANS only provides typed event ports, which are not
sufficient e.g. for implementing the two named ports of the same type in the component
shown in figure 2. The third extension is the integration of JAVA RMI (Remote Method
Invocation) into the model in order to permit an arbitrary distribution and interaction of
components across the Internet. This feature of FLEXIBEANS is especially important when
using the approach to design tailorable groupware applications which are often – almost by
nature – distributed.

Platform: from local to distributed
In the search tool application we employed the modified BEANBOX as platform, which was
possible, because the search tool is essentially a local application with only one remote

                                                
1 However, we agree with (Teege 1999) that these two types of composition are not mutual
exclusive and can be combined to provide different kinds of tailorability within one
application.
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component connection to the POLITeam server. The effects of the tailoring operations were
restricted to the computer running the search tool. While this architecture was sufficient for
the search tool application, most groupware applications are distributed and thus demand a
different supporting platform (this obvious need for distribution is not actually a result of the
search tool application. The locality of the search tool was an anticipated limitation we were
prepared to accept in the first experiment in order to quickly gain empirical results). We have
identified the following issues or requirements for a platform for distributed component-based
tailorability:
Internet- or network-based. A distributed application should run on the Internet or other
networks. The prerequisites for this are given by the design of the FLEXIBEANS component
model. Components at any level of granularity can be arbitrarily distributed across a network,
with, for instance, a button component on a Sun in Tokyo deleting an item in a list component
on an NT machine in Bonn. Bandwidth and synchronicity issues obviously have to be taken
into account  by the designers of the initial component set and the composers of the final
application who also determine the distribution of component instances across the net.
Minimal maintenance. The system should be easy to install and maintain. Especially adding
new clients and users should not be more hassle than sending somebody an email. We believe
that in a world of virtual enterprises and short-term inter-company project groups, cooperation
support systems have to be set-up and dismantled on the spur of a moment. The BSCW
system (Bentley et al. 1997) developed at GMD is an example for an Internet-based system
which offers this quality.
Decentralized and cooperative tailoring. Every user of the system potentially tailors. Thus, on
the technical level, support for tailoring operations originating from every point of the
network has to be provided. Furthermore, cooperative tailoring of jointly used application
components should be supported by taking into account concurrent tailoring activities and
providing basic facilities for coupling tailoring interfaces (e.g. broadcast mechanisms for
tailoring events).
Support for different types of tailoring interfaces. Since we are not yet sure about appropriate
user interfaces for tailoring, the system should support a generic technical adaptation interface
not unlike an API (application programming interface). It can be used to “plug-in” different
types of user interfaces for tailoring.
In section four we describe the basic concepts and the architecture of the EVOLVE system
which is oriented at these issues and requirements.

Summarizing the results of the first application of the approach
The search tool implementation showed that the component-based tailorability approach is
feasible and can be applied to a real world groupware application. Concerning the four
questions raised in the section two, the  permits the following observations:
! In finding the appropriate decomposition of the search tool functionality, Participatory

Design methods proved quite useful. Intensive user involvement improves the designer’s
insights into the diversity and dynamics of a specific field of application.

! Concerning user interfaces for tailoring, the concept of components was understood by
our end users. However, the 2D user interface developed for the experiment did not satisfy
all users and posed some conceptual (e.g. geometrical) problems.

! While the JAVABEANS component model proved sufficient for the implementation of the
search tool example, in order to apply the approach to whole groupware applications, one
has to have additional support for distributed software components. The FLEXIBEANS
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component model is designed to provide this support, in addition to new interaction
primitives (shared objects) and named ports.

! Analogously to the modified component model, the platform has to support the
distribution of software components. Furthermore, the platform should provide an API-
like interface for plugging in different user interface for tailorability (or other mechanisms
for controlling adaptations) at any point in the network.

Based on these results, we decided to address the remaining open issues by developing a
platform for the distributed deployment and composition of FLEXIBEANS. As the result of
these efforts, the EVOLVE platform is described in the following section.

4. The EVOLVE Platform
All parts of the EVOLVE platform are implemented in the JAVA programming language and are
supposed to run on every operation system for which a JAVA Virtual Machine of the
appropriate version (1.2) exists. The tailoring interface (see next section) requires the JAVA
3D application programming interface. Figure 4 gives a schematic overview of the different
elements of the EVOLVE platform:

The
Internet

Browser Client

Stand-alone Client

E  ServerVOLVE

Component cache

Component repository
(JAR files)

CAT files

Remote bind files

Users

Component instances

Figure 4: Basic elements of the EVOLVE platform
The EVOLVE server (right side of figure 4) is implemented as a stand-alone application, while
the browser can either run as an application (lower left) or within a browser (upper left). The
latter alternative has the advantage that no installation on the client computer is required if a
browser is available. All code is loaded into the browser when accessing the EVOLVE server
web page (a consequence of the minimal maintenance requirement stated in the last section).
However, due to the Java security mechanisms the application cannot access certain resources
on the local computer which restricts the number of application types that can sensibly be run
within a browsers. There are ways (digital signatures of network loaded code) to circumvent
this problem which we have not implemented yet. If the client can access the local file system
(as a stand-alone client can, see lower left of figure 4), it is possible to cache components
between session and thus improve start-up performance. The EVOLVE server encompasses the
following elements (as indicated in figure 4):
The component repository contains all FLEXIBEANS which can be used to build EVOLVE
applications. The FLEXIBEANS are packaged into individual JAR-files (Java ARchive) in
binary format together with all resources needed for execution (e.g. auxiliary classes or
bitmaps).
The CAT-files describe the hierarchical component architecture of the application. They refer
to the FLEXIBEANS of the component repository as atomic (or implemented) components.
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These atomic components are composed yielding complex components which in turn can
again be part of a composition. Figure 5 shows a simple example of a CAT-file:

i_component FlexiBeanA {
required Port1 Datastream;
provided Port2 Datastream;
config_parameter Parameter1 Integer;

}

a_component ComplexComponentA {
required Input Datastream;

provided Output Datastream;

subcomponent ComponentA FlexiBeanA;
subcomponent ComponentB FlexiBeanA;

bind Input ! ComponentA.Port1;
bind ComponentA.Port2 ! ComponentB.Port1;

 bind ComponentB.Port2 ! Output;
}

Figure 5: (left) Simple CAT-file describing the serial composition of two instances of the
atomic (implemented) component FlexiBeanA yielding a complex component
ComplexComponentA. (right) Graphical representation of the example CAT-file.
The required and provided keywords indicate the polarity of the port. The
config_parameter determines the parameterization space of a component. The
specification of an abstract component additionally contains the subcomponent instances
and their composition and connection to the ports of the abstract component via the bind
keyword.
In contrast to the DARWIN and OLAN configuration languages mentioned before, in CAT a
distributed application is defined by a set of CAT-files and not by a single specification. Each
CAT-file describes a part of the application (conceptually an abstract component) which
resides on one physical computer in the network. As a consequence, the bind commands
within a CAT specification only concern local interactions.
Remote bind files describe the way components on different computers in the network are
connected. A remote bind file is specific for two CAT files, i.e. it prescribes how the named
ports of one component are to be connected to the named ports of the other component.
Essentially, it is a list of bind commands which only concern remote connections.
The server also handles the user management. The user management contains all data
necessary for authentication during log in.
CAT-files describe abstract components of an application which can be running in several
component instances (e.g. for several users on different client computers). Thus, in addition to
the list of users and passwords, it maintains for each user a list of references to CAT-files.
This list points to all parts of the application which are to be instantiated on the client when
the user logs into the system. The list of references also describes to which server-side
components the client components are to be connected and which remote bind file is to be
used for this connection. If a server component is not yet running when a client wants to
connect, then it is immediately instantiated.
The control elements of the server and of all the clients are responsible for maintaining the
component structure of the application. They offer – not yet on the user interface level but
similar to an API (application programming interface) – a number of tailoring operations for
runtime manipulation of the component structure. New components can be added, i.e.
instantiated at every point in the network, components can be deleted or “rewired”, and
abstract components can be copied. This set of tailoring operations is complete in the sense

!"#$%&'!"#$"(&()*
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that any valid (i.e. statically correct with respect to port types etc.) specification of an
application based on an arbitrary component framework can be transformed into every other
valid specification. The API is employed to plug different adaptation control mechanisms
(e.g. user interfaces, see question two of the introduction) into the EVOLVE  platform.
On first sight, the decision to define the application using a set of CAT-files and a list of user-
specific component instances and connections induces a lot of complexity which could be
avoided when simply specifying the whole application as one big CAT-file including
distribution information (e.g. by providing a location pointer for atomic component
instances). However, our approach has the advantage that it distinguished explicitly between
local and remote connections allowing for light-weight components which only can be
connected to local components without causing the JAVA RMI overhead (several new
threads). Another advantage is the fact that the effect of changes to client CAT-files is
restricted to users sharing the same file. Thus, our approach constitutes a natural basis for
implementing control mechanisms concerning access to and scope of tailoring operations.
Furthermore, it is easy to share or copy distinct parts of the application between different
clients and users which supports the cooperative tailoring activities mentioned in the
beginning. In the following we want to discuss a simple example which shows how the
approach can be applied in the tailorable design of a coordination tool. We do not employ the
search tool example here, because the search tool is essentially a non-distributed application.

Example CSCW-application: Shared To-Do Lists
Shared to-do lists (see e.g. Kreifelts et al. 1993) support coordination of work activities in
small groups (2-10 persons). They contain entries which describe a task to be done, its title,
begin, deadline, and a flag indicating the status of completion (in progress, completed).
Depending on the structure of the group and its work habits, there can be distinct group
members who add tasks, perform tasks, check for completion, and monitor or distribute work.
In groups with a flat hierarchy, everybody might be allowed to add, mark as done, delete, and
monitor tasks. In more hierarchical (or autocratic) organizations, only the manager might be
allowed to add tasks, while subordinates are only supposed to indicate completion. As groups
evolve, members fluctuate, and group tasks change, the configuration of the application has to
change, new lists have to be introduced for subgroups and old lists become obsolete.
The shared to-do list application presented here is highly simplified for the purpose of this
paper. However, applications with the same basic functionality are used in IT support
departments, call centers, and generally for coordination in small groups which are confronted
with a lot of short-term, well-defined tasks. We use shared to-do lists as an example to
demonstrate the implementation of the concepts developed above, because they are simple
distributed applications and exhibit a clear interdependence between evolving group activities
and tailoring. We do not use the search tool application here, because of its primarily local
nature.
The simplified shared to-do list framework consists of four visible and one invisible
component. Table 1 gives an overview and informally describes the semantics of each
component. The components rely on three different interaction types: a remote shared object
RemoteList (shared objects are discussed above in subsection component model) which
contains a list of tasks, another remote shared object RemoteEntry which contains a single
list entry, and a remote event RemoteActionEvent which is used to notify other
components of changes in a specific to-do list.
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Visualizer
ToDoList

RemoteList

ToDoList
RemoteList

ToDoList
RemoteList

ToDoList
RemoteList

ToDoList
RemoteList

ListChanged
RemoteActionEvent

ListChanged
RemoteActionEvent

MarkedEntry
RemoteEntry

MarkedEntry
RemoteEntry

MarkedEntry
RemoteEntry

MarkedEntry
RemoteEntry

Editor

Delete button

Shared List

Done button

The visualizer component
This component is visible for the user and displays the
current contents of a shared list. It has three ports: the
first port connects to a shared list component, the
second port receives events which indicate a change in
a shared list, and the third port shares the currently
marked entry in the list with any interested component.

The editor component
This component is actually an complex component
which is composed of several visual subcomponents.
For simplicity it is regarded as atomic here. The two
ports connect to a shared list and the marked entry of a
visualizer component. The user can add new entries to
the list (if the content of marked entry is [new entry]) or
edit other selected entries in the list. The large text box
on the right can be used to describe the task in textual
form.
The delete button component
This component is connected to a shared list and a
marked entry and – if pressed – deletes the marked
entry in the list
The done button component
This component is connected like the delete button.
When pressed, it sets the flag of the marked entry to
“completed”.
The shared list component
This component is the only invisible component. It
usually resides on a server and maintains a list of tasks.
The list is shared via the ToDoList port and other
components are notified of changes via the ListChanged
event port.

Table 1: Components of the shared to-do list framework
When deploying the component framework of table 1 within the EVOLVE platform, the
different components are placed in the component repository and can thus be referred to in
CAT-files. Figure 6 shows an example application build with the component framework:
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Figure 6: Simple example application providing a shared to-do list between a manager
and a secretary.
The application depicted in figure 6 is specified using three CAT-files and one remote bind
file. One CAT-file simply contains the one server component shared list, while the other
CAT-files describe the client components manager and secretary. Both client components can
use the same remote bind file, since the remote connections are conceptually the same.
The composition shown in figure 6 is the initial state of the application after installation. Now
one can imagine many ways in which the application could evolve as an effect of changes in
the group and work practices. For instance, if a second secretary joins the group, another
instance of the secretary CAT file would have to be introduced. Or it could be decided that the
secretary deletes finished tasks directly. In this case an instance of the delete button
component would have to be added to the client. These manipulations can be executed by
employing the tailoring operations offered by the control modules of the server and all of the
clients.
We want to point out again, that the shared to-do list example is highly simplified. However,
it shows how our approach supports the adaptation of a distributed application on the
technical level.

5. Related Work
The high relevance of tailorability within the field of CSCW has led to a rich body of research
and a substantial number of research prototypes. This section cannot give a complete survey
of all systems, but focuses on specific ones exemplary for certain approaches reflecting the
multiple facets of the question.
The OVAL system by Malone and colleagues (Malone et al. 1995) mentioned in section three
represents one of the earlier attempts to design tailorable groupware. As discussed above, one
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difference to the EVOLVE approach lies in the fact that OVAL is based on a small, fixed set of
components. While these components capture a lot of the functionality needed for cooperation
support, they are not fine-grained enough to permit all necessary tailoring operations without
system-level programming. However, it should be possible to design a set of FLEXIBEANS
components which encapsulate the functionality of objects, views, agents, and links of OVAL
and use this set together with other FLEXIBEANS components.
PROSPERO by Paul Dourish (Dourish 1996) is an approach which aims more at groupware
developers than end users. The system is implemented as a highly adaptable toolkit based on
the reflective programming language CLOS (see Kiczales et al. 1991). Contrary to the
"genericity" approach of OVAL, PROSPERO is based on the understanding that especially in
cooperative work not all eventualities of the circumstances of use can be anticipated and
encapsulates in one fixed toolkit or set of components. Therefore, it employs the approach of
open implementation (see Kiczales 1996) in order to permit developers to inspect and
manipulate the implementation of toolkit functionality in the face of unanticipated
requirements in a specific groupware project. The primary difference to the EVOLVE
approach is the focus on the development phase of the software lifecycle. Prospero does not
have to deal with issues like run-time tailorability or tailoring user interfaces.
ARIADNE by Simone and Schmidt (1998) is a rather abstract model of a tailorable groupware
systems. It consists of three layers, the !-, "-, and #-layer. The latter defines the fundamental
"grammar", i.e. the expressiveness of a language which is used on the "-layer to define
coordination mechanisms. These mechanisms are instantiated in the running system which is
described by the !-layer. In contrast to EVOLVE, the layers in ARIADNE do not concern
different levels of tailorability of the system (like hierarchically structures component
architectures) but different meta-levels of description. In EVOLVE, the #-layer would be the
JAVA programming language, the "-layer the set of implemented FLEXIBEANS components,
and the !-layer the (CAT-) specification of the instantiated system.
DCWPL by Cortes (1999) represents an approach which clearly separates computational from
coordination issues by capturing the latter in a special purpose language (DCWPL =
Describing Collaborative Work Programming Language). The language offers constructs for
session management, conflict resolution, awareness support and other groupware relevant
issues. A complete groupware application consists of a number of computational modules
(e.g. in C++) which at some points rely on coordination decisions which are specified
separately in a DCWPL program. This program is not compiled but  interpreted in a special
environment, thus permitting run-time changes to e.g. floor control policies in a synchronous
groupware application. The design of the language draws a fixed and definite line concerning
which parts of a groupware application are tailorable during run-time and which are not. In
contrary to component-based (or open implementation) approaches unanticipated
requirements are difficult to address. However, the DCWPL language is quite powerful and
expressive and thus probably is able to cover a lot of requirements. However, this
expressiveness can also be a disadvantage, as it makes the language rather complex and thus
places it probably beyond the capabilities of even some system administrators.
A number of efforts apply concepts from object-oriented programming to the design of
tailorable groupware systems. The use of design patterns (Gamma et al. 1995) has received
specific attention (e.g. the adapter pattern (Trevor et al. 1994), the mediator pattern (Syri
1997), and the extensibility pattern (Hummes and Merialdo 1999)). The primary difference of
these approaches to EVOLVE is the fact that the tailoring functionality has to be explicitly
integrated with the application functionality in the development phase.
The feature composition approach to tailorability in groupware by Teege (1999) was already
mentioned in the section three. Its major difference to EVOLVE lies in the component model
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which is based on sets of components rather than networks of explicitly connected
components. As pointed out earlier, a combination of both approaches is possible and might
yield useful system architectures.
These rather different approaches represent a cross-section through the CSCW community’s
efforts to address the challenges of tailorability in system design. Making groupware
tailorable on a technical level is about identifying typical reusable functionality and structures
(see e.g. OVAL or DCWPL), and designing software architectures which exhibit a high
degree of flexibility for designers (see PROSPERO, and ARIADNE) and other tailors (see OVAL
and DCWPL). Groupware-specific questions of user interface design (e.g. how to design
interfaces for tailoring distributed groupware applications) are still not well-addressed in the
current discussion. We hope that component-based approaches like EVOLVE permit the
construction of interfaces through which even non-expert users can look and act "behind the
stage" of a groupware application and tailor it to their specific preferences and requirements.

6. Summary and Future Work
This article develops the component-based tailoring approach for CSCW applications. It
discusses four questions raised by the approach in the context of a first exploratory
application during which component-based tailorability was employed to solve a real tailoring
problem in the POLITeam project. The application’s results concerning the support of
distributed CSCW applications resulted in the modification of JAVABEANS yielding the
FLEXIBEANS component model and the subsequent development of the EVOLVE platform. The
design concepts of the EVOLVE platform were presented together with a distributed example
CSCW application.
In order to address the problems in the area of user interfaces for tailoring, we are currently
developing a 3D version of such an interface. The users can cooperatively navigate through a
3D representation of the distributed component world and locally and remotely manipulate
compositions. Apart from the implementation of 3D user interface, its integration into the
EVOLVE platform and usability tests with end users, future work on the approach also
concerns the investigation of its scope of applicability. The implemented shared to-do list
application served well to test and demonstrate the basic concepts of the approach (e.g. the
distributed CAT-files and the remote-bind files). However, concerning the number and size of
its components, it is rather “lightweight” and does not permit sound conclusions concerning
the scalability of the approach. We will address this questions by constructing a dummy
component framework, with components of different sizes, interaction types, and numbers of
ports. These components will be composed into test applications which we will use to
measure the execution time of start-up and tailoring operations. We expect the results to
indicate the limits of the approach and to suggest bottlenecks which can be the subject of
further investigations.
Another open issue is the lack of an appropriate design methodology, supporting the
groupware developer in a coherent process of eliciting, representing, and validating dynamic
and diverse requirements (compare questions three in section two). Further support is needed
in transforming these requirements into an appropriate decomposition of application
functionality for implementation in the FLEXIBEANS component model. These problems are
best addressed empirically by applying the approach to a variety of tailoring problems. Apart
from the development of an appropriate design methodology we expect the experiences
gained by the application of component-based tailorability to give some indication whether
the approach is also limited with respect to the type of target applications. Are there certain
applications which cannot easily be made tailorable with the help of component-based
tailorability?
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