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Abstract

It has been known since 1962 that the ambiguity problem for context-free gram-
mars is undecidable. Ambiguity in context-free grammars is a recurring problem
in language design and parser generation, as well as in applications where gram-
mars are used as models of real-world physical structures.

We observe that there is a simple linguistic characterization of the grammar
ambiguity problem, and we show how to exploit this by presenting an ambiguity
analysis framework based on conservative language approximations. As a con-
crete example, we propose a technique based on local regular approximations
and grammar unfoldings. We evaluate the analysis using grammars that occur
in RNA analysis in bioinformatics, and we demonstrate that it is sufficiently
precise and efficient to be practically useful.

1. Introduction

When using context-free grammars to describe formal languages, one has to
be aware of potential ambiguity in the grammars, that is, the situation where
a string may be parsed in multiple ways, leading to different parse trees. We
propose a technique for detecting ambiguities in a given grammar. As the
problem is in general undecidable, which was shown by Cantor [6], Floyd [14],
and Chomsky and Schützenberger [8], we resort to conservative approximation.
This means that our analysis for some grammars is able to guarantee that they
are unambiguous, whereas for others it cannot give certain answers.

In bioinformatics, context-free grammars in various guises have important
applications, for example in sequence comparison, motif search, and RNA sec-
ondary structure analysis [12, 18]. Recently, ambiguity has gained attention
in this field, as several important algorithms (such as the Viterbi algorithm on
stochastic CFGs) have been shown to deliver incorrect results in the presence of
ambiguity [16, 11]. The ambiguity problem arises in biosequence analysis from
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the necessity to check a static property of the dynamic programming algorithms
employed – the question whether or not an element of the search space may be
evaluated more than once. If so, probabilistic scoring schemes yield incorrect
results, and enumeration of near-optimal solutions drowns in redundancy. It
may seem surprising that the static analysis of this program property can be
approached as a question of language ambiguity on the formal language level.
We will explain this situation in some detail in Section 8.

Before we start presenting our method, we state two requirements on a prac-
tical ambiguity checker that result from the biosequence analysis domain and
must be kept in mind in what follows: First, the grammars to be checked are ac-
tually abstractions from richer programming concepts. They may look strange
from a formal language design point of view – for example, they may contain
“redundant” nonterminal symbols generating the same language. However, dif-
ferent nonterminals model different physical structures with different semantics
that are essential for subsequent algorithmic processing. Hence, the grammar
must be checked as is and cannot be simplified by, for instance, coalescing such
nonterminal symbols. Of course, we may (and will) apply ambiguity-preserving
transformations to the grammar. Second, the domain experts are typically
molecular biologists with little programming expertise and no training in for-
mal language theory. Hence, when ambiguity is discovered, it must be reported
in a way that is meaningful to this category of users.

Besides the applications to biosequence analysis, our motivation behind the
work we present here has been analyzing reversibility of transformations be-
tween XML and non-XML data, which can be reduced to the grammar ambi-
guity problem [4]. That work involves scannerless parsing, that is, where lexical
descriptions are not separated from the grammars.

Related Work

Our approach is related to building an LR(k) parse table for the given gram-
mar and checking for conflicts. The LR(k) condition has since its discovery by
Knuth in 1965 been known as a powerful test for unambiguity [21]. An example
of an even larger class of unambiguous grammars is LR-Regular [10]. Never-
theless, not even LR-Regular is sufficient for a considerable class of grammars
involving palindromic structures, which often occur in bioinformatics. Another
crucial limitation with ambiguity detection tools based on LR(k) or related
techniques is the poor quality of the error messages they produce. Any user of
Yacc or a similar tool will recognize the difficulty in finding the true cause of a
reported conflict.

An increasing number of parser generators, for example, Bison [33], SDF [35],
and Elkhound [24], support general context-free grammars rather than unam-
biguous subclasses, such as LL(k), LR(k), or LALR(k). Such tools usually
handle ambiguities by dynamically (that is, during parsing) disambiguating or
merging the resulting parse trees [34, 5]. In contrast, our approach is to statically
analyze the grammars for potential ambiguities. Also, we aim for a conservative
algorithm, unlike many existing ambiguity detection techniques, for example
those by Gorn [19] and Cheung and Uzgalis [7].
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In the approach by Schmitz [31], a grammar G is turned into a potentially
infinite structure called a position graph, ΓG, which is then searched for mul-
tiple derivations of the same sentential form. By factoring ΓG with a fini-
tary equivalence relation, the graph search problem results in a terminating
analysis. As examples, the LR(k) and LR-Regular conditions may both be
adapted to equivalence relations in this framework. The approach by Kuich
[23] constructs systems of finite pushdown automata from grammars. If these
automata (or ambiguity-preserving transformations thereof) can be shown to be
quasi-deterministic, then the grammar is guaranteed to be unambiguous. This
method is closely related to the LR(0) variant of Schmitz. As our approach,
the analyses of Schmitz and Kuich are sound but incomplete. Their analyses
work by searching finite structures for multiple derivations. Our approach is
conceptually different in that it transforms the structural problem of ambigu-
ity to a finite collection of linguistic problems. Our experiments (Section 9)
demonstrate the incomparable expressiveness of our approach compared to that
of Schmitz.

Contributions

Despite decades of work on parsing techniques, which in many cases involve
the problem of grammar ambiguity, we have been unable to find tools that are
applicable to grammars in the areas mentioned above. This paper contributes
with the following results:

• We observe that there is a simple linguistic characterization of grammar
ambiguity. This allows us to shift from reasoning about grammar deriva-
tions to reasoning about purely linguistic properties, such as, language
inclusion and approximations. This results in a framework, called ACLA
(Ambiguity Checking with Language Approximations).

• We show how Mohri and Nederhof’s regular approximation technique for
context-free grammars [25] can be adapted in a local manner using the
ACLA framework to detect many common sources of ambiguity, includ-
ing ones that involve palindromic structures. Also, a simple grammar
unfolding transformation can be used to improve the precision of the ap-
proximation. The flexibility of the framework is additionally substantiated
by presenting other approximation techniques that can be combined with
the regular approximation to improve analysis performance.

• We demonstrate that ACLA can handle real-world grammars of vary-
ing complexity taken from the bioinformatics literature on RNA analysis,
acquitting the unambiguous grammars and pinpointing the sources of am-
biguity – with shortest possible examples as witnesses – in grammars that
are in fact ambiguous. In addition, we investigate the analysis precision
and performance on a range of other grammars found in the literature.
The implementation is available from our web site.
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We here work with plain, context-free grammars. Modifying our approach
to work with parsing techniques that involve interoperability with a lexical an-
alyzer, precedence/associativity declarations, or other disambiguation mecha-
nisms is left to future work. (Some progress in this direction is discussed in the
context of our implementation in Section 7.)

Overview

We begin in Section 2 by giving a characterization of grammar ambiguity
that allows us to reason about the language of the nonterminals in the grammar
rather than the structure of the grammar. In particular, we reformulate the
ambiguity problem in terms of language intersection and overlap operations.
Based on this characterization, we then in Section 3 formulate a general frame-
work for conservatively approximating the ambiguity problem. In Section 4 we
show how regular approximations can be used to obtain a particular decidable
approximation, Section 5 shows how precision can be improved using grammar
unfolding transformations, and examples of other approximation strategies are
presented in Section 6. Our implementation is described in Section 7. Section 8
discusses applications in the area of biosequence analysis where context-free
grammars are used to describe RNA structures, and Section 9 summarizes a
number of experiments that test the precision and performance of the analysis.
The appendices contain proofs of the propositions.

2. A Characterization of Grammar Ambiguity

We begin by briefly recapitulating the basic terminology about context-free
grammars.

Definition 1 (Context-free grammar and ambiguity). A context-free
grammar (CFG) G is defined by G = (N , Σ, s, π) where N is a finite set of
nonterminals, Σ is a finite set of alphabet symbols (or terminals), s ∈ N is the
start nonterminal, and π : N → P(E∗) is the finite production function where
E = Σ ∪ N . We write αnω ⇒ αθω when θ ∈ π(n) and α, ω ∈ E∗, and ⇒∗ is
the reflexive transitive closure of ⇒. We assume that every nonterminal n ∈ N
is reachable from s and derives some string: ∃x, y, z ∈ Σ∗ : s ⇒∗ xnz ⇒∗ xyz.
The language of a sentential form α ∈ E∗ is LG(α) = {x ∈ Σ∗ | α ⇒∗ x}, and
the language of G is L(G) = LG(s).

Assume that x ∈ L(G), that is, s = φ0 ⇒ φ1 ⇒ · · · ⇒ φn = x. Such a
derivation sequence gives rise to a derivation tree, which is a finite tree where
each node is labeled with a symbol from E: the root is labeled s, and the sequence
of labels of children of a node with label e are in π(e). G is ambiguous if there
exists a string x in L(G) with multiple derivation trees, and we then say that x
is ambiguous relative to G.

We now introduce the properties vertical and horizontal unambiguity and
show that they together characterize grammar unambiguity.
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Definition 2 (Vertical and horizontal unambiguity). Given a grammar G,
two sentential forms α, α′ ∈ E∗ are vertically unambiguous, written
‖−

G
α; α′, iff

LG(α) ∩ LG(α′) = ∅

A grammar G is vertically unambiguous, written ‖− G, iff

∀n ∈ N , α, α′ ∈ π(n) where α 6= α′ : ‖−
G

α; α′

Two sentential forms α, α′ ∈ E∗ are horizontally unambiguous, written
|=

G
α; α′, iff

LG(α) ∩
W

LG(α′) = ∅

where ∩
W

is the language overlap operator defined by

X ∩
W

Y = { xay | x, y ∈ Σ∗ ∧ a ∈ Σ+ ∧ x, xa ∈ X ∧ y, ay ∈ Y }

A grammar G is horizontally unambiguous, written |= G, iff

∀n ∈ N , αα′ ∈ π(n) where α, α′ ∈ E∗ : |=
G

α; α′

We write ‖= G when both ‖− G and |= G are satisfied.

Intuitively, vertical unambiguity means that, during parsing of a string, there is
never a choice between two different productions of a nonterminal. The overlap
X ∩

W
Y is the set of strings in XY that can be split non-uniquely in an X part and

a Y part. For example, if X = {x, xa} and Y = {y, ay} then X ∩
W

Y = {xay}.
Horizontal unambiguity then means that, when parsing a string according to a
production, there is never any choice of how to split the string into substrings
corresponding to the entities in the production.

Proposition 3 (Characterization of ambiguity).

‖= G ⇔ G is unambiguous

Proof. Any ambiguity must result from a choice between two productions
of some nonterminal or from a choice of how to split a string according to a
single production. A detailed proof is given in Appendix A.
This proposition essentially means that we have transformed the problem of
context-free grammar ambiguity from a grammatical property to a linguistic
property dealing solely with the languages of the nonterminals in the grammar
rather than with derivation trees. As we shall see in the next section, this
characterization can be exploited to obtain a good conservative approximation
for the problem without violating the two requirements described in Section 1.

Note that this linguistic characterization of grammar ambiguity should not
be confused with the notion of inherently ambiguous languages [20]. (A language
is inherently ambiguous if all its grammars are ambiguous.)

We now give examples of vertical and horizontal ambiguities.
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Example 4 (Vertical ambiguity).
Z : A "y"

l
| "x" B

A : "x" "a"

B : "a" "y"

The string xay can be parsed in two ways by choosing either the first or the
second production of Z, that is, xay ∈ LG(A "y") ∩ LG("x" B). The name
vertical ambiguity comes from the fact that productions are often written on
separate lines as in this example.

Example 5 (Horizontal ambiguity).
Z : "x" A ↔ B

A : "a"

| ε

B : "a" "y"

| "y"

Also here, the string xay can be parsed in two ways, by parsing the a ei-
ther in "x" A (using the first production of A and the second of B) or in

B (using the second production of A and the first of B). More formally, xay ∈

LG("x" A) ∩
W

LG(B). Here, the ambiguity is at a split-point between entities
on the right-hand side of a particular production, hence the name horizontal
ambiguity.

3. A Framework for Conservative Approximation

The characterization of ambiguity presented above can be used as a founda-
tion for a framework, ACLA (Ambiguity Checking with Language Approxima-
tions), for obtaining decidable, conservative approximations of the ambiguity
problem. When the analysis says “the grammar is unambiguous!”, we know
that this is indeed the case. The key to this technique is that the linguistic
characterization allows us to reason about languages of nonterminals rather
than derivation trees.

Definition 6 (Grammar approximation). A grammar approximation rela-
tive to a CFG G is a function AG : E∗ → P(Σ∗) where LG(α) ⊆ AG(α) for
every α ∈ E∗.

In other words, AG provides for every sentential form α an upper approximation
of the language of α.

Definition 7 (Approximated vertical and horizontal unambiguity).
Given a grammar approximation AG, two sentential forms α, α′ ∈ E∗ are ver-
tically unambiguous relative to AG, written ‖−AG

α; α′, iff

AG(α) ∩ AG(α′) = ∅
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A grammar G is vertically unambiguous relative to AG, written ‖−AG
G, iff

∀n ∈ N , α, α′ ∈ π(n) where α 6= α′ : ‖−AG
α; α′

Two sentential forms α, α′ ∈ E∗ are horizontally unambiguous relative to
AG, written |=AG

α; α′, iff

AG(α) ∩
W

AG(α′) = ∅

A grammar G is horizontally unambiguous relative to AG, written |=AG
G, iff

∀n ∈ N , αα′ ∈ π(n) where α, α′ ∈ E∗ : |=AG
α; α′

We write ‖=AG
G when both ‖−AG

G and |=AG
G are satisfied.

Note that Definition 7 gives an algorithm for deciding ‖=AG
G, assuming

that algorithms for deciding ‖−AG
α; α′ and |=AG

α; α′ are provided. The next
proposition opens the floor for a variety of approaches to sound ambiguity check-
ing that differ in the way they construct approximations.

Proposition 8 (Approximation soundness).

‖=AG
G ⇒ G is unambiguous

Proof. The result follows straightforwardly from Definitions 2, 6, and 7 and
Proposition 3. For details, see Appendix B.

Definition 9 (Approximation strategy). An approximation strategy A is
a function that returns a grammar approximation AG given a CFG G. We say
that A is decidable if ‖=AG

G is decidable with the grammar G as input.

As an example of a decidable but not very useful approximation strategy,
the one which returns the constant Σ∗ approximation corresponds to the trivial
analysis that reports that every grammar may be (vertically and horizontally)
ambiguous at all possible locations. In the other end of the spectrum, the
approximation strategy which for every grammar G returns LG(α) for each α has
full precision but is undecidable (since it involves checking language disjointness
for context-free grammars).

Note that two different approximations, AG and A′
G

, may be combined: the
function A′′

G
defined by A′′

G
(α) = AG(α) ∩ A′

G
(α) is a grammar approximation

that subsumes both AG and A′
G

. Such a pointwise combination may lead to
higher precision than running the two analyses independently as one of the
approximations might be good in one part of the grammar, and the other in
a different part. Nonetheless, approximations can also be combined in another
way that is more useful in practice:

Proposition 10 (Combining approximations). Given a collection of gram-
mar approximations A1

G
, . . . ,Ak

G
, if

∀n ∈ N , α, α′ ∈ π(n) where α 6= α′ : ∃j ∈ {1, . . . , k} : ‖−Aj

G
α; α′

then ‖− G.
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If

∀n ∈ N , αα′ ∈ π(n) where α, α′ ∈ E∗ : ∃j ∈ {1, . . . , k} : |=Aj

G
α; α′

then |= G.

Proof. This is a trivial modification of the proof of Proposition 8. Intuitively,
to argue that a given grammar is unambiguous, it suffices to check vertical and
horizontal unambiguity of certain pairs of sentential forms, and these checks
may be performed using different strategies.

Recall from Section 1 that we stated as a requirement that for the grammars
of interest, we do not allow grammars to be simplified, even if they contain
nonterminals that have the same language. The use of approximations and
transformations that we now present does not violate that requirement: The
ACLA framework reduces the ambiguity problem for the original grammar to a
finite collection of linguistic vertical and horizontal ambiguity problems – and
each of these can safely be attacked with techniques that involve approximations
and transformations.

4. Regular Approximation

One approach for obtaining decidability is to consider regular approxima-
tions, that is, ones where AG(α) is a regular language for each α: the family
of regular languages is closed under both intersection and overlap, and empti-
ness on regular languages is decidable. Also, shortest examples can easily be
extracted from nonempty regular languages. As a concrete approximation strat-
egy we propose using Mohri and Nederhof’s algorithm for constructing regular
approximations of context-free grammars [25].

We will not repeat their algorithm in detail, but some important properties
are worth mentioning. Given a CFG G, the approximation results in another
CFG G′ which is strongly regular (and hence its language is regular), L(G) ⊆
L(G′), and G′ is at most twice the size of G. Whenever n ⇒∗ αnω and n ⇒∗ θ
in G for some α, ω, θ ∈ E∗ and n ∈ N , the grammar G′ has the property that
n ⇒∗ αmθωk for any m, k. Intuitively, G′ keeps track of the order that alphabet
symbols may appear in, but it loses track of the fact that α and ω must appear
in balance.

Definition 11 (Mohri-Nederhof approximation strategy). Let MN be
the approximation strategy that given a CFG G = (N , Σ, s, π) returns the gram-
mar approximation MNG defined by MNG(α) = L(Gα) where Gα is the Mohri-
Nederhof approximation of the grammar

(N ∪ {sα}, Σ, sα, π[sα 7→ {α}])

for some sα 6∈ N . (The notation π[sα 7→ {α}] denotes the function π extended
to map sα to {α}.)
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In other words, whenever we need to compute AG(α) for some α ∈ E∗, we apply
Mohri and Nederhof’s approximation algorithm to the grammar G modified to
derive α as the first step.

Example 12 (Palindromes). A classical example of an unambiguous gram-
mar that is not LR(k) (nor LR-Regular) is the following, called Pal, whose
language consists of all palindromes over the alphabet {a, b}:

P : "a" P "a" | "b" P "b" | "a" | "b" | ε

Running our analysis implementation on this grammar immediately gives the re-
sult “the grammar is unambiguous!”. It computes MNPal for each of the five
right-hand sides of productions and all their prefixes and suffixes and then per-
forms the checks described in Definition 7. As an example, MNPal("a" P "a")
is the regular language a(a+ b)∗a, and MNPal("b" P "b") is b(a+ b)∗b. Since
these two languages are disjoint, there is no vertical ambiguity between the first
two productions.

A variant of the grammar above is the following language, AntiPal, which
our analysis also verifies to be unambiguous:

R : "a" R "b" | "b" R "a" | "a" | "b" | ε

As we shall see in Section 8, this grammar is closely related to grammars oc-
curring naturally in biosequence analysis.

Example 13 (Ambiguous expressions). To demonstrate the capabilities of
producing useful warning messages, let us run the analysis on the following tiny
ambiguous grammar representing simple arithmetical expressions:

Exp[plus] : Exp "+" Exp

[mult] | Exp "*" Exp

[var] | "x"

(Notice that we allow productions to be labeled.) The analysis output is:

*** vertical ambiguity: Exp[plus] <--> Exp[mult]

ambiguous string: "x*x+x"

*** horizontal ambiguity: Exp[plus]: Exp <--> "+" Exp

ambiguous string: "x+x+x"

matched as "x" <--> "+x+x" or "x+x" <--> "+x"

*** horizontal ambiguity: Exp[plus]: Exp "+" <--> Exp

ambiguous string: "x+x+x"

matched as "x+" <--> "x+x" or "x+x+" <--> "x"

*** horizontal ambiguity: Exp[mult]: Exp <--> "*" Exp

ambiguous string: "x*x*x"

matched as "x" <--> "*x*x" or "x*x" <--> "*x"

*** horizontal ambiguity: Exp[mult]: Exp "*" <--> Exp

ambiguous string: "x*x*x"

matched as "x*" <--> "x*x" or "x*x*" <--> "x"

the grammar is ambiguous!

Each source of ambiguity is clearly identified, even with example strings that
have been verified to be non-spurious (of course, it is easy to check with a
CFG parser whether a concrete string is ambiguous or not). Obviously, these
messages are more useful to a non-expert than, for example, the shift/reduce
conflicts and reduce/reduce conflicts being reported by LR(k) parser generators.
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Complexity

The theoretical worst-case time complexity of the ACLA framework of course
depends on the choice of approximation strategies. For a given approximation
strategy, let tV (G) denote the maximum time for performing a single vertical
unambiguity check, ‖−AG

α; α′ for any α, α′ ∈ π(n) where n ∈ N . Similarly,
tH(G) bounds the time for performing a single horizontal unambiguity check,
|=AG

α; α′ for any αα′ ∈ π(n) where n ∈ N . ACLA decides ‖=AG
G by

performing ∑

n∈N

|π(n)|
(
|π(n)| − 1

)
/2

vertical unambiguity checks and
∑

n∈N

∑

α∈π(n)\{ǫ}

(
|α| − 1

)

horizontal unambiguity checks. Thus, if we let |G| denote the size of the gram-
mar G (for example, measured as the number of symbols required to write down
G), the time complexity of ACLA is

O
(
tV (G)|G|2 + tH(G)|G|

)

For our implementation of the MN approximation strategy, both tV and tH
are exponential in |G|: The grammar transformation itself at most doubles the
size of the grammar, however the subsequent conversion from strongly regular
grammars to finite-state automata may theoretically lead to an exponential
blow-up. In our experiments, however, this does not appear to be problematic
(see Section 9).

5. Improving Precision with Grammar Unfolding

Precision of the regular approximation can be improved by a simple grammar
unfolding technique. A related approach has been used by Nederhof [28] but
not in the context of analyzing ambiguity.

Example 14 (Unambiguous expressions). Although the grammar in Ex-
ample 13 is ambiguous, its language is not inherently ambiguous. By introduc-
ing parentheses and fixing precedence and associativity of the operators, ’+’ and
’*’, an unambiguous grammar, called Exp, can easily be constructed:

Exp[plus] : Exp "+" Term

[term] | Term

Term[mult] : Term "*" Factor

[factor] | Factor

Factor[var] : "x"

[par] | "(" Exp ")"

While even the LR(k) technique is perfectly capable of acquitting this grammar
as unambiguous, our analysis, as presented so far, reports the following spurious
errors:
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*** potential vertical ambiguity: Exp[plus] <--> Exp[term]

*** potential horizontal ambiguity at Exp[plus]: Exp <--> "+" Term

*** potential horizontal ambiguity at Exp[plus]: Exp "+" <--> Term

*** potential horizontal ambiguity at Term[mult]: Term <--> "*" Factor

*** potential horizontal ambiguity at Term[mult]: Term "*" <--> Factor

Note that, in contrast to the output being generated in Example 13, there are
no example strings and the word “potential” has been added. For example,
MNExp(Exp "+" Term)∩MNExp(Term) is nonempty, but any example string in
this intersection turns out to be unambiguous (our implementation tests just a
single string in the intersection). This means that the analysis, as presented in
the previous sections, cannot say with certainty that this grammar is ambiguous,
nor that it is unambiguous.

By investigating the potential vertical ambiguity reported above, we see that
a string x = α+ω ∈ LExp(Exp) must have unmatched parentheses in α if and
only if x can be derived from Exp[term] and not from Exp[plus]. Hence, if
we can distinguish between operators that appear within parentheses from ones
that appear outside, we can eliminate this kind of spurious error.

Fortunately, the ambiguity characterization provided by Proposition 3 allows
us to employ language-preserving transformations and conservative approxima-
tions on the grammar without risking violations of the requirements set up in
Section 1. A simple language-preserving grammar transformation is unfolding
recursive nonterminals, and, as explained in the following, this happens to be
enough to eliminate all five spurious errors in the example above.

More generally, for balanced grammars [22, 3] where parentheses are balanced
in each production, we can regain some precision that is lost by the Mohri-
Nederhof approximation by unfolding the grammar to distinguish between inside
and outside parentheses.

Definition 15 (Balanced grammar1). A grammar G = (N , T, s, π) is bal-

anced if (1) the terminal alphabet has a decomposition T = Σ ∪ Γ ∪ Γ̂ where Γ

is a set of left parentheses and Γ̂ a complementary set of right parentheses, and
(2) all productions in π(n) where n ∈ N are of the form α or αγφγ̂ω, where

α, φ, ω ∈ (Σ ∪ N )∗, γ ∈ Γ, γ̂ ∈ Γ̂ (that is, γ is the complementary parenthesis of
γ̂).

Definition 16 (Unfolded balanced grammar). Unfolding a balanced gram-

mar G = (N , Σ∪Γ∪ Γ̂, s, π) produces the grammar G̃ = (N ∪N , Σ∪Γ∪ Γ̂∪Σ∪

Γ ∪ Γ̂, s, π̃) where N , Σ, Γ, and Γ̂ are copies of N , Σ, Γ, and Γ̂, respectively,
with all symbols underlined, and

π̃(n) =

{
α if π(n) = α

αγφγ̂ω if π(n) = αγφγ̂ω where γ ∈ Γ and γ̂ ∈ Γ̂ match

1This is a syntactic variation of the definition by Berstel and Boasson [3]. It is also a
generalization of the definition by Knuth [22], allowing multiple pairs of parenthesis symbols.
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π̃(n) =

{
α if π(n) = α

αγφγ̂ω if π(n) = αγφγ̂ω where γ ∈ Γ and γ̂ ∈ Γ̂ match

where the notation θ means θ with all symbols underlined.

Clearly, there is a bijection between the derivations of L(G) and L(G̃) by
adding/removing underscores: the languages are identical, except that in all

strings in L(G̃) a symbol is underlined if and only if it is enclosed by paren-
theses. The same applies to the derivation trees. Thus, when checking vertical
unambiguity of two productions in G it is sound to check the corresponding
productions in G̃ instead, and similarly for horizontal unambiguity. As the
following example shows, this may improve precision of the analysis.

Example 17 (Unambiguous expressions, unfolded). The grammar Exp

from Example 14 is balanced with Γ = {(} and Γ̂ = {)}. Unfolding yields

this grammar, named Ẽxp:

Exp : Exp "+" Term Exp : Exp "+" Term

| Term | Term

Term : Term "*" Factor Term : Term "*" Factor

| Factor | Factor

Factor : "x" Factor : "x"

| "(" Exp ")" | "(" Exp ")"

A string parsed in the original grammar is parsed in exactly the same way in the
new unfolded grammar, except that everything enclosed by parentheses is now
underlined. For example, the string x+(x+(x)+x)+x from the original gram-
mar corresponds to x+(x+(x)+x)+x with the resulting grammar. Now, every
string in MN gExp

(Exp "+" Term) contains the symbol ’+’ whereas no strings in

MN gExp
(Term) have this property (all ’+’ symbols are here underlined), so the

potential vertical ambiguity warning is eliminated, and similarly for the other
warnings.

This unfolding transformation can be generalized straightforwardly to mul-
tiple levels of unfolding. In general, unfolding n levels increases the grammar
size by a factor of n and allows symbols in a derived string to be distinguished
if enclosed by a different number of parentheses, up to depth n. The grammars
G7, G8, and Voss-Light introduced in Section 8 need two unfoldings in order to
be rightfully acquitted as unambiguous, and Voss needs three. These grammars
all share the property of having many different nonterminals producing the same
pairs of balanced parentheses.

Example 18 (A non-balanced grammar). Any grammar is balanced if we

set, for example, Γ = Γ̂ = ∅ but that precludes unfolding to have any effect
on the regular approximation. Some grammars exhibit parenthesis structures
without being balanced with any suitable choice of Γ and Γ̂. An example is the
following:
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S : A A

A : "x" A "x" | y

Our present technique is not able to detect that there is no horizontal ambiguity
in the first production. The grammar is LR(0), however, so this example along
with Example 12 establishes the incomparability of our approach and LR(k).
Still, our ambiguity characterization allows further grammar transformations to
be applied beyond the unfolding technique described above; we leave it to future
work to discover other practically useful variations of unfolding. In this tiny
example, a simple solution would be to apply a transformation that underlines
all symbols enclosed by x’s. An alternative approach would be to combine our
technique with, for example, LR(k). Of course, one can just run both techniques
and see if one of them is able to verify unambiguity of the given grammar, but
there may be ways to combine them more locally (that is, for individual checks
of vertical/horizontal unambiguity) to gain more precision.

6. Other Approximation Strategies

To illustrate the flexibility of the ACLA framework, we present three ex-
amples of other approximation techniques that lead to substantial performance
improvements without losing precision. The approximation strategies presented
in this section all have the property that they involve sets of nonterminals or
terminals that can be computed efficiently for a given grammar, and, from these
sets, they define language approximations that allow many vertical and horizon-
tal unambiguity checks to be performed efficiently. We use the technique from
Proposition 10 to combine the entire collection of strategies.

The EmptyString Approximation Strategy

First, we add a simple approximation strategy, EmptyString, that focuses
on derivation of the empty string for vertical ambiguity checks:

EmptyStringG(α) =





Σ0 if α = ǫ

Σ+ if α 6⇒∗ ǫ

Σ∗ otherwise

Productions matching the first case derive the language Σ0 = {ǫ}, which is
disjoint from the language of a production matching the second case. The first
is trivial to check, and the second can be checked efficiently with a well-known
algorithm [20]. This approximation effectively checks disjointness of pairs of
productions where one derives only the empty string and the other never does.
The third case in the definition of EmptyStringG corresponds to this analysis
not being able to verify disjointness involving the given production.

Example 19 (EmptyString). This check quickly verifies that there is no ver-
tical ambiguity between, for example, the following two productions in the palin-
drome grammar from Example 12:

13



P : "a" P "a"

P : ǫ

It computes EmptyStringPal("a" P "a") = Σ+ and EmptyStringPal(ǫ) = Σ0,
and these sets are obviously disjoint.

The MayMust Approximation Strategy

The approximation strategy MayMust considers terminal symbols that may
and must occur in derivable strings. As a preliminary step, we define the func-
tion MAY G(α) ⊆ Σ for α ∈ E∗ by the smallest solution to the following equa-
tions:

MAY G(α1 · · ·αm) =
⋃

i=1...m

MAY G(αi)

MAY G(σ) = {σ} where σ ∈ Σ

MAY G(n) =
⋃

α∈π(n)

MAY G(α) where n ∈ N

In other words, MAY G(α) is simply the set of alphabet symbols that occur in
some string derivable from α. Likewise, MUSTG(α) ⊆ Σ is the set of alphabet
symbols that occur in every string derivable from α, which is smallest solution
to the following equations:

MUSTG(α1 · · ·αm) =
⋃

i=1...m

MUSTG(αi)

MUSTG(σ) = {σ} where σ ∈ Σ

MUSTG(n) =
⋂

α∈π(n)

MUSTG(α) where n ∈ N

We now define MayMust by

MayMustG(α) =

{σ1 · · ·σm ∈
(
MAY G(α)

)∗
| ∀ρ ∈ MUSTG(α) : ∃i ∈ {1, . . . , m} : σi = ρ}

Both MAY G(α) and MUSTG(α) can be precomputed for every α appearing
in G in linear time in the size of G, and MayMustG(α) can be represented
efficiently by the pair (MAY G(α),MUST G(α)). This approximation can verify
vertical unambiguity of two productions, α and α′, when every string derivable
from α contains a terminal symbol that never occurs in strings derivable from
α′, or vice versa.

Example 20 (MayMust). Continuing Example 17, we compute, in particu-
lar, MUST gExp

(Exp "+" Term) = {+} and MAY gExp
(Term) = {x, *, (, ),

+, x, *, (, )}. From this, we get that MayMustgExp
(Exp "+" Term) and

MayMustgExp
(Term) are disjoint, so there is no vertical unambiguity at this point

in the grammar Ẽxp. This example also illustrates that unfolding is effective
for other approximation strategies than the one from Section 4.
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The FirstLast Approximation Strategy

The two approximation strategies mentioned above focus on vertical ambi-
guity, whereas the next, FirstLast, is effective also for many horizontal checks:

FirstLastG(α) =
(
MAY G(α)

)∗
∩ FIRSTG(α)Σ∗ ∩ Σ∗LASTG(α)

We here use the definition of FIRSTG from Aho and Ullman [1] for computing
the first-set of α ∈ E∗. The function LASTG is computed as FIRSTG but with
the productions reversed, thus considering the last symbols, rather than the first
ones, in derivable strings:

FIRSTG(α) = {σ | (σ ∈ Σ ∧ ∃x ∈ Σ∗ : α ⇒∗ σx) ∨ (σ = ǫ ∧ α ⇒∗ ǫ)}

LASTG(α) = {σ | (σ ∈ Σ ∧ ∃x ∈ Σ∗ : α ⇒∗ xσ) ∨ (σ = ǫ ∧ α ⇒∗ ǫ)}

For vertical ambiguity, this approximation effectively verifies disjointness of
pairs of productions with disjoint first-sets or disjoint last-sets. For horizontal
ambiguity, this approximation exploits the fact that the language overlap X ∩

W
Y

must be empty if the symbols that occur first in strings from Y do not occur at
all in X or conversely, if the symbols that occur last in strings from X do not
occur at all in Y .

Example 21 (FirstLast). Consider the following grammar, S, which is a frag-
ment of a larger grammar by Schmitz [31]:

D[1] : F

[2] | "s" "f" F

E[1] : "q" "i" "q"

F[1] : E

[2] | F "f" E

For the vertical ambiguity check of the two production of D, we compute, in
particular, FIRSTS(F) = {q} and FIRSTS("s" "f" F) = {s}. Since these sets
are disjoint, we have that FirstLastS(F) ∩ FirstLastS("s" "f" F) = ∅, which
implies that there is no vertical ambiguity at this point in S.

For the second horizontal ambiguity check for production D[2], we compute,
in particular, MAY S("s" "f") = {s, f} and FIRSTS(F) = {q}. Since these
sets are disjoint, we have that FirstLastS("s" "f") ∩

W
FirstLastS(F) = ∅, which

implies that there is no horizontal ambiguity at this point in S.

Regarding precision, the MN strategy from Section 4 subsumes each of the
techniques presented here. However, by generally trying these simple approxi-
mation strategies on each vertical or horizontal check before running the more
expensive MN strategy, we gain a notable performance improvement because
fewer expensive automata operations are needed. We measure the effect in
Section 9.
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Figure 1: The graphical interface to the ambiguity analyzer implementation.

7. Implementation

An implementation of our ambiguity analysis technique is available at

http://www.brics.dk/grammar/

This is an open source Java library (7,400 lines of code) with command-line and
graphical interfaces. A screenshot of the running tool is shown in Figure 1.

The tool is designed to be a flexible framework that supports plugging in
new approximation strategies. The current built-in strategies are EmptyString,
MayMust, FirstLast (from Section 6), and MN (from Section 4) – applied in that
order according to Proposition 10. The characterization of ambiguity (Propo-
sition 3) leads to a highly parallelizable approach: It reduces the ambiguity
problem to a collection of independent vertical/horizontal checks that can be
performed separately (although this is currently not exploited in our implemen-
tation). Potentially ambiguous example strings (see Example 13) are categorized
as potential or definite ambiguities using an Earley-style parser [13]. As a con-
venient feature, the tool can generate parse trees from the ambiguous example
strings and show them graphically via Graphviz.

Grammars can optionally be unfolded as in Section 5. Unfolding here uses
a slightly more lenient definition of “balanced grammar” that allows multiple
parenthesis pairs in each production. In the current version of the tool, the user
specifies the unfold level and the Γ and Γ̂ sets, however these parameters could
in many cases easily be auto-detected.

The tool also supports terminal sequences to be specified as regular expres-
sions within the grammars, as a supplement to the single terminal symbols used
in the example grammars shown in the previous sections. This does not affect
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the expressive power of the formalism since regular expressions can be trans-
formed into ordinary context-free grammar productions, but regular expressions
can often be used for concisely specifying lexical tokens in grammars. Since we
treat each substring matched by a regular expressions as an individual parse
tree node, we are not concerned with ambiguity that may appear within the
regular expressions.

Additionally, the grammar notation allows production constituents to be
marked as ignorable meaning that the corresponding parse tree fragments are
omitted when parsing. This is particularly useful for describing whitespace,
comments, etc. in programming language grammars. The ambiguity analyzer
handles this feature by simply omitting certain horizontal ambiguity checks. As
an experimental feature, the grammar notation also allows the productions of
a nonterminal to be prioritized, which is a disambiguation mechanism that is
useful for expressing, for example, operator precedence. If a nonterminal has
two productions with different priorities then a parser will resolve any ambigu-
ity between them by always selecting the one with the highest priority. Simi-
larly, production constituents can be marked as maximal or minimal, which is a
disambiguation mechanism that is useful for expressing operator associativity.
These two disambiguation mechanisms are handled by the ambiguity analyzer
by omitting certain vertical and horizontal ambiguity checks, respectively.

The implementation builds on two other tools: dk.brics.automaton [26]
for handling regular expressions and finite-state automata using the Unicode
character set as alphabet, and JSA [9] for performing regular approximations
of context-free grammars and converting regular grammar components into au-
tomata.

8. Application to Biosequence Analysis

The languages of biosequences are trivial from the formal language point
of view. The alphabet of DNA is ΣDNA = {A, C, G, T}, of RNA it is ΣRNA =
{A, C, G, U}, and for proteins it is a 20 letter amino acid code. In each case,
the language of biosequences is Σ∗. A biomolecule can be of any length and
any composition. Of course, molecules having a particular function have all
kinds of restriction associated, such as minimal or maximal size, species-specific
composition, characteristic sequence motifs, or potential for forming a well-
defined 3D structure. Biosequence analysis relates two sequences to each other
(sequence alignment, similarity search) or one sequence to itself (folding). The
latter is our application domain – RNA structure analysis.

RNA is a chain molecule, built from the four bases adenine (A), cytosine (C),
guanine (G), and uracil (U), connected via a backbone of sugar and phosphate.
Mathematically, it is a string over ΣRNA of moderate length (compared to genomic
DNA), ranging from 20 to 10,000 bases.

RNA forms structure by folding back on itself. Certain bases, located at
different positions in the backbone, may form hydrogen bonds. Such bonded
base pairs arise between complementary bases G − C, A − U , and G − U . By
forming these bonds, the two pairing bases are arranged in a plain, and this in
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turn enables them to stack very densely onto adjacent bases also forming pairs.
Helical structures arise, which are energetically stable and mechanically rather
stiff. They enable RNA to perform its wide variety of functions.

Because of the backbone turning back on itself, RNA structures can be
viewed as palindromic languages. Starting from palindromes in the traditional
sense (as described in Example 12) we can characterize palindromic languages
for RNA structure via five generalizations: (1) a letter does not match to it-
self but to a complementary base; (2) the two arms of a palindrome may be
separated by a non-palindromic string (of length at least 3) called a loop; (3)
the two arms of the palindrome may hold non-pairing bases called bulges ; (4) a
string may hold zero or more adjacent palindromes separated by unpaired bases;
and (5) palindromes can be recursively nested, that is, a loop or a bulge may
contain further palindromes. Example 22 shows a grammar modeling base pair
complementarity and nesting, as required by generalization 1. It captures only
this aspect and is not a valid RNA grammar.

Example 22 (RNA “palindromes” – base pairs only).
R : "C" R "G" | "G" R "C"

| "A" R "U" | "U" R "A"

| "G" R "U" | "U" R "G" | ε

Context-free grammars are used to describe the structures that can be
formed by a given RNA sequence. (The grammars G1 through G8, which we
describe later, are different ways to achieve this.) All grammars generate the
full language Σ∗

RNA, the different derivations of a given RNA string corresponding
to its possible physical structures in different ways.

Figure 2 shows an ambiguous grammar (G1 from Reeder et al. [30]), a short
RNA sequence x, and two of its possible structures, presented as parse trees
from G1 and as a so-called Vienna (or “dot-bracket”) strings. In the grammar,
a and â denote complementary two bases, which can form a base pair. In a
Vienna string, matched parentheses indicate the base pairs, while dots denote
unpaired bases. Such strings represent structures uniquely, and are often used
by RNA-related software.

The number of possible structures under the rules of base pairing is expo-
nentially related to the length of the molecule. In formal language terms, each
string has an exponential number of parse trees. This has been termed the
“good” ambiguity in a grammar describing RNA structure.

The set of all structures is the search space from which we want to extract the
“true” (physical) structure(s). This is achieved by evaluating structures under
a variety of scoring schemes, the most common of which is a thermodynamic
model. A CYK-style parser [1] constructs the search space and applies dynamic
programming along the way to choose one or more, optimal or near-optimal
foldings.

The problem at hand arises when different parse trees correspond to the
same physical structure. In Figure 3, two parse trees (for sequence x relative to
G1) are shown which exhibit the same base pairs and hence denote the same
secondary structure.
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Grammar G1:

S → SS | aS | Sa |
aSâ | ǫ

x: AUCGUAACGCGAU

ACGUCGAAACGUACG

(a) Grammar G1
and RNA sequence x
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(b) Two parse trees of
x relative to G1

Structure found by parse 1:

((((.....))))((((....))))...

2 short “hairpins”,

followed by 3 unpaired bases

Structure found by parse 2:

..(((.((((((....)))...))))))

2 unpaired bases,

followed by a long “hairpin”.

(c) Two different secondary structures

Figure 2: Good ambiguity in RNA folding: Alternative parses construct all possible foldings,
from which the best ones are chosen under a thermodynamic model.

In this situation, the thermodynamically optimal structure can still be de-
termined, but everything else goes wrong: The number of structures is wrongly
counted. Boltzmann statistics over the complete folding space becomes incor-
rect, because individual states are accounted for a varying number of times.
Enumeration of near-optimal structures will produce duplicates, of which there
may be an exponential number (in terms of sequence length). Finally, when
used with a stochastic scoring scheme, the most likely parse does not find the
most likely structure. We say that the grammar exhibits the “bad” kind of
ambiguity. It makes no sense to check the grammar for ambiguity as is, since
“the bad ambiguity hides within the good” (using a phrase from Reeder et al.
[30]).

Fortunately, the grammar can be transformed such that the good ambiguity
is eliminated, while the bad persists and can now be checked by formal language
techniques such as ours. The grammar remains structurally unchanged in the
transformation, but is rewritten to no longer generate RNA sequences, but
Vienna strings. These strings represent structures uniquely, and if one of them
has two different parse trees, then the original grammar has the bad type of
ambiguity.

At this point, the reader may wonder why this problem is not solved once
and for all time by designing a grammar that adequately models RNA structure,
and is proved non-ambiguous by human effort.

Biologist are interested in families of RNA that execute a specific regulatory
function in different organisms. Such families of RNA sequences are character-

19



Grammar G1:

S → SS | aS | Sa |
aSâ | ǫ

x: AUCGUAACGCGAU

ACGUCGAAACGUACG

(a) Grammar G1
and RNA sequence x
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(b) Two parse trees of
x relative to G1

Base pairs in both trees:

((((.....))))((((....))))...

2 short “hairpins”,

followed by 3 unpaired bases

← different arrangement at top

← different productions used

for loop in second hairpin

(c) Twice the same secondary structure

Figure 3: Bad ambiguity in RNA folding: Alternative parses for sequence x constructing the
same physical structure, confounding various types of analyses.

ized by a common structure. A model grammar for such a family restricts the
allowed foldings to variations of the common structure. Bioinformatics tools,
which generate such grammars, are Locomotif [29] or Infernal [27]. The Rfam
database [15] currently holds 1,300 stochastic models based on RNA family
grammars. The ACLA system has recently been included in a pipeline to prove
unambiguity of such models [17].

9. Experiments

We applied our ambiguity checker to several grammars that were obtained
by the above transformation from stochastic grammars used in the bioinformat-
ics literature [11, 30, 36]. Grammars G1 and G2 were studied as ambiguous
grammars by Dowell and Eddy [11], and our algorithm nicely points out the
sources of ambiguity by indicating shortest ambiguous words. Dowell and Eddy
[11] introduced G2 as a refinement of G1, to bring it closer to grammars used
in practice. Our ambiguity checker detects an extra vertical ambiguity in G2
(see Table 1) and clearly reports it by producing the ambiguous word “()” for
the productions P[aPa] and P[S]. Grammars G3 through G8, taken from the
same source, are unambiguous grammars, but a proof has been lacking. Our
approach demonstrates their unambiguity. Grammars G1 through G8 describe
the same language of structures, but they lead to different stochastic models
due to their different use of nonterminals and productions. This difference was
investigated by Dowell and Eddy [11].
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The grammar Voss from Voss et al. [36] has 28 nonterminals and 65 pro-
ductions. This grammar clearly asks for automatic support (even for experts
in formal grammars). We describe this application in two steps. First, we
study a grammar, Voss-Light, which demonstrates an essential aspect of the
Voss grammar: unpaired bases in bulges and loops (the dots in the transformed
grammar) must be treated differently, and they hence are derived from differ-
ent nonterminal symbols even though they recognize the same language. This
takes the grammar Voss-Light (and consequently also Voss) beyond the capaci-
ties of, for example, LR(k) parsing, whereas our technique succeeds in verifying
unambiguity.

Example 23 (Voss-Light).

P : "(" P ")" | "(" O ")" // P: closed structure

O : L P | P R | S P S | H // O: open structure

L : "." L | "." // L: left bulge

R : "." R | "." // R: right bulge

S : "." S | "." // S: singlestrand

H : "." H | "." "." "." // H: hairpin 3+ loop

As the second step, we took the full grammar. Our method succeeded to
show unambiguity (using three unfoldings), which implies that the Boltzmann
statistics computed according to Voss et al. [36] are indeed correct.

Table 1 summarizes the results of running our ACLA ambiguity analysis,
compared with LR(1) and the technique by Schmitz [31, 32], on the example
grammars from biosequence analysis. The first column lists the name of the
grammar along with a source reference. The second column, #prod, shows
the size of each grammar measured as number of productions. The LR(1) col-
umn shows the number of shift/reduce and reduce/reduce conflicts using LR(1).
The Schmitz column shows the number of potential ambiguities reported by
Schmitz’s approach (using LR(1) items). The ACLA column shows the result
from our analysis. Here, V! and H! mark the number of definite vertical and
horizontal ambiguities, respectively (for ambiguous grammars). For each tool,
unamb. means that the tool succeeds in verifying unambiguity. The “real” col-
umn shows whether the grammar is ambiguous or not. The last column shows
the time (in seconds) for the ACLA analysis, running on a 2.4GHz PC. For
the ACLA tests, unfolding has been used in many of the grammars, all using
Γ = {(} and Γ̂ = {)}.

Notice that ACLA reports no false positives, unlike LR(1) and Schmitz’s
tool. (Many of the grammars are in fact beyond LR-Regular.) For the ambigu-
ous grammars (G1 and G2), our tool even provides example strings, thereby
proving that the grammars are indeed ambiguous, whereas the other tools do
not provide guarantees in this direction.

1Dowell and Eddy [11]
2Voss et al. [36]
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Grammar #prod LR(1) Schmitz ACLA real time

G11 5 24 + 12 14 5V! + 1H! amb. <0.01s
G21 7 25 + 13 13 6V! + 1H! amb. <0.01s
G31 8 4 + 0 2 unamb. unamb. <0.01s
G41 6 unamb. unamb. unamb. unamb. <0.01s
G51 3 unamb. unamb. unamb. unamb. <0.01s
G61 6 unamb. unamb. unamb. unamb. <0.01s
G71 13 5 + 0 3 unamb. unamb. 0.02s
G81 11 unamb. unamb. unamb. unamb. 0.02s
Base pairs (Ex. 22) 7 6 + 0 12 unamb. unamb. <0.01s
Voss-Light (Ex. 23) 14 0 + 3 unamb. unamb. unamb. 0.01s
Voss2 64 16 + 0 5 unamb. unamb. 0.93s
Pal (Ex. 12) 5 6 + 2 8 unamb. unamb. <0.01s
AntiPal (Ex. 12) 5 6 + 2 8 unamb. unamb. <0.01s

Table 1: Grammars from bioinformatics (and Example 12).

Also, the running times are seen to be satisfactory. For the largest grammar,
Voss, which takes around one second to analyze, ACLA performs 87 vertical
and 103 horizontal ambiguity checks. Of these, 13 and 71 checks, respectively,
are handled by the simple approximation strategies described in Section 6 and
the remaining ones by the regular approximation strategy from Section 4. In
many of the smaller grammars, the simple approximation strategies cover al-
most all the vertical and horizontal checks. Generally, if we disable the simple
approximation strategies, running time increases but, for these grammars, not
dramatically.

Although our primary focus is on grammars from bioinformatics, we also
tested our tool on grammars from other domains, in most cases interesting frag-
ments of programming languages and some more “artificial” grammars. Table 2
show the results from grammars collected by Schmitz [32]. Here, V? and H? mea-
sure the number of potential vertical and horizontal ambiguities, respectively.
ACLA gives perfect results in 30 of these 35 cases. In two of the remaining five
cases (04 11 047 and 91 08 014), ACLA succeeds in proving ambiguity but also
reports some potential ambiguities. In one case (sml fvalbind), which is ambigu-
ous, ACLA reports potential ambiguities but fails to provide concrete examples
to prove ambiguity. Finally, in only two cases (S5 and S7), ACLA produces
spurious warnings about potential ambiguities although these grammars are in
fact unambiguous. Studying these two grammars further reveals that a slightly
more aggressive variant of unfolding (as discussed in Section 5) would handle
these cases also.

Of 70 grammars collected by Basten [2] (we exclude grammars tested in
the previously mentioned experiments), we obtain similarly encouraging results.
The size of these grammars ranges from 3 to 16 productions, and ACLA analyzes
each grammar in less than 0.04 seconds. 24 of the grammars are unambiguous,
and ACLA produces spurious warnings about potential ambiguities in only four
of those. Of the remaining 46 ambiguous grammars, ACLA gives perfect results
in 27 cases (that is, it here reports only certain ambiguities – with example
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Grammar #prod LR(1) Schmitz ACLA real time

S1 7 2 + 0 3 1V! + 2H! amb. <0.01s
S2 3 unamb. unamb. unamb. unamb. <0.01s
S3 9 1 + 0 unamb. unamb. unamb. <0.01s
S4 9 1 + 0 1 1V! amb. <0.01s
S5 6 0 + 1 unamb. 1V? unamb. <0.01s
S6 5 6 + 2 8 unamb. unamb. <0.01s
S7 3 unamb. unamb. 1H? unamb. <0.01s
01 05 076 11 2 + 0 4 1H! amb. 0.01s
03 01 011 8 1 + 0 1 1H! amb. <0.01s
03 02 124 6 0 + 1 unamb. unamb. unamb. <0.01s
03 05 170 11 1 + 0 1 1V! + 2H! amb. <0.01s
03 09 027 8 2 + 0 unamb. unamb. unamb. 0.01s
03 09 081 10 1 + 1 unamb. unamb. unamb. <0.01s
04 02 041 4 unamb. unamb. unamb. unamb. <0.01s
04 11 047 27 12 + 3 31 1V! + 1V? + 6H? amb. 0.06s
05 03 092 12 unamb. unamb. unamb. unamb. <0.01s
05 03 114 7 0 + 1 unamb. unamb. unamb. <0.01s
05 06 028 8 1 + 1 5 2H! amb. 0.11s
06 10 036 33 0 + 6 1 1V! amb. 0.08s
90 10 042 7 2 + 0 6 unamb. unamb. <0.01s
91 08 014 15 17 + 1 4 2V! + 1V? + 3H? amb. 0.09s
98 05 030 6 1 + 0 unamb. unamb. unamb. 0.01s
98 08 215 7 1 + 0 unamb. unamb. unamb. <0.01s
ada is 9 1 + 0 unamb. unamb. unamb. <0.01s
ada calls 17 1 + 0 unamb. unamb. unamb. <0.01s
isocpp qualid 11 1 + 0 unamb. unamb. unamb. <0.01s
java modifiers 48 0 + 49 unamb. unamb. unamb. 0.02s
java names 20 0 + 1 unamb. unamb. unamb. <0.01s
java arrays 12 1 + 0 unamb. unamb. unamb. <0.01s
java casts 9 0 + 1 unamb. unamb. unamb. <0.01s
pascal typed 8 0 + 1 unamb. unamb. unamb. <0.01s
pascal begin 5 unamb. unamb. unamb. unamb. <0.01s
set exp 35 0 + 8 2 unamb. unamb. 0.08s
sml fvalbind 13 1 + 0 2 1V? + 4H? amb. 0.01s
sml patterns 5 2 + 0 1 1V! amb. <0.01s

Table 2: Grammars from Schmitz [32].

strings).
Interestingly, for our entire benchmark suite, a combination of Schmitz’s

tool and ours eliminates all spurious errors, which indicates complementary
strengths of these two techniques.

10. Conclusion

We have presented a technique, ACLA (Ambiguity Checking with Language
Approximations), for statically analyzing ambiguity of context-free grammars.
Based on a linguistic characterization, the technique allows the use of grammar
transformations, in particular regular approximation and unfolding, without
sacrificing soundness. Moreover, the analysis is often able to pinpoint sources
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of ambiguity through concrete examples being automatically generated. The
analysis may be used when LR(k) and related techniques are inadequate, for
example in biosequence analysis, as our examples show. Our experiments in-
dicate that the precision, the speed, and the quality of ambiguity reports are
sufficient to be practically useful.

Acknowledgments. Thanks are due to Sylvain Schmitz for his insightful com-
ments and for providing benchmark grammars.
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A. Proof of Proposition 3

To show

‖= G ⇔ G is unambiguous

for a CFG G = (N , Σ, s, π) (see Definitions 1 and 2) we consider each direction
in turn.

We prove ‖= G ⇒ G is unambiguous by contrapositively establishing that
if G is ambiguous then ‖=/ G, that is, ‖−/ G∨|=/ G. Assume that G is ambiguous,
which means that there are two different derivation trees, T and T ′, for some
string ω ∈ L(G). We proceed by induction in the maximum height h of T and
T ′ (where the height of a derivation tree is the maximum number of edges from
the root to a leaf).

Base case, h = 0: The result holds vacuously; a derivation tree of height
zero consists of a single node labeled with the start nonterminal, and at most
one such derivation tree can exist.

Inductive case: We assume the property holds for all derivation trees of
maximum height h − 1 and show that it also holds for height h. Recall that
every tree node is labeled by a nonterminal or a terminal from E = Σ∪N . Let
α and α′ be the sequences of labels of the children of the roots of T and T ′,
respectively. There are two cases depending on whether or not the top-most
productions in the trees are the same:

(1) α 6= α′: In this case, the trees differ due to the different initial produc-
tions α and α′ that ultimately produce the same string ω, so ω ∈ LG(α)∩LG(α′)
and hence ‖−/ G.

(2) α = α′: Let α1, . . . , αn ∈ E be the sequence defined by α = α1 · · ·αn.
Let ωi and ω′

i be the substrings of ω that are derived by the i’th child of the
root node in T and T ′, respectively, as depicted in Figure 4. We again split into
two cases:

(2a) ∃i : ωi 6= ω′
i: Let k = min{i | ωi 6= ω′

i} and, depending on this k,
let ωL = ω0 · · ·ωk, ωR = ωk+1 · · ·ωn, ω′

L
= ω′

0 · · ·ω
′
k
, and ω′

R
= ω′

k+1 · · ·ω
′
n.

=

... ... ... ...

... ... ... ...

nn

α = α0··αi··αn α′ = α
′

0··α
′

i··α
′

n

T : T ′:

ω0 ωi ωn ω′
0 ω′

i ω′
n

T0 Ti Tn T ′
0 T ′

i T ′
n

Figure 4: Two derivation trees, T and T ′, both deriving ω from n.
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Figure 5: Overlap: ω ∈ LG(α0..αk) ∩
W

LG(αk+1..αn).

Since k was chosen as the minimum we must have that ωL 6= ω′
L

and since
ωLωR = ω = ω′

L
ω′

R
, the strings must be organized according to Figure 5 (as-

suming without loss of generality that |ωL| < |ω′
L
|) where a ∈ Σ+ is given by

ω = ωLaω′
R

and x = ωL, y = ω′
R
. We thus have a language overlap ω = xay ∈

X ∩
W

Y for the two languages X = LG(α0 · · ·αk) and Y = LG(αk+1 · · ·αn) and
hence |=/ G.

(2b) ∀i : ωi = ω′
i
: In this case, the difference between the two trees T and

T ′ must be further down. Pick any i such that the subtrees Ti and T ′
i (where

Ti is the subtree corresponding to αi) are different (such an i must exist since
T and T ′ were different in the first place). The induction hypothesis applied to
these smaller trees, using αi as start nonterminal and ambiguously deriving ωi,
gives us ‖=/ G.

We now consider the other direction: ‖= G ⇐ G is unambiguous. This is
shown by contrapositively establishing that if ‖−/ G∨|=/ G then G is ambiguous.
We split into two cases; one for each kind of ambiguity:

(1) ‖−/ G: By definition, there exist n ∈ N and α, α′ ∈ π(n) where α 6= α′

such that LG(α)∩LG(α′) 6= ∅. Let y ∈ Σ∗ be an element of this intersection, that
is, α⇒∗y and α′⇒∗y. We have assumed that every nonterminal is derivable from
s and derives a nonempty set of string. This means that we can construct two
different derivation trees starting at s, corresponding to the following derivations
of the string xyz for some x, z ∈ Σ∗:

s ⇒∗ x n z ⇒ x α z ⇒∗ x y z
s ⇒∗ x n z ⇒ x α′ z ⇒∗ x y z

(2) |=/ G: By definition, there exist n ∈ N and αα′ ∈ π(n) such that
x, xa ∈ LG(α) and y, ay ∈ LG(α′) for some x, y ∈ Σ∗, a ∈ Σ+. Similar to
the case above, we can make two different derivation trees corresponding to the
following derivations of the string uxayv for some u, v ∈ Σ∗:

s ⇒∗ u n v ⇒ u α α′ v ⇒∗ u x α′ v ⇒∗ u x a y v
s ⇒∗ u n v ⇒ u α α′ v ⇒∗ u x a α′ v ⇒∗ u x a y v

B. Proof of Proposition 8

It suffices to show that ‖=AG
G ⇒ ‖= G since the result then follows from

Proposition 3. However, this is immediate from Definitions 2, 6, and 7: Since
AG is a conservative approximation, we have for all α, β ∈ E∗,

AG(α) ∩ AG(β) = ∅ ⇒ LG(α) ∩ LG(β) = ∅
AG(α) ∩

W
AG(β) = ∅ ⇒ LG(α) ∩

W
LG(β) = ∅
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