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Abstract

We propose an algebra of languages and transformations as a means for ex-
tending languages syntactically. The algebra provides a layer of high-level ab-
stractions built on top of languages (captured by context-free grammars) and
transformations (captured by constructive catamorphisms).

The algebra is self-contained in that any term of the algebra specifying a
transformation can be reduced to a constant catamorphism, before the transfor-
mation is run. Thus, the algebra comes “for free” without sacrificing the strong
safety and efficiency properties of constructive catamorphisms.

The entire algebra as presented in the paper is implemented as the Banana
Algebra Tool which may be used to syntactically extend languages in an in-
cremental and modular fashion via algebraic composition of previously defined
languages and transformations. We demonstrate and evaluate the tool via sev-
eral kinds of extensions.

Keywords: Languages; transformation; syntactic extension; macros;
context-free grammars; catamorphisms; bananas; algebra.

1. Introduction and Motivation

We propose a method of defining transformations between context-free lan-
guages that is particularly suited for defining language extensions. The method
is simple, incremental, and modular, and the defined transformations are safe
and efficient.

Extension is simple because we base ourselves on a well-proven and easy-to-
use formalism for well-typed syntax-directed transformations known as construc-
tive catamorphisms. These transformations are specified relative to a source and
a target language which are defined via context-free grammars (CFGs). Cata-
morphisms have previously been studied and proven sufficiently expressive as a
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means for extending a large variety of programming languages via transforma-
tion [1, 2, 3]. Hence, the main focus of this paper lies not so much in addressing
the expressiveness and which transformations can be achieved as on showing
how algebraic combination of languages and transformations results in highly
modular and incremental language extension. Incremental and modular means
that any previously defined languages or transformations may be composed al-
gebraically to form new languages and transformations. Safety means that the
tool statically guarantees that the transformations always terminate and only
map syntactically legal input terms into syntactically legal output terms; Effi-
ciency means that any transformation is guaranteed to run in linear time (in
the size of input and generated output).

An important property of the algebra which is built on top of catamorphisms
is that it is “self-contained” in the sense that any term of the algebra may
be reduced to a constant catamorphism, at compile-time. This means that
all high-level constructions offered by the algebra (including composition of
languages and transformations) may be dealt with at compile-time, before the
transformations are run, without sacrificing the strong safety and efficiency
guarantees.

The algebraic nature of the system for composing languages and transfor-
mations allows users of the system to understand and reason about its behavior.
Combining languages and transformations through addition, for example, has
the expected associativity and commutativity properties.

Everything presented in the paper has been implemented in the form of the
Banana Algebra Tool. The Banana Algebra Tool takes a transformation term
of the algebra as an argument, analyzes it for safety, and then reduces it to
a constant transformation which can later be used to efficiently transform an
input program. This tool can perform a wide variety of non-trivial transforma-
tions, such as transformation between different languages (e.g., for prototyping
lightweight domain-specific language compilers), transforming programs within
a given language (e.g., the CPS transformation), and format conversion (e.g.,
converting BibTex to BibTeXML). However, in this paper we will focus on lan-
guage extension for which we have the following usage scenarios in mind: 1)
Programmers may extend existing languages with their own macros; 2) Devel-
opers may embed domain-specific languages (DSLs) in host languages; 3) Com-
piler writers may implement only a small core and specify the rest externally;
and 4) Developers or teachers may define languages incrementally by stacking
abstractions on top of each other. We will substantiate these usage claims in
Sections 7 and 8.

The approach occupies a “sweet spot” where full-scale compiler generators
as outlined in Section 9 are too cumbersome and where simpler techniques for
syntactic transformation either lack the strong safety and performance guar-
antees of our approach, or do not have sufficient support for incremental and
modular development of language extensions.

Our contributions include the design of an algebra of languages and trans-
formations for incremental and modular syntactic language extension built on
top of catamorphisms; a proof-of-concept tool and implementation capable of
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working with concrete syntax; and an evaluation of the algebraic approach.

2. Syntactic Language Extension

We begin by presenting examples of the kinds of extensions that we wish to
define. These extensions add new syntactic features to a language and define
a translation from the extended language to the base language. The examples
presented in this section are deliberately simple—see Section 8 for a more in-
volved example. Our base language is the untyped λ-calculus, whose syntactic
structure may be defined by the following datatype:

exp = Var id | Lam id * exp | App exp * exp

In the following, we will informally demonstrate two extensions of the λ-calculus:
numerals and booleans. In Sections 3 and 4, the informal technique described
here will be connected to theoretical tools that enable strong guarantees of
performance, safety and compositionality.

2.1. Extension: Numerals

A common extension of the core λ-Calculus is that of numerals; the calculus is
extended with a construction representing zero, and unary constructors repre-
senting the successor and predecessor of a numeral. These constructions may
be combined to represent any natural number in unary encoding and for per-
forming numeric calculations. The syntax of the calculus is then extended to
the language, LN:

exp = Var id | Lam id * exp | App exp * exp |
Zero | Succ exp | Pred exp

We will now show how to transform the extended language, LN, into the core
λ-Calculus, L, using a basic encoding of numerals which represents zero as the
identity function (λz.z), and a number n as follows:

n lambdas� �� �
λ s . λ s . · · · λ s .

zero� �� �
λ z . z

There are many other possible encodings of numerals, including the more com-
mon choice of Church numerals. However, the encoding of Pred in Church
numerals is significantly more verbose, and the details of the encoding are ir-
relevant to our demonstration of the technique. Therefore, we use the simpler
alternative to illustrate the point. We can now define the translation from LN
to N. In our examples, the “semantic brackets” [[ and ]] on the left-hand side
contain the term whose replacement is being defined while they contain terms
to be recursively replaced on the right-hand side.
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[[Var V ]] = Var [[V ]]
[[Lam V E]] = Lam [[V ]] [[E]]

[[App E1 E2]] = App [[E1]] [[E2]]
[[Zero]] = Lam z (Var z)

[[Succ E]] = Lam s [[E]]
[[Pred E]] = App [[E]] (Lam z (Var z))

The first three rules just trivially recurse through the input structure producing
an identical output structure. Zero becomes the identity function, successor
adds a “lambda s” in front of the encoding of the argument, and predecessor
peels off one lambda by applying it to the identity function (note that the
predecessor of zero is thus consequently defined as zero). This will, for instance,
map Succ Zero to its encoding Lam s (Lam z (Var z)).

This example is an illustration of how language extension is a special case
of language transformation. Additionally, it demonstrates a drawback to this
approach - each case that is not modified in the extension must be tediously
mapped to itself. In Section 4, we describe a means of eliminating this boiler-
plate.

2.2. Other Extensions

In addition to numerals, the core λ-Calculus may easily be extended with
booleans (via nullary constructors True and False, and a ternary If) yield-
ing a syntactically extended language LB which could then be transformed to L
as follows:

[[True]] = Lam a (Lam b (Var a))
[[False]] = Lam a (Lam b (Var b))

[[If E1 E2 E3]] = App (App [[E1]] [[E2]]) [[E3]]

Note that we have omitted the three lines of “identity transformations” for
variables, lambda abstraction, and application.

Along similar lines, the λ-Calculus could be further extended with addi-
tion, multiplication, negation, conjunction, lists, pairs, and so on, eventually
converging on a full-scale programming language. To substantiate the claim
that this forms an adequate basis for language extension, we have extended
the λ-Calculus towards a language previously used in teaching functional lan-
guages; “Fun” (cf. Section 8). First, however, we formalize the above extension
technique and explore its properties.

3. Bananas

Transformations as they are defined above, which specify a transformation func-
tion for each constructor of a datatype but allow only for simple structural re-
cursion, are instances of what is known as a catamorphism (or, more colloquially,
a banana [4]).

A banana is a generalization of the list folding higher-order function known
from functional programming languages which processes a list and builds up a
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return value. However, instead of working on lists, it works on any inductively
defined datatype. Catamorphisms have a strong category theoretical founda-
tion [4] which we will not explore in this paper; however, the fact that our
transformations are catamorphisms is important to our analysis of performance
and safety.

For readers not familiar with catamorphisms, it is sufficient for this pa-
per to understand the behavior of their incarnation in programming languages.
A catamorphism for a datatype associates each constructor of the datatype
with a replacement evaluation function. When applied to an input term of the
datatype, the catamorphism then performs a recursive descent on the input
structure, effectively deconstructing it, and applies the replacement evaluation
functions in a bottom-up fashion, recombining intermediate results to obtain
the final output result.

To concretize this description, let us consider an inductively defined datatype,
list, defining non-empty lists of natural numbers:

list = Num N | Cons N * list

The sum of the values in a list of numbers may easily be defined by a catamor-
phism that replaces the Num-constructor by the identity function on numbers
(λn.n) and the Cons-constructor by addition on numbers (λ(n, l).n+l), corre-
sponding to the following recursive definition:

[[Num n]] = n
[[Cons n l]] = n+[[l]]

One of the main advantages of catamorphisms is that recursion over the struc-
ture of the input is completely separated from the construction of the output.
In fact, the recursion is completely determined by the input datatype and is
for that reason often only specified implicitly. Since the sum catamorphism
above maps terms of type list to natural numbers N, it may be uniquely iden-
tified with its replacement evaluation functions; in this case with a replacement
evaluation function for the Num-constructor of type N → N and a replacement
function of type N×N → N for Cons). Catamorphisms are often written in the
so-called banana brackets “� · · · �” [4], containing the replacement evaluation
functions:

� λn.n , λ(n, l).n+l �

3.1. Language-Typed Bananas

Constructive catamorphisms are a restricted form of catamorphisms where only
output-typed reconstructors are permitted as replacement evaluation functions,
rather than arbitrary functions. Reconstructors are just constructor terms from
(possibly different) inductively defined datatypes wherein the arguments to the
constructive catamorphism may be used. For instance, we can transform the
lists into binary trees of the tree datatype:
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tree = Nil | Leaf N | Node N * tree * tree

using a constructive catamorphism:

[[Num n]] = Leaf n
[[Cons n l]] = Node n Nil [[l]]

Bananas can be assigned types in the same way as other functions. The above
example would be assigned the type list → tree, while the sum banana would
be assigned the type list → N. When the banana maps terms of one language
(called the source language, written ls) into terms of another language (called
the target language, written lt), we call the banana and its associated typing
ls → lt a language-typed banana. The languages ls and lt can be given either
as a datatype (at the abstract syntactic level) as above, or as a CFG (at the
concrete syntactic level).
Although very simple, capable of trivial recursion only, previous work [1, 2] has
shown that this kind of constructive catamorphisms provides a basis for pro-
gramming language extension. In fact, the language extensions demonstrated
in Section 2 are examples of constructive catamorphisms. In the next section,
we investigate their safety and efficiency properties.

3.2. Safety and Efficiency

Constructive catamorphisms have a number of interesting properties: they can
be statically verified for syntactic safety, they are guaranteed to terminate, and
they always run in linear time.

Let L(l) denote the set of terms that can be derived from l. A constructive
catamorphism, x, is said to be syntactically safe if it only produces syntactically
valid output terms, ωt ∈ L(lt), given syntactically valid input terms, ωs ∈ L(ls):

∀ω ∈ L(ls) ⇒ x(ω) ∈ L(lt)

In addition to a language typing (ls → lt), we also define a nonterminal typing
τ , which specifies how each nonterminal of the source language is mapped onto
nonterminals of the target language.

If we name the source and target languages of the above example Lists and
Trees respectively, the language typing then becomes “Lists -> Trees” and
the nonterminal typing, τ , is “[list -> tree]”. The nonterminal typing is
written inside square brackets because there may be multiple nonterminals in
play, in which case multiple mappings are written as a comma separated list
inside the brackets.

A catamorphism, x, with language typing ls → lt, nonterminal typing τ ,
and reconstructors c is written � ls → lt [τ ] c �. In order to verify that this
catamorphism is syntactically safe, one simply needs to check that each of the
catamorphism’s reconstructor terms (e.g., from the example in the previous
subsection, “Node n Nil [[l]]”) are valid syntax, assuming that each of its ar-
gument usages (e.g., [[l]]) are valid syntax of the appropriate type (in this case l

has source type list which means that [[l]] has type τ(list) = tree). We refer
to [5] for a formal treatment of how to verify syntactic safety.
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     |  App exp * exp
     |  Lam id * exp
exp  =  Var id exp  =  Zero

     |  Succ exp
     |  Pred exp

idx

i) Core language: ’L’.

     from extension to core language.
iii) Transformation (LN −> L)

v) "Addition" of the transformations (L −> L) and (LN −> L)

|)

(| LN −> L [exp −> exp]

  [Pred E]  =  App [E] (Lam z (Var z))
  [Succ E]  =  Lam s [E]
    [Zero]  =  Lam z (Var z)

    (L −> L) on language ’L’.

   yielding the full transformation: (L+LN −> L).

iv) Identity transformation

+

ii) Language extension: ’LN’.

Figure 1: Common pattern in language extension (here extending the λ-Calculus with numer-

als.)

Constructive catamorphisms are highly efficient. In particular, if the replace-
ment function has at most one recursive use of each sub-tree from the left-hand
side, it runs in linear time in the size of the input. Many common transforma-
tions conform to this pattern, including all of the extensions to Java mentioned
in Section 7. See Appendix C for proofs.

We have demonstrated that, with our simple type system, constructive cata-
morphisms form a safe, efficient technique for language extension. However, in
order to be practical, we also desire a means of eliminating boilerplate code such
as the identity transformations in our examples as well as a means of combining
disparate extensions.

4. The Banana Algebra

Investigating previous work on syntactic macros and transformations [1, 2, 3]
has revealed an interesting and recurring phenomenon in that macro extensions
follow a certain pattern. The first hint in this direction is the effort involved in
the first three lines of the constructive catamorphisms which are there merely to
specify the “identity transformation” on the core λ-Calculus. That effort could
be alleviated via explicit language support.

In fact, every such language extension can be broken into the same five
ingredients, some of which are languages and some of which are transformations.
Figure 1 depicts: i) a core language that is to be extended (e.g., the λ-Calculus);
ii) an extension to that language1 (e.g., the extension with numerals); iii) a

1Note that we refer to the extended language as excluding the core language.
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transformation that maps the extended language to the core language; and iv)
an identity transformation on the core language; v) a notion of “addition” of the
identity transformation and the small transformation of the language extension
to the core language.

4.1. The Algebra

The five ingredients above can be directly captured by five algebraic operators.
First, cases i) and ii) correspond to a constant language, which is defined by a
variation of context-free grammars. Second, case iii) corresponds to a constant
transformation which may be given as an language-typed banana, c, typed with
the source and target languages of the transformation (and a nonterminal typ-
ing, τ). Third, case iv) corresponds to an operator taking a language l and
turning it into the identity transformation (l → l) on that language. Fourth, a
notion of addition on transformations, taking two transformations ls → lt and
l�s → l�t yielding a transformation: (ls⊕l l

�
s) → (lt⊕l l

�
t) where “⊕l” is addition on

languages. Language addition is defined as the union of the individual produc-
tions (transformation addition as the union of the catamorphic reconstructors),
which in both cases ensure that addition is idempotent, associative, and com-
mutative. We refer to Appendix A (for a formal definition of languages) and to
Appendix B (for transformations).

Note that with these operations, it is very easy to obtain a transformation
combining both the extension of numerals and booleans; simply “add” the two
transformations.

These operations form a partial algebra in the sense that there is a set, oper-
ations closed over the set, and a number of properties fulfilled by the operations.
The set is our languages and transformations, the operations are those defined
in the last paragraph, and the properties (such as commutativity and associa-
tivity of addition) are described in Section 5.4. Some of these operations are
partial, because languages and transformations can “conflict”, rendering them
incompatible.

The point of structuring the system as an algebra is not to prove new theo-
rems about it. The point is to provide users of the system with an understand-
able means for thinking about it. In this context, the algebraic properties (e.g.,
commutativity of addition) support the intuitions of the user and may assist in
generating transformations programmatically.

The grammars that represent languages in the algebra are similar to ordinary
context-free grammars, with two differences: there is no start nonterminal, and
each alternative production for a nonterminal has a unique name. The lack of
a start nonterminal enables language fragments representing extensions to be
defined. Users of tools based on this approach are expected to provide a start
nonterminal for the final resulting grammar. The naming of productions allows
them to be referenced individually when combining extensions.

Although the above algebraic operations are enough to make all the exten-
sions of the previous chapter, we would like to motivate a couple more algebraic
operators on languages and transformations. We present the new operators

8



[NILL] L : Ø
[CONL] : l

[VARL] : v

[RESL] : L \ L

[ADDL] : L + L

[SRCL] : src ( X )
[TGTL] : tgt ( X )
[LETL] : let v=L in L

[LTXL] : letx w=X in L

[RENL] : L [R ]

(a) Algebra of languages (L)...

X : 0 [NILX]
: �L → L [τ ] c � [CONX]
: w [VARX]
: X \ L [RESX]
: X + X [ADDX]
: X ◦ X [SEQX]
: idx ( L ) [IDXX]
: let v=L in X [LETX]
: letx w=X in X [LTXX]
: X [Rs |Rt ] [REN1X]
: X [ |Rt ] [REN2X]
: X [Rs | ] [REN3X]

(b) ...transformations (X)...

R : m/n
: q/n.p

(c) ...and renamings (R).

Figure 2: Syntax of the Banana Algebra.

in two categories: operators accommodating respectively modular and incre-
mental language extension. The complete syntax for the algebra is presented
in Figure 2. [CONL] provides language constants, [CONX] provides transformation
constants, [ADDL] provides language addition, [ADDX] provides transformation ad-
dition, and [IDXX] provides identity transformations. Of course, it is possible to
add even more operators to the algebra; however, the ones we have turn out
to be sufficient to conveniently extend the λ-Calculus incrementally all the way
to the FUN programming language. These ideas are pursued in the remainder
of the paper which also includes an evaluation of the whole algebraic approach.
For a formal specification of the semantics of the algebra, see Section 5 along
with Appendix A (for languages) and Appendix B (for transformations).

4.2. Modular language extension

To facilitate modular language development and allow reuse of languages and
transformations, the Banana algebra has a local definition mechanism via the
standard let-in functional programming local binder construction. Thus, we
add to the syntax of both languages and transformations; variables (Figure 2,
rules [VARL] and [VARX]) and local definitions (Figure 2, rules [LETL], and [LTXX]).

In practice, it turns out to be useful to also be able to define (local) trans-
formations while specifying languages; and, orthogonally, to define (local) lan-
guages while specifying transformations. Hence, we add the local definitions
[LTXL] and [LETX] (cf. Figure 2). Finally, we add a renaming construction as known
from the λ-Calculus, for renaming the names of nonterminals and productions
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in languages [RENL]. In a grammar L, a nonterminal n may be renamed to m

by: “L [m/n ]”. Similarly, an individual production p in nonterminal n may
be renamed to q by: “L [ q/n.p ]”. For transformations we add similar renam-
ing constructions [REN1X], [REN2X] and [REN3X] with syntax “X [ms/ns |mt/nt ]”
which can explicit renamings for the source and target languages, respectively.
The source or target part may be left empty. As with the language renam-
ing, productions may be renamed as in: “X [ q/n.p | ]” which renames pro-
duction p in nonterminal n to q in the source language of transformation X.
These renaming constructions are useful when using and extending languages or
transformations defined by other programmers, which may use different naming
conventions, and to avoid clashes.

4.3. Incremental language extension

Transformations are frequently specified incrementally in terms of previously
defined languages and transformations. To accommodate such use we added a
means for designating the source and target languages of a transformation along
with a means for restricting a language and a transformation (i.e., restricting
the source language of a transformation). By restriction, we take “L1 \ L2” to
yield a language identical to L1, but where all productions also mentioned by
name in L2 have been eliminated. (The operators mentioned are listed as rules
[SRCL], [TGTL], [RESL], and [RESX] of Figure 2.)

Also, transformations are frequently expressed via intermediate syntactic
constructions for either simplicity or legibility. For instance, notice how two of
the catamorphic reconstructors in the transformation of Section 2.1 both use
the identity lambda abstraction Lam z (Var z). Here, one could specify this
transformation incrementally, by using an intermediary language, LI, enriched
with identity as an explicit nullary construction:

exp = Var id | Lam id * exp | App exp * exp | Id

Although on such a small example, there is little to gain in terms of simplic-
ity and/or legibility, it illustrates the general principle of incremental language
extension. The transformation (“LN -> L”) can now be simplified to “ln2li:
LN -> LI”:

[[Zero]] = Id
[[Succ E]] = Lam s [[E]]
[[Pred E]] = App [[E]] (Id)

Which is subsequently composed with the tiny transformation that desugares
the identity-enriched language to the core λ-Calculus, “li2l: LI -> L”:

[[Id]] = Lam z (Var z)

Not surprisingly, when we do this experiment using the tool, the transforma-
tion “li2l ◦ ln2li” produces the exact same transformation as the directly
specified constant transformation “li2l” (from Section 2.1). To enable such
incremental development, we added composition as an operator on transforma-
tions (cf. Figure 2, rule [SEQX]).
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4.4. Examples
Our definitions of extensions providing numerals and booleans for the λ-calculus
in Section 2 can be improved using the banana algebra. We replace the iden-
tity cases with the identity transformation on the lambda calculus, we compose
the extended languages explicitly from the lambda-calculus and the indepen-
dent extensions, and we finally combine them to form a language with both
extensions.

Recall our definition of the language L:

exp = Var id | Lam id * exp | App exp * exp

Omitting the productions of L from our original definition of LN gives us the
following language, which represents unary natural numbers:

exp = Zero | Succ exp | Pred exp

Our transformation from the terms of LN to the terms of L can be written in
language-typed catamorphism notation as follows:

� LN → L [exp → exp]
Zero() = Lam z (Var z),
Succ(x) = Lam s x,
Pred(x) = App x (Lam z (Var z)) �

We can now reconstruct our first example transformation, which we call LN2L,
without the boilerplate, as follows:

letx N2L = � LN → L [exp → exp]
Zero() = Lam z (Var z),
Succ(x) = Lam s x,
Pred(x) = App x (Lam z (Var z)) �

in idx(L) + N2L

Similarly, our second example transformation, called LB2L, can be written with-
out boilerplate:

letx B2L = � LB → L [exp → exp]
True() = Lam a (Lam b (Var a)),
False() = Lam a (Lam b (Var b)),
If(e1,e2,e3) = App (App e1 e2) e3 �

in idx(L) + B2L

Finally, should we want to compose these extensions to obtain a λ-calculus
with numbers and booleans, we can simply combine both extensions with the
identity transformation on L:

letx N2L = � LN → L [exp → exp]
Zero() = Lam z (Var z),
Succ(x) = Lam s x,
Pred(x) = App x (Lam z (Var z)) �

in letx B2L = � LB → L [exp → exp]
True() = Lam a (Lam b (Var a)),
False() = Lam a (Lam b (Var b)),
If(e1,e2,e3) = App (App e1 e2) e3 �

in idx(L) + N2L + B2L
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The language typing of the resulting banana is (L + LN + LB) → L. Please
note that we could have achieved the exact same transformation with the ex-
pression: LN2L + LB2L. Due to the algebraic properties of the language, both
formulations of “the translation from the λ-calculus with booleans and numerals
to the plain λ-calculus” are equivalent.

The language I contains only the identity function. That is, it is equivalent
to LI from Section 4.3 with the productions of L removed, as follows:

exp = Id

Now, the example from the end of Section 4.3, which uses the explicit identity
function as a intermediate translation for Zero, can be expressed as follows:

letx I2L = � I → L [exp → exp]
Id() = Lam z (Var z) �

in letx LN2IL = � LN → (I+L) [exp → exp]
Zero() = Id,
Succ(x) = Lam s x,
Pred(x) = App x id � + idx(L)

in (I2L + idx(L)) ◦ LN2IL

This example illustrates a general technique for defining transformations that
make use of convenient intermediate representations that do not affect the exe-
cution speed of the transformation, as the entire term will reduce to a constant
transformation in which the intermediate language does not occur. In fact, as we
shall see in the next section, none of the operators of the banana algebra go be-
yond the expressivity of constructive catamorphisms in that any language term
can be statically reduced to a context-free grammar; and any transformation
term to a catamorphism.

5. Semantics of the Banana Algebra

In this section we give the semantics of the Banana Algebra. We have delib-
erately organized it such that anything at the level of the algebra is presented
here in this section; and anything at the level below the algebra, that is, at the
catamorphism level, is included in the appendices.

Let EXPL denote the set of all language expressions from the syntactic cat-
egory L (defined by Figure 2(a)); let EXPX denote the set of all transformation
expressions from the syntactic category X (defined by Figure 2(b)); let CFG
denote the set of all production-named context-free grammars (defined below in
Definition 1); and let CATA denote the set of all transformations, represented
by output-typed constructive catamorphisms (defined below in Definition 2).

We exploit the aforementioned self-containedness property and give a big-
step reduction semantics for the algebra capable of reducing a language expres-
sion, L ∈ EXPL, to a constant language (context-free grammar), l ∈ CFG;
and a transformation expression, X ∈ EXPX , to a constant transformation
(constructive catamorphism), x = � ls → lt [τ ] c � ∈ CATA. Please refer to
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[NILL]
α, β � Ø ⇓L l0

[CONL]
α, β � l ⇓L l

�wfl l

[VARL]
α, β � v ⇓L α(v)

[RESL]
α, β � L ⇓L l α, β � L� ⇓L l�

α, β � L \ L� ⇓L l��
l
�� = l �l l

�
, l ∼l l

�

[ADDL]
α, β � L ⇓L l α, β � L� ⇓L l�

α, β � L + L� ⇓L l��
l
�� = l ⊕l l

�
, l ∼l l

�

[SRCL]
α, β � X ⇓X � ls → lt [τ ] c �
α, β � src ( X ) ⇓L ls

[TGTL]
α, β � X ⇓X � ls → lt [τ ] c �
α, β � tgt ( X ) ⇓L lt

[LETL]
α, β � L ⇓L l α[v �→ l], β � L� ⇓L l�

α, β � let v=L in L� ⇓L l�

[LTXL]
α, β � X ⇓X x α, β[w �→ x] � L� ⇓L l�

α, β � letx w=X in L� ⇓L l�

[RENL]
α, β � L ⇓L l

α, β � L [R ] ⇓L l�
l
� = l[R], R ∼r l

Figure 3: Semantics of the algebra of languages.

subsections 5.1 and 5.2 for the notation for constant languages and constant
transformations.

We take VAR to be the set of all variables. We define environments (which
will deal with variables and the let-in constructions) in a straightforward way:

ENVL = VAR → CFG ENVX = VAR → CATA

The reduction semantics for the algebra of languages and transformations is
defined by two mutually recursive relations, respectively:

⇓L⊆ ENVL × ENVX × EXPL × CFG ⇓X⊆ ENVL × ENVX × EXPX × CATA

We will use the syntax “α, β � L ⇓L l” as a shorthand for “(α, β, L, l) ∈⇓L”
and “α, β � X ⇓X x” as a shorthand for “(α, β,X, x) ∈ ⇓X”. The two relations
are defined in Figure 3 and Figure 4, respectively.
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Figure 4: Semantics of the algebra of transformations.
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Note that the reduction semantics in Figures 3 and 4 uses a range of opera-
tors (�wfl, ∼l, ⊕l, �l, �l, ∼r, �wfx, ∼x, ⊕x, ◦c, idτ , idc, [·]) which all operate
on the level below that of the algebra; i.e., on constant languages (context-free
grammars) and transformations (constructive catamorphisms). These opera-
tors are all formally defined as implemented in our tool in Appendix A.1 (for
languages) and Appendix B.3 (for transformations).

5.1. Semantics of Languages

Languages in the Banana Algebra are represented by production-named context-
free grammars, which are defined as follows:

Definition 1 (Production-named CFG). A production-named context-free gram-
mar, G, is a tuple G = (N ,Σ,P, π) where:

• N is a finite set of “nonterminals”,

• Σ is a finite set of symbols (the “alphabet”),

• P is a finite set of “production names”; and

• π : N → 2P×(N∪Σ)∗ is the “production function”.

Note that a nonterminal n ∈ N either generates a general context-free language
with a production name linked to each production rule (π(n) ∈ 2P×(N∪Σ)∗ \{∅})
or the nonterminal “type” is undefined (π(n) = ∅ ∈ 2P×(N∪Σ)∗). This allows
grammar definitions that use nonterminals without defining them. Usually such
a grammar would be regarded as “improper”, as such nonterminals serve no pur-
pose; however, in the Banana Algebra, this feature allows grammars to reference
fragments of other languages with which they will later be composed.

The nil language [NILL] is written Ø and is the context-free grammar, l0,
which has no terminals, no nonterminals, and no productions (see Appendix A,
Definition 5). While seemingly useless, it is included because it is the algebraic
identity under addition of languages (see Section 5.4) and, therefore, it supports
user intuitions about the system. Additionally, we expect that this element may
be useful if transformations are to be generated programmatically.

Language restriction [RESL] “�l” subtracts a language from another, struc-
turally. The result is equal to the first argument language, but where all the
productions named in the second argument language have been removed (cf. Ap-
pendix A, Definition 8).

Addition [ADDL] “⊕l” is defined as reducing both operands to constant lan-
guages, l and l�, and constructing the language “⊕l” which has the union of
their nonterminals, terminals, and productions (cf. Appendix A, Definition 7).
Note that language restriction as well as addition are only well-defined if the
two operands are addition compatible (written “l ∼l l

�”, cf. Appendix A, Defi-
nition 6); i.e., that they do not define different production right-hand-sides for
the same production names.

For renaming a language [RENL], the expression “L[m/n]” yields the language
L, but where nonterminal n has been renamed to m, provided that m does
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not occur in the nonterminal alphabet of L. The formal details of how to
rename a constant language are given in Appendix A (Definitions 10 and 11 give
the details for renaming nonterminals and productions through the operators,
respectively).

5.2. Semantics of Transformations

Definition 2 (Transformation). A transformation is captured by an output-
typed constructive catamorphism, x, which is a tuple x = (ls, lt, τ, c) where:

• ls = (Ns,Σs,Ps, πs) ∈ CFG is the “source language grammar”,

• lt = (Nt,Σt,Pt, πt) ∈ CFG is the “target language grammar”,

• τ : Ns → Nt is the “nonterminal typing”, and

• c : Ns → 2Ps×Alt is the “reconstructor function”.

The transformation x = (ls, lt, τ, c) can be written � ls → lt [τ ] c �.
Here, we describe the replacement evaluation function, c, using reconstruc-

tors : a nameless representation in which the evaluated replacements for the
subterms on the left-hand-side are referred to by the natural numbers instead
of by named variables.

Definition 3 (Reconstructor). Given a grammar, l = (N ,Σ,P, π) ∈ CFG, the
set Al of reconstructors for l is given by the (least fixed point of the) following
recursive set definition:

Al = (N ×P ×Al
∗) ∪ N

This set defines a tree data structure, which can be viewed as abstract syntax
trees of the grammar l, but with gaps. An Al is a node (inner or leaf) of such a
tree. An inner node will have one or more children nodes – the list, Al

∗, will be
non-empty. A leaf node is either a grammar production with no nonterminals
(Al

∗ is empty) or a gap. A gap is a “hole” in the tree where the root of another
tree can be attached. Gaps are represented by the natural numbers, where each
value may be mapped to a tree.

The nil transformation [NILX] is written 0 and is the catamorphism, x0, from
the nil language to the nil language, with empty nonterminal typing and empty
set of reconstructors (see Appendix B, Definition 19). This construction is
mainly included because it is the algebraic identity under addition of transfor-
mations. As with the nil language, we expect that the nil transformation may be
useful when using the Banana Algebra as a target language for code generation.

For transformation restriction [RESX], the algebraic term “X \ L” is equiv-
alent to: “X ◦ idx(src(X) \ L)”.

Addition of transformation expressions [ADDX] is defined as reducing both
operands to constant transformations, � ls → lt [τ ] c � and � l�s → l�t [τ �] c� �,
and adding those (using “⊕x”) which yields a transformation from language
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ls ⊕l l
�
s to language lt ⊕l l

�
t that has the union of the nonterminal types and

reconstructors (cf. Appendix B, Definition 21). Addition is only well-defined if
the two operands are addition-compatible (written “x ∼x x�”); i.e., the source
and target languages are addition-compatible and the transformations do not
define different typings for the same nonterminals, nor do they define different
reconstructors for the same productions (cf. Appendix B, Definition 20). This
property ensures that well-formed transformations are closed under addition
(cf. Appendix B, Proposition 10).

Two transformations are sequentially composed [SEQX] by reducing both to
constants, � ls → lt [τ ] c � and � l�s → l�t [τ

�] c� �, and constructing the composed
transformation from ls directly to l�t with typing τ � ◦ τ and reconstructors c� ◦c c
(cf. Appendix B, Definition 22). Obviously, the target language of the first
transformation must not be larger than the source language of the second; i.e.,
lt � l�s (cf. Appendix A, Definition 12).

For renaming a transformation ([REN1X]-[REN3X]), the expression X[Rs |Rt]
does the renamings in the source and target language, respectively. The for-
mal details of how to rename the source language of a constant transformation
are given in Appendix B (Definitions 24 and 25 give the details for renaming
the typing and reconstructor, respectively). Renaming the target language of
a transformation can be defined through two source language transformation
renamings and a language renaming, combined with a few other algebraic op-
erators:

X[Rs |Rt] = (idx(tgt(X)[Rt])[Rt | ] ◦ X[Rs | ]

5.3. Well-formedness

To avoid nonsensical grammars and to ensure syntactic safety of transforma-
tions, we introduce a notion of well-formedness and show that it is preserved
under the semantics of the Banana Algebra.

Definition 4 (Well-formed grammar �wfl). A grammar, l = (N ,Σ,P, π) ∈
CFG, is said to be “well-formed” (written “ �wfl l”) iff ∀n ∈ N :

(i) ∀(p, α), (p�, α�) ∈ π(n) : p = p� ⇒ α = α�

(ii) π(n) �= ∅ ∨
�
∃n� ∈ N ; p ∈ P;α, α� ∈ (N ∪ Σ)∗ : π(n�) = (p, [αnα�]

�

In other words, a grammar is well-formed if there are no two productions with
the same production name, but different right-hand-sides. Additionally, N may
not include any “useless” nonterminal symbols, that is, nonterminal symbols
that neither have defined productions nor occur in the right-hand-side of other
productions.

Similarly to grammars, we define a well-formedness relation on transforma-
tions. The transformation, x = (ls, lt, τ, c) ∈ CATA, is said to be “well-formed”
(written “ �wfx x”) iff all of the following conditions are met:

• The source and target language grammars, ls and lt, must be well-formed;

• The transformation must be defined uniquely for every production defined
in the source language grammar; and
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• The transformation must adhere to the non-terminal typing τ .

The formal definition of this well-formedness relation relies on a number of rel-
atively tedious sub-definitions. Therefore, it is formalized in Appendix B (Def-
inition 16). The reconstructors of well-formed transformations always produce
valid syntax of the output language, assuming that all arguments are valid syn-
tax of nonterminal types as dictated by the nonterminal typing, τ . Well-formed
transformations correspond to constructive catamorphisms.

As each rule given in Figures 3 and 4 preserves well-formedness, by induc-
tion, any expression in which all language and transformation constants are
well-formed will reduce to a well-formed constant (assuming of course that all
contents of the initial α and β environments, if any, are well-formed).

It is straightforward to show, using Propositions 1-6 and 9-13 in the ap-
pendix, that Banana Algebra terms whose constant languages and transforma-
tions are well-formed and that respect the various restrictions such as addition
compatibility and nonterminal typing can be reduced to well-formed language
or transformation terms.

5.4. Algebraic Laws

An important advantage of an algebraic approach is that several algebraic laws
hold which give rise to simplifications; e.g., related to “+”, we have:

L + L ≡ L idempotency of “+”
L1 + L2 ≡ L2 + L1 commutativity of “+”

L1 + (L2 + L3) ≡ (L1 + L2) + L3 associativity of “+”

These laws hold since “+” corresponds to the union of productions. Being
an algebra, we have added the identity element with respect to “+”, both for
languages and transformations (cf. [NILL] and [NILX]); i.e.: “L + Ø ≡ L ≡ Ø + L”.

A number of interesting algebraic laws hold; here we provide only a few:

src(idx(L)) ≡ L src-idx identity
let v=L in v ≡ L trivial let-in naming
X1 ◦ (X2 ◦X3) ≡ (X1 ◦X2) ◦X3 associativity of “◦”

Often algebraic laws give rise to simplifications and optimizations through
algebraic rewriting. In our case, however, we do not need such rewritings, since
we have the powerful property that any algebraic term can be reduced to a
constant. Nonetheless, these algebraic laws do help developers in the process of
writing languages and transformations; especially when re-using languages and
transformations designed by others. For example, programmers can rely on the
commutativity of transformation addition when composing language extensions.

6. Tool and Implementation

In order to validate the algebraic approach, we have implemented everything in
the form of The Banana Algebra Tool which we have used to experiment with
different forms of language extensions.
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Below we focus on the interesting tool and implementation issues that arise
as a consequence of our approach, such as ambiguity, the choice of using ab-
stract vs. concrete syntax, hygiene, parsing, unparsing, debugging, and error-
reporting.

6.1. Ambiguity

For reasons of usability which are discussed in Section 6.2, the Banana Algebra
Tool allows concrete syntax to be used in the definitions of transformations.
Ambiguities in grammars pose a serious problem when moving between abstract
and concrete syntax, as it is possible that the AST resulting from converting
an AST to concrete syntax and then parsing it may not be equivalent to the
original AST. However, if the grammar of a language is unambiguous and if
we choose a canonical unparsing of its abstract syntax, (see Section 6.4), we
may move reversibly between its abstract syntax trees and concrete syntactic
program strings without loss of information [3].

Note that ambiguous grammars do not exclusively occur at the outermost
source and target languages of a transformation expression, X, but also within
it. An ambiguity may for instance be present in the grammar of the intermediate
step in a composition of two transformations X2 ◦X1; i.e., as the output term
of X1 is subsequently handed as input term to X2.

We rely on a recent ambiguity analysis [6] for analyzing whether all of the
grammars involved are unambiguous. In that work, context-free grammar am-
biguity is fully characterized in that a grammar G is unambiguous if and only
if it is horizontally unambiguous and vertically unambiguous.

A key feature of these two properties is that they are defined in terms of
the structure of the grammar: Vertical unambiguity means that two different
productions for the same nonterminal (n → α1 and n → α2) never derive the
same string; i.e., L(α1) ∩ L(α2) = ∅. Horizontal ambiguity means that the
right-hand side of a production (n → α) can never be split in two non-empty
parts α = α1α2 whose languages overlap; i.e., L(α1) ∩

�
L(α2) = ∅ where ∩

�

is the language overlap operator defined by X ∩
�

Y = { xay | x, y ∈ Σ∗ ∧ a ∈
Σ+ ∧ x, xa ∈ X ∧ y, ay ∈ Y }.

It has been known since 1962 that the ambiguity problem for context-free
grammars is undecidable [7]. However, by over-approximating the context-free
languages with possibly larger regular languages, the above characterization
gives rise to an effective conservative ambiguity analysis. The analysis is sound
in that if there are ambiguities, then they are indeed caught by the analysis; but,
it is also incomplete in that the analysis may also produce “spurious ambiguity
errors” (which are not ambiguities, but arise from inherent approximations in
the analysis). All we need to know here is that the analysis works well in
practice, gives good error messages in terms of the grammar analyzed, and does
not often give spurious ambiguity errors [6].

Interestingly, the above characterization can be used to tell us exactly which
operators in the Banana Algebra are capable of introducing ambiguities. Obvi-
ously, ambiguous context-free grammars may be specified directly as constant
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Exp.or : Exp1 "||" Exp ;

.exp1 : Exp1 ;

Exp1.and : Exp2 "&&" Exp1 ;

.exp2 : Exp2 ;

Exp2.add : Exp3 "+" Exp2 ;

.exp3 : Exp3 ;

· · ·
Exp7.neg : "!" Exp8 ;

.exp8 : Exp8 ;

Exp8.par : "(" Exp ")" ;

.var : Id ;

.num : IntConst ;

(a) Java grammar fragment.

Stm.repeat =

Stm.do($1,

Exp.exp1(

Exp1.exp2(

Exp2.exp3(

Exp3.exp4(

Exp4.exp5(

Exp5.exp6(

Exp6.exp7(

Exp7.neg(

Exp8.par($2)

))))))))) ;

(b) Abstract syntax.

Stm.repeat =

’do $1 while (!($2));’ ;

(c) Concrete syntax.

Figure 5: Example specifying transformations using abstract vs. concrete syntax. (For em-

phasis, we have underlined the negation and parenthesis constructions.)

languages, [CONL]. Besides that, it follows from the characterization that ad-
ditions on languages and transformations, [ADDL] and [ADDX], are the only two
operators in the Banana Algebra that can produce new, indirectly constructed
ambiguities that were not introduced directly as constants. None of the other
operators in the Banana Algebra are capable of producing new (vertical nor
horizontal) ambiguities. Thus, when analyzing ambiguity of a transformation,
X, we need to test only its constituent constants and addition for ambiguities.
The Banana Algebra Tool features an implementation of the above ambiguity
analysis [6].

6.2. Abstract vs. Concrete Syntax

A key issue in building the tool was the choice of whether to work with abstract
or concrete syntax. Everything we have presented so far has been working
exclusively on the abstract syntactic level. For practical usability of the tool,
however, it turns out to be more convenient to work with concrete syntax.

Figure 5 illustrates the difference between using abstract and concrete syntax
for specifying transformations. Figure 5(a) depicts a fragment of a grammar for
a subset of Java that deals with associativity and precedence of expressions by
factorizing operators into several distinct levels according to operator precedence
(as commonly found in programming language grammars); in this case, there
are nine levels from Exp and Exp1 all the way to Exp8.

Now suppose we were to extend the syntax of Java by adding a new state-
ment, repeat-until, with syntax: "repeat" Stm "until" "(" Exp ")" ";".
Such a construction can easily be transformed into core Java by desugaring it
into a do-while with a negated condition. Figure 5(b) shows how this would
be done at the abstract syntactic level, using a representation of Java’s ab-
stract syntax tree. Transformation arguments are marked with dollar signs;
e.g., $1 and $2 (as explained later). Since negation is found at the eighth prece-
dence level (in Exp7), the AST fragment for specifying the negated conditional
expression would have to take us from Exp all the way to Exp7, add the nega-
tion “Exp7.neg(. . . )”, before adding the parentheses “Exp8.par(. . . )” and the

20



second argument, “$2” (which contains the original expression that was to be
negated). The relevant productions have been underlined, both in the abstract
and the concrete syntaxes. Figure 5(c) specifies the same transformation, but
at the concrete syntactic level, using strings instead of ASTs. When working
with concrete syntax, there is no need for dealing explicitly with such low-level
considerations which are more appropriately dealt with by the parser.

Note that since we test for ambiguity, we can move freely between abstract
and concrete syntax. We thus allow transformations to be specified in either
concrete syntax (Figure 5(c)) or abstract syntax (Figure 5(b)).

6.3. Hygiene

A well-known problem in macro systems is that of variable capture, where new
variable bindings introduced by the macro expansion risk coming in conflict
with the names used in code being expanded. Some macro systems, such as
that used in Scheme [8], implement hygiene [9, 10], which ensure that macro-
generated variable names cannot conflict with each other or with user-defined
variable names.

As macro hygiene techniques are fundamentally connected to the identifier
binding rules of the language being transformed, the Banana Algebra Tool does
not presently implement any such technique. Authors of transformations must
ensure that their results do not capture variables. However, there is nothing fun-
damental that prevents extension of the Banana Algebra Tool to use any of the
standard macro hygiene techniques. Users would simply annotate productions
in the grammar as being producers of identifiers, and a standard hygiene tech-
nique can be used to ensure the absence of variable capture. Implementers of
these techniques must be careful, however, to ensure that addition of languages
preserves the hygiene annotations.

6.4. Parsing and Unparsing

Given the nature of the algebra, it is important that the parsing algorithm
used is capable of parsing any context-free grammar and that it is closed under
union. If the algorithm could only parse some context-free grammars, then
we would risk producing grammars that could not be parsed as intermediate
results. Our implementation uses an eager variant of Earley’s algorithm, which
can parse any context-free grammar in worst-case cubic time. Another good
choice of algorithm would be generalized LL (GLL) parsing [11], which can
generate straightforward, top-down parsing code for any CFG.

We unparse canonically by printing all lexical entities without spaces and by
printing a single space between them (provided that is allowed as legal white-
space in the language). Additionally, our tool allows the use of special pretty-
printing directives to control the display of output. These directives do not
approach the level of sophistication and control of unparsing of, for instance,
the Generic Pretty Printer, GPP [12].
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6.5. Debugging and Error Reporting

We have not addressed debugging and error reporting in the tool. This is a
fundamental challenge for the entire area of syntactic language transformation
and a prerequisite for language extension to be seamlessly integrated in program
development, in practice.

It would require maintaining a coherent relationship between input and out-
put terms at runtime (especially between character positions and line numbers
in source and target languages of individual transformations). This information
should then be used to trace error messages in target language programs back
to the original source language input and thereby provide meaningful error mes-
sages to a programmer who would ideally be oblivious to the transformations.

We expect that origin tracking, per van Deursen [13], can be incorporated
into the tool. Thus, we have not considered these aspects critical for the vali-
dation of our algebraic approach.

7. Examples

We have experimentally validated the algebraic approach to language extension
by trying out the tool and implementation on various concrete examples. After
a concrete example program, we will demonstrate language extensions from each
of the “four scenarios” discussed in the introduction.

We will now revisit the example of extending the λ-Calculus with numerals
that we have previously seen as a catamorphism (in Section 2.1) and later (in
Figure 1) as a general extension pattern, motivating the algebraic approach.

Figure 6(a) shows the λ-Calculus as a Banana Algebra language constant
(with standard whitespace, as defined by: “$ = [ \n\t\r]*”). Figure 6(b)
defines the transformation from the λ-Calculus extended with numerals to the
core calculus (cf., Figure 1). First, the contents of the file “lambda.l” (which
we assume to contain the constant in Figure 6(a)) is loaded and bound to the
Banana Algebra variable, l. Then, in that program, ln is bound to the lan-
guage containing the extension (assumed to reside in the file “lambda-num.l”).
Afterwards, ln2l is bound to the constant transformation that transforms the
numeral extension to the core λ-Calculus. Finally, that constant transformation
is added to the identity transformation on the λ-Calculus, idx(l ).

Similarly, The Banana Algebra Tool can be used to extend Java with lots
of syntactic constructions which can be desugared into Java itself; e.g., dedi-
cated literal syntax for Map structures, a null-check operator similar to C#’s
?? operator, or design pattern templates. Here, we will give only one simple
example of a Java extension; the repeat-until of Figure 5(c). Although the
Java grammar is big (“java.l” is a standard 575-line context-free grammar for
Java), extending Java safely with a fully operational repeat-until construction
requires only seven lines, with no configuration files or other input required:

let java = "java.l"

in let repeat = { Stm.repeat : "repeat" Stm "until" "(" Exp ")" ";" ; }

in letx repeat2java =

(| repeat -> java [Stm -> Stm, Exp -> Exp]

Stm.repeat = ’do $1 while (!($2));’ ;
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{

$ = [ \n\t\r]* ;

Id = [a-z]+ ;

exp.var : Id ;

exp.lam : "\\" Id "." exp ;

exp.app : "(" exp exp ")" ;

}

(a) Language: λ-Calculus (with standard

whitespace definition: “[ \n\t\r]*”).

let l = "lambda.l"

in let ln = "lambda-num.l"

in letx ln2l =

(| ln -> l [exp -> exp]

exp.zero = ’\z.z’ ;

exp.succ = ’\s.$1’ ;

exp.pred = ’($1 \z.z)’ ;

|)

in

ln2l + idx(l )

(b) Transformation: λ-Calculus extended

with numerals to core λ-Calculus (cf. Fig 1).

Figure 6: Banana Algebra example programs: a language and a transformation.

|)

in

repeat2java + idx(java )

More ambitiously, The Banana Algebra Tool may be used to embed entire DSLs
into a host language. We have used the tool to embed standard SQL construc-
tions into the<bigwig> [14] language; e.g., the ubiquitous “select-from-where”
could be added by:

let bigwig = "bigwig.l"

in let select = { stm.select : "select" id list "from" exp "where" exp ";" ; }

in letx select2bigwig =

(| select -> bigwig [stm -> stm, exp -> exp, id list -> id list]

stm.select = ’factor($2) { if ($3) { return # \+ ($1); } }’ ;

|)

in

select2bigwig + idx(bigwig )

Once defined, languages and transformations can all be added, composed, or
otherwise put together. Thus, a programmer can use the tool to essentially
tailor his own macro-extended language; e.g. take Java, lift it to an identity
transformation from Java to Java, remove loop constructions, add SQL con-
structions, and maybe give all keywords French names as in:

english2french o ((idx(java) \ loops) + sql2java)

Relying on the existence of the tool, we have used the tool on itself to add
more operators to the algebra. We can easily extend the Banana Algebra with
an overwrite operator “<<” on transformations (defined in terms of the core
algebra):

[[X1 << X2]]X = (X1 \ src(X2)) + X2
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

















Figure 7: The FUN language built on top of the λ-calculus

8. A Comprehensive Example: “FUN”

To put the algebraic and incremental development approach to the test, we
have built a functional language “FUN” (inspired by a language used in an un-
dergraduate course to introduce functional programming at Aarhus University
and Aalborg University in Denmark). The syntax of “FUN” is described in
Appendix D.

Starting from the core λ-Calculus a number of features are constructed and
combined in an iterative process to form increasingly powerful versions of the
FUN language. Figure 7 shows the first version built from the following general
and independent transformations:

• Unsigned integer arithmetic offering addition and multiplication, using
Church numeral representation, but otherwise similar to the transforma-
tion presented in Section 2.1.

• Boolean logic operators including the if–else construction. This is very
similar to the transformation found in Section 2.2.

• A pair datatype including the cons, car, and cdr operators, familiar from
the Lisp family of languages.

• Variables, local binding (let–in), function definition (optionally recur-
sive) and application.

• Decimal integer literals encoded on top of the integer arithmetic block
using Succ to encode digits and the + and * operators to encode digit
positions.

• The FUN language grammar featuring infix operator precedence, proper
whitespacing and (multi-line) comments.

Without changing the existing transformations, three new features were added
(one at a time) to the FUN language:

1. Signed integers and the subtraction operator, “−”, built on top of the un-
signed arithmetic, boolean logic, and pair datatype (integers are encoded
as pairs of a boolean sign and an unsigned integer).
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


































  

Figure 8: The FUN-typesafe language built in multiple layers on top of the λ-calculus

2. Integer comparison operators (“<”, “>”, “≤”, etc.) built on top of the
signed integer arithmetic using “−” and sign checking.

3. Dynamic type safety. All values are encoded as “(type,value)” pairs and all
operators are modified to dynamically test the types of their arguments.
A special “null” value is returned in case of type errors, and may be used
to catch exceptions.

Figure 8 illustrates the final result (FUN-typesafe) after all three extensions
were added. Notice how the components from Figure 7 have all been reused;
in particular, the decimal integer literal transformation is now placed on top
of the signed integer arithmetic, producing signed values. Furthermore, as the
dynamic type safety layer has to redefine all operators and value constructors
in order to add type annotation and testing, the source language of this layer
is kept absolutely minimal to reduce its size and complexity. Hence, the integer
literals and comparison operators are re-introduced above this layer in a type-
safe version, and therefore these transformations are used twice in different
contexts.

For the FUN-typesafe language specification, 245 algebraic operators were
used, as tabulated in Figure 9. The entire transformation reduces to a con-
stant (constructive catamorphism) transformation file of size 4MB. This exam-
ple is very instructive and could be used for teaching functional programming
languages. However, due to the size of the right-hand sides of the final trans-
formation, even small FUN-typesafe programs will be transformed to rather
voluminous lambda expressions.
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count abbrv. operator syntax
58 [CONL] constant languages l

51 language inclusions "<filename>.l"
28 [ADDL] language additions L + L

23 [VARL] language variables v

17 [CONX] constant transformations �L → L [τ ] c �
17 [ADDX] transformation additions X + X

14 transformation inclusions "<filename>.x"
9 [IDXX] identity transformations idx(L)
8 [LETX] local definitions let v=L in X

8 [SEQX] compositions X ◦ X

4 [RESL] language restrictions L \ L

4 [VARX] transformation variables w

2 [LTXX] local definitions letx w=X in X

2 [SRCL] source extractions src(X)
245 Σ in total

Figure 9: Operator usage statistics for the FUN example.

9. Related Work

Our work shares many commonalities and goals with that of syntax macros,
source transformation systems, and catamorphisms (from a category theory per-
spective) the relation to which will be outlined below.

Syntax macros [1, 15] provide a means to unidirectionally extend a “host
language” on top of which the macro system is hard-wired. Extension by syn-
tactic macros corresponds to having control over only “step iii)” of Figure 1
(some systems also permit limited control over what corresponds to “step ii)”).
By contrast, our algebraic approach can be used to extend the syntax of any
language or transformation; and not just in one direction—extensions may be
achieved through addition, composition, or otherwise modular assembly of other
previously defined languages or transformations. Uni-directional extension is
just one form of incremental definition in our algebraic approach.

Perhaps the best-known example of syntax macros is the macro language
found in Scheme [8]. These differ from Banana Algebra in a number of signifi-
cant ways. Scheme’s macros provide none of the static safety nor performance
guarantees that are achieved through using language-typed constructive cata-
morphisms. On the other hand, Scheme’s macros are capable of expressing
a broader range of transformations. Perhaps the most important distinction is
that Scheme macros must operate on the level of the abstract syntax of Scheme,
while the Banana Algebra is capable of working with concrete syntax for arbi-
trary unambiguous context-free languages.

The work on extensible syntax [16] improves on the definition flexibility in
providing a way of defining grammars incrementally. However, it supports only
three general language operations: extension, restriction, and update.
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Compiler generator tools, such as Eli [17], Elan [18], Stratego/XT [19],
ASF+SDF [20], TXL [21], JastAdd [22], and Silver [23] may all be used for
source-to-target language transformation. They all have wider ambitions than
our work, supporting specifications of full-scale compilers, many including static
and dynamic semantics as well as Turing Complete computation on ASTs of the
source language which obviously precludes our level of safety guarantees.

Although many of the tools support modular language development, none
of them provide an algebra on top of their languages and transformations.

Systems based on attribute grammars (e.g., Eli, JastAdd, and Silver) may
be used to indirectly express source-to-target transformations. This can be
achieved through Turing Complete computation on the AST of the source lan-
guage which compute terms of the target language in a downward or upward
fashion (through synthesized and inherited attributes), or combinations thereof.
In contrast, catamorphisms are restricted to upward inductive recombination
of target ASTs. Our transformations could easily be generalized to also con-
struct target AST downwards, by simply allowing catamorphisms to take target
typed AST arguments (as detailed in [2], p. 17). This corresponds to a no-
tion of anamorphisms and hylomorphisms, but would compromise compile-time
elimination of composition (since anamorphisms and catamorphisms in general
cannot be fusioned into one transformation, without an intermediate step).

Systems based on term rewriting (e.g., Elan, TXL, ASF+SDF, and Strat-
ego/XT) may also be used to indirectly express source-to-target transforma-
tions. However, a transformation from language S to T has to be encoded as a
rewriting working on terms of combined type: S ∪ T or S × T . Although the
tools may syntactically check that each rewriting step respects the grammars,
the formalism comes with three kinds of termination problems which cannot be
statically verified in either of the tools; a transformation may: i) never termi-
nate; ii) terminate too soon (with unprocessed source terms); and, iii) be capable
of producing a forest of output ASTs which means that it is the responsibility
of the programmer to ensure that the end result is one single output term. To
help the programmer achieve this, rewriting systems usually offer control over
the rewriting strategies.

In order to issue strong safety guarantees, in particular termination, we
clearly sacrifice expressibility in that the catamorphisms are not able to perform
Turing Complete transformations. However, previous work using constructive
catamorphisms for syntactic transformations [1, 2, 3] indicate that they are
sufficiently expressive and useful for a wide range of applications. Our contri-
bution is a technique for using constructive catamorphisms in a modular and
incremental fashion.

Of course, catamorphisms may be mimicked by a disciplined style of func-
tional programming, possibly aided by traversal functions automatically syn-
thesized from datatypes [24], or by libraries of combinators [25]. However, as
these programs still occur within a general purpose context, such disciplined
programming cannot provide our level of safety guarantees and would not be
able to compile-time factorize composition (although the functional techniques
deforestation/fusion [26, 27, 28] may—in some instances—be used to achieve
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similar effects in a general purpose context).
There exists a body of work on catamorphisms in a category theoretical

setting [29, 4]. However, these are theoretical frameworks that have not been
turned into practical tool implementations supporting the notion of addition
on languages and transformations which plays a crucial role in the extension
pattern of Figure 1 and many of the examples.

10. Conclusion

The algebraic approach offers via 20 operators a simple, incremental, and modu-
lar means for specifying syntactic language extensions through algebraic compo-
sition of previously defined languages and transformations. The algebra comes
“for free” in that any algebraic transformation term can be statically reduced
to a constant transformation without compromising the strong safety and effi-
ciency properties offered by catamorphisms.

The tool may be used by: 1) programmers to extend existing languages with
their own macros; 2) developers to embed DSLs in host languages; 3) compiler
writers to implement only a small core language (and specify the rest externally
as extensions); and 4) developers and teachers to build multi-layered languages.
The Banana Algebra Tool is available—as 3,600 lines of O’Caml code—along
with examples are available on its homepage:

[ http://www.itu.dk/people/brabrand/banana-algebra/ ]
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Appendix A. Semantics of Languages

Appendix A.1. Language operators

In order to be able to define algebraic operations on grammars later on, we need
the operators defined in the following definitions. We use the term “grammar”
to refer to a production-named CFG, as defined in Section 5.

Definition 5 (The nil grammar l0). The nil grammar is defined as:

l0 = (∅, ∅, ∅, π0)

where π0 is the empty production function with dom(π0) = ∅.

Proposition 1 (The nil grammar is well-formed). The nil grammar is well-
formed: �wfl l0.

Proof. Straightforward from Definition 4 and Definition 5.

Definition 6 (Addition compatibility of grammars ∼l). Two grammars, l =
(N ,Σ,P, π) and l� = (N �,Σ�,P �, π�) are said to be “addition compatible” (writ-
ten l ∼l l

�) iff:

∀n ∈ N ∩N � :

π(n) �= ∅ ∧ π
�(n) �= ∅

⇓
∀(p, α) ∈ π(n), (p�, α�) ∈ π

�(n) : p = p
� ⇒ α = α

�

This definition expresses that the production rules of two addition compati-
ble languages are either disjoint or identical, i.e. no conflicts. As a special case,
if a nonterminal is undefined but used in production rules in one language (e.g.
π(n) = ∅) then this language is still addition compatible with another language
in which n is actually defined (with either one or more named production rules
or a regular expression). This is conceptually similar to the linking process used
when building computer software: a source code file may use procedures defined
in other source code files or libraries, and the linking process will bind the using
instance to the defining instance.

Definition 7 (Grammar addition⊕l). Binary addition on grammars l = (N ,Σ,P, π)
and l� = (N �,Σ�,P �, π�) is defined when l ∼l l

� as:

l ⊕l l
� = (N ∪N �

,Σ ∪ Σ�
,P ∪ P �

, π ⊕π π
�)

where π ⊕π π� : N ∪N � → 2(P∪P�)×((N∪N �)∪(Σ∪Σ�))∗ is defined as:

(π ⊕π π
�)(n) =






π(n) n /∈ N �,

π�(n) n /∈ N ,

π(n) ∪ π�(n) otherwise
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Note that when adding two grammars, it may be the case that one of the
grammars refers to a nonterminal which is not defined in this grammar, but is
defined in the other grammar.

Proposition 2 (Grammar addition preserves well-formedness). When adding
together two well-formed grammars, the resulting grammar will be well-formed:

∀l, l� ∈ CFG : (l ∼l l
� ∧ �wfl l ∧ �wfl l

�) ⇒ �wfl (l ⊕l l
�)

Proof. For part (i) of the well-formedness statement, since both l and l� are
well-formed, the only thing we need to check is that when (p, α) ∈ π(n) and
(p�, α�) ∈ π�(n) the statement p = p� ⇒ α = α� still holds. But since l and l� are
addition compatible, and the top part (above the ’⇓’) of definition 6 is true, we
have the bottom part, finishing this part of the proof.

Part (ii) of the well-formedness statement states that a nonterminal must
be either defined or used in (l ⊕l l

�). But since any nonterminal from (l ⊕l l
�)

originates from either l or l� and these grammars are both well-formed, the
nonterminal must be either defined or used in either l or l�. And since all
grammar productions from these two grammars are found in (l ⊕l l

�), we have
this part of the proof as well.

Definition 8 (Grammar subtraction �l). Binary subtraction on grammars l =
(N ,Σ,P, π) and l� = (N �,Σ�,P �, π�) is defined when l ∼l l

� as:

l �l l
� = ( �N ,Σ,P, π �π π

�)

where π �π π� : N → 2P×(N∪Σ)∗ is defined as:

(π �π π
�)(n) =

�
π(n) n /∈ N �,

π(n) \ π�(n) otherwise

and:

�N = {n ∈ N | (π �π π
�)(n) �= ∅} ∪

{n ∈ N | ∃n� ∈ N ; p ∈ P;α, α� ∈ (N ∪ Σ)∗ : (π �π π
�)(n�) = (p, [αnα�]}

The purpose of grammar subtraction l �l l
� is to remove a subset of the

productions in a grammar l – more precisely the productions found in both
l and l�. So fix a nonterminal n ∈ N ∩ N �. The definition now states that
(π �π π�)(n) = π(n) \ π�(n). Suppose π(n) �= ∅ and π�(n) �= ∅ since π(n) =
π(n) \ π�(n) otherwise. As l ∼l l

�, we have that they are both sets of named
productions with no conflicts, resulting in the removal of the common subset of
productions.

Proposition 3 (Grammar subtraction preserves well-formedness). When sub-
tracting any grammar from a well-formed grammar, the resulting grammar will
be well-formed:

∀l, l� ∈ CFG : (l ∼l l
� ∧ �wfl l) ⇒ �wfl (l �l l

�)
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Proof. Part (i) of the well-formedness statement follows directly from the fact
thatG is well-formed, as we are not adding any new productions to the grammar.
Part (ii) follows directly from the definition of �N in Definition 8.

Definition 9 (Grammar renaming compatibility ∼r). A renaming, R (as de-
fined in Figure 2(c)) is compatible with a grammar, l = (N ,Σ,P, π) ∈ CFG,
written R ∼r l, iff:

m /∈ N if R = m /n

� ∃α : π(n) = (q, α) if R = q /n.p

Definition 10 (Grammar nonterminal renaming [ ]nl). Renaming a nonterminal
n to m in a grammar, l = (N ,Σ,P, π) ∈ CFG (written “l [m /n]”) is defined
when m /n ∼r l (i.e. m /∈ N ) as:

l [m /n] =

�
(N �,Σ,P, π�) n ∈ N
l otherwise

with N � = (N \ {n}) ∪ {m} and π� : N � → 2P×(N �∪Σ)∗ is defined as:

π
�(n�) =





π(n̂) π(n̂) ∈ 2P×(N �∪Σ)∗

{(p, seq-subst
n→m

(α)) | (p, α) ∈ π(n̂)} otherwise

where:

n̂ =

�
n n� = m

n� otherwise

and the seq-subst
n→m

function, substituting all n occurences by m in a sequence is

defined recursively as:

seq-subst
n→m

(α) =






� α = � (where � is the empty sequence)

m seq-subst
n→m

(α�) α = nα�

x seq-subst
n→m

(α�) α = xα� ∧ x �= n

Proposition 4 (Grammar nonterminal renaming preserves well-formedness).
Renaming a nonterminal of a well-formed grammar produces a grammar which
is well-formed:

∀l ∈ CFG, ∀n,m : m /n ∼r l ∧ �wfl l ⇒ �wfl (l [m/n])

Proof. Left to the reader.
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Definition 11 (Grammar production name renaming [ ]pl). Renaming a pro-
duction name n.p to n.q in a grammar, l = (N ,Σ,P, π) ∈ CFG (written
“l [q /n.p]”) is defined when q /n.p ∼r l (i.e. � ∃α : π(n) = (q, α)) as:

l [q /n.p] = (N ,Σ,P �
, π

�)

with P � = P ∪ {q} and π� : N → 2P
�×(N∪Σ)∗ is defined as:

π
�(n�) =

�
{(p̂, α) | (p�, α) ∈ π(n)} n� = n

π(n�) otherwise

where:

p̂ =

�
q p� = p

p� otherwise

Proposition 5 (Grammar production name renaming preserves well-formed-
ness). Renaming a production name of a well-formed grammar produces a gram-
mar which is well-formed:

∀l ∈ CFG, ∀n, p, q : q /n.p ∼r l∧ �wfl l ⇒ �wfl (l [q /n.p])

Proof. Left to the reader.

Definition 12 (Grammar inclusion�l). Grammar inclusion is a binary relation
on grammars l = (N ,Σ,P, π) and l� = (N �,Σ�,P �, π�) defined as:

l �l l
� ≡ ∀n ∈ N : π(n) = ∅ ∨ (n ∈ N � ∧ π(n) ⊆ π

�(n))

Note that this definition only considers the relation between the two pro-
duction functions π and π�. We do not care whether N ⊆ N �, P ⊆ P �, and
Σ ⊆ Σ� or not.

Proposition 6 (Grammar inclusion and well-formedness). Let l = (N ,Σ,P, π) ∈
CFG and l� = (N �,Σ�,P �, π�) ∈ CFG then:

�wfl l ∧ l �l l
� ⇒ N ⊆ N �

Proof. Let n ∈ N . Since l is well-formed, this means that n is either defined or
used in π, i.e. there exists a concrete production that involves n. In other words
∃n� ∈ N : π(n�) �= ∅ such that either n = n� or n is used in π(n�). But since
π(n�) �= ∅ we have that n� ∈ N � ∧ π(n�) ⊆ π�(n�) and therefore n ∈ N �.
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Appendix B. Semantics of Transformations

Appendix B.1. Transformations defined

We now proceed to formally define well-formedness of transformations, which is
informally defined in Section 5.3. This definition is dependent on a number of
other relations, as follows:

Definition 13 (“Sequence picker” operator |P ). For any sets, P and Q, we
define the “sequence picker” operator |P : Q∗ × N �→ P using the following
inference system:

qs|1P = q
q ∈ P

s|(i−1)
P = p

qs|iP = p
q ∈ P, i > 1

s|iP = p

qs|iP = p
q /∈ P

For a sequence s ∈ Q∗ and a number i ∈ N, s|iP yields the ith element of P
found in the sequence s, and it is undefined if such an element does not exist.
Of course, if P ∩Q = ∅, s|iP cannot be defined for any i.

Definition 14 (“Sequence counter” operator | · |P ). For any sets, P and Q, we
define | · |P : Q∗ → N as the number of P elements found in the sequence, by
the following inference system:

|[]|P = 0
|s|P = i

|qs|P = i+ 1
q ∈ P

|s|P = i

|qs|P = i
q /∈ P

I.e. |s|P is the maximal value for i, where s|iP is defined, and if |s|P = 0,
then s|iP is not defined for any i.

Definition 15 (Reconstructor typing �l). Given a grammar, l = (N ,Σ,P, π) ∈
CFG and a “gap type function” ρ : N �→ N , we say that a reconstructor A ∈ Al

has type n ∈ N , written ρ �l A : n iff it is provable by the following inference
system:

ρ �l i : n
i ∈ N, ρ(i) = n

∀j ∈ {1, . . . ,m} : ρ �l Aj : (α|jN )

ρ �l (n, p,A1, A2, . . . , Am) : n
∃α : (p, α) ∈ π(n) ∧ m = |α|N

Definition 16 (Well-formed transformation �wfx). The transformation, x =
(ls = (Ns,Σs,Ps, πs), lt = (Nt,Σt,Pt, πt), τ, c) ∈ CATA, is said to be “well-
formed” (written “ �wfx x”) iff all of the following conditions are met:

(i) �wfl (Ns,Σs,Ps, πs) ∧ �wfl (Nt,Σt,Pt, πt)
(ii) ∀n ∈ Ns ∀(p, α) ∈ πs(n) ∃A ∈ Alt : (p,A) ∈ c(n)
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(iii)
∀n ∈ Ns ∀(p,A) ∈ c(n) ∃α ∈ (Ns ∪ Σs)

∗ :

(p, α) ∈ πs(n) ∧ (i �→ τ(α|iNs
)) �lt A : τ(n)

(iv) ∀n ∈ Ns ∀(p,A), (p�, A�) ∈ c(n) : p = p� ⇒ A = A�

(i) expresses that the source and target language grammars must be well-
formed. Condition (ii) checks the completeness of the transformation: that the
transformation covers all productions defined in the source language grammar
(πs), so that any valid source program can be transformed. Condition (iii)
verifies that the typing of all transformation rules matches the typing defined
by τ , and finally (iv) ensures that only one rule exists per production.

Appendix B.2. Applying transformations

Definition 17 (The transformation relation). Given two grammars and a re-
constructor function, ls = (Ns,Σs,Ps, πs) ∈ CFG, lt = (Nt,Σt,Pt, πt) ∈ CFG,
and c : Ns → 2Ps×Alt , we now define the “substitute relation”, � ⊆ (N �→
Alt)×Alt ×Alt , written µ � A � A� in the following manner:

(i)
∀i ∈ {1, . . . ,m} : µ � Ai � A

�
i

µ � (n, p, [A1, . . . , Am]) � (n, p, [A�
1, . . . , A

�
m])

(ii)
µ � i � µ(i)

i ∈ N, µ(i) defined

Using this relation, we can define the “transformation relation”, −→c: Als×Alt ,
written A −→c A

� as:

(iii)
∀i ∈ {1, . . . ,m} : Ai −→c A

�
i (i �→ A

�
i) � A

�
� A

��

(n, p, [A1, . . . , Am]) −→c A
�� (p,A�) ∈ c(n)

(iv)
i −→c i

i ∈ N

Proposition 7 (The transformation relation may be viewed as a function).
Let x = (ls, lt, τ, c) ∈ CATA be a well-formed transformation. The relation −→c

defined by c generates a function, Tc : Als �→ Alt (such that Tc(A) = A� ⇔
A −→c A�), which is defined for all reconstructors A ∈ Als that can be typed,
i.e. ∃ρ, n : ρ �ls A : n.

Proof. First, we need to verify, that the function would be well-defined, i.e. that
A −→c A1 ∧ A −→c A2 ⇒ A1 = A2 when x is well-formed. This is easily
verified by structural induction first for � and then for −→c, using condition
(iv) of definition 16.

Now, we need to show the following:

∀A ∈ Als : (∃ρ, n : ρ �ls A : n) ⇒ (∃A� ∈ Alt : A −→c A
�)

which we are going to do by structural induction in A. If A ∈ N, the statement
is trivial. Looking at A = (n, p, [A1, . . . , Am]), since A can be typed, all of
A1, . . . , Am can be typed as well, and by induction Ai −→c A�

i are defined.
Furthermore, as A can be typed, we have (p, α) ∈ πs(n) for some α, and by
well-formedness of x we get (p,A�) ∈ c(n) for some A�, which have no gaps
except in the interval {1, . . . ,m}. But since (i �→ A�

i) is defined throughout this
interval, it is easy to verify by structural induction that (i �→ A�

i) � A� �A��, and
so we are done.
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Definition 18 (Transformation function Tc). Let x = (ls, lt, τ, c) ∈ CATA be a
well-formed transformation, and �Als = {A ∈ Als | ∃ρ, n : ρ �ls A : n}. Define
the transformation function, Tc : �Als → Alt :

Tc(A) = A
� ⇔ A −→c A

�

Lemma 1 (Typing of substitute relation). The substitute relation preserves the
original type when the substituted reconstructors are correctly typed:

σ �l A : n ∧ ∀i ∈ dom(σ) : ρ �l Ai : σ(i) ∧ [i �→ Ai] � A � A
�

⇓
ρ �l A

� : n

Proof. We will prove this by induction in the structure of A. If A ∈ N by
definition 15 σ(A) = n and with the rest of the preconditions and (ii) of defini-
tion 17 we are done. When A = (n, p, [A1, . . . , Am]) from definition 15 we get
∃α : (p, α) ∈ π(n) ∧ m = |α|N , which together with the induction hypothesis
finishes the proof.

Proposition 8 (Typing of transformed reconstructor). A well-formed trans-
formation, x = (ls, lt, τ, c), where ls = (Ns,Σs,Ps, πs) and lt = (Nt,Σt,Pt, πt)
applied to a reconstructor, A ∈ Als , preserves typing – i.e. if the type of A is n,
the type of the transformed result, Tc(A) will be τ(n):

∀A ∈ Als , n ∈ Ns, ρ ∈ (N �→ Ns) : ρ �ls A : n ⇒ (τ ◦ ρ) �lt Tc(A) : τ(n)

Proof. This is proved by structural induction in the structure of A.

A ∈ N :
From the definition of the transformation, we have that Tc(A) = A in this
case, so given n and ρ, we assume ρ �ls A : n. Due to this assumption,
there must exist an inference proof:

ρ �ls A : n
A ∈ N, ρ(A) = n

and we can rewrite this into:

(τ ◦ ρ) �lt Tc(A) : τ(n)
Tc(A) ∈ N, (τ ◦ ρ)(Tc(A)) = τ(n)

which completes this part of the proof.

A ∈ Ns × Ps ×A∗
ls

:
First, we examine the special case A = (n, p, []). From the definition
of the reconstructor typing we have ∃α : (p, α) ∈ πs(n) and |α|Ns = 0,
and since the transformation is well-formed, definition 16 condition (ii)
gives us ∃A� ∈ Alt : (p,A�) ∈ c(n), and from condition (iii) and the well-
formedness of ls we get (τ ◦α|·Ns

) �lt A
� : τ(n). Since |α|Ns = 0, (τ ◦α|·Ns

)
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is the function, which is never defined, and therefore A� cannot contain
any gaps. Examining the defining rules of the transformation, Tc, we see
that Tc(A) = A�, and we are done with this case.

Turning to the case of the non-empty list, let m ∈ N, m > 0, and let
Ai ∈ Als for all i ∈ {1, 2, . . . ,m} so that:

∀n ∈ Ns, ρ ∈ (N �→ Ns) : ρ �ls Ai : n ⇒ (τ ◦ ρ) �lt Tc(Ai) : τ(n)

we need to prove the following:

∀n ∈ Ns, ρ ∈ (N �→ Ns) : ρ �ls (n, p, [A1, . . . , Am]) : n ⇒
(τ ◦ ρ) �lt Tc((n, p, [A1, . . . , Am])) : τ(n)

Continuing the proof as in the previous case and using the induction hy-
pothesis, we reach the following:

(τ ◦ α|·Ns
) �lt A

� : τ(n) ∧ ∀i ∈ {1, · · · ,m} : (τ ◦ ρ) �lt Tc(Ai) : τ(α|iNs
)

Now, examining the definition of Tc and using lemma 1 we obtain the
result.

Appendix B.3. Transformation operators

In order to be able to define algebraic operations on transformations later on,
we need the operators defined in the following definitions.

Definition 19 (The nil transformation x0). The empty transformation is de-
fined as:

x0 = (l0, l0, τ0, c0)

where l0 is the nil grammar (cf. Appendix A, Definition 5) and where τ0 and c0

are the empty nonterminal typing with dom(τ0) = ∅ and the empty reconstructor
function with dom(c0) = ∅.

Proposition 9 (The nil transformation is well-formed). The nil transformation
is well-formed: �wfx x0.

Proof. Straightforward from Definition 16 and Definition 19.

Definition 20 (Addition compatibility of transformations ∼x). Two transfor-
mations, x = (ls, lt, τ, c) and x� = (l�s, l

�
t, τ

�, c�) – where ls = (Ns,Σs,Ps, πs),
lt = (Nt,Σt,Pt, πt), l�s = (N �

s,Σ
�
s,P �

s, π
�
s), and l�t = (N �

t ,Σ
�
t,P �

t, π
�
t) – are said to

be “addition compatible” (written x ∼x x�) iff the following conditions are met:

(i) ls ∼l l
�
s ∧ lt ∼l l

�
t

(ii) ∀n ∈ Ns ∩N �
s : τ(n) = τ �(n)

(iii) ∀n ∈ Ns ∩N �
s ∀(p,A) ∈ c(n), (p�, A�) ∈ c�(n) : p = p� ⇒ A = A�
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The source and target languages must be addition compatible, and any over-
lapping nonterminals – and transformation reconstructors – must be identical
if the transformations are to be added.

Now, we can define addition of transformations in the following manner:

Definition 21 (Transformation addition ⊕x). Binary addition on transfor-
mations, x = (ls, lt, τ, c) and x� = (l�s, l

�
t, τ

�, c�) – where ls = (Ns,Σs,Ps, πs),
lt = (Nt,Σt,Pt, πt), l�s = (N �

s,Σ
�
s,P �

s, π
�
s), and l�t = (N �

t ,Σ
�
t,P �

t, π
�
t) – is defined

as:
x⊕x x

� = (ls ⊕l l
�
s, lt ⊕l l

�
t, τ ⊕τ τ

�
, c⊕c c

�)

where τ ⊕τ τ � : Ns ∪N �
s → Nt ∪N �

t is defined as:

(τ ⊕τ τ
�)(n) =

�
τ(n) n ∈ Ns,

τ �(n) otherwise

and c⊕c c
� : Ns ∪N �

s → 2
(Ps∪P�

s)×A(lt⊕ll
�
t) is defined as:

(c⊕c c
�)(n) =






c(n) n ∈ Ns ∧ n /∈ N �
s,

c�(n) n ∈ N �
s ∧ n /∈ Ns,

c(n) ∪ c�(n) otherwise

We now have the following:

Proposition 10 (Transformation addition preserves well-formedness). When
adding together two well-formed transformations, the resulting transformation
will be well-formed:

∀x, x� ∈ CATA : (x ∼x x
� ∧ �wfx x ∧ �wfx x

�) ⇒ �wfx (x⊕x x
�)

Proof. We need to establish the 4 conditions of definition 16. The first condition
follows directly from the proposition 2 and the fact that x and x� – and hence
all 4 grammars in play – are well-formed. (iv) follows from the well-formedness
of the transformations as well as the addition compatibility. The proofs for
condition (ii) and (iii) are very similar, so we will only show (iii), which is the
more elaborate part, here:

Starting with a rewrite of condition (iii) using the symbols from the definition
above:

∀n ∈ Ns ∪N �
s ∀(p,A) ∈ (c⊕c c

�)(n) ∃α ∈ (Ns ∪N �
s ∪ Σs ∪ Σ�

s)
∗ :

(p, α) ∈ (πs ⊕π π
�
s)(n) ∧ ((τ ⊕τ τ

�) ◦ α|·Ns∪N �
s
) �lt⊕ll�t

A : (τ ⊕τ τ
�)(n)

Picking n and (p,A), we notice that from the definition of ⊕c we have that
(p,A) ∈ c(n) or (p,A) ∈ c�(n), and due to the symmetric nature of this argu-
ment, we can choose to say without loss of generality that (p,A) ∈ c(n). Since
�wfx x we have that α exists and satisfies the left-hand side of the conjunction.
As x ∼x x�, we have that (τ ⊕τ τ �)(n) = τ(n), so all that remains is to prove:

((τ ⊕τ τ
�) ◦ α|·Ns∪N �

s
) �lt⊕ll�t

A : τ(n)
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Again, using �wfx x, we have that: (τ ◦ α|·Ns
) �lt A : τ(n); in particular there

exists an inference proof of this fact, and this proof can also be used to prove
the above statement.

Transformations may be composed by the following definition:

Definition 22 (Transformation composition ◦x). Composition on two trans-
formations, x = (ls, lt, τ, c) and x� = (l�s, l

�
t, τ

�, c�) – where ls = (Ns,Σs,Ps, πs),
lt = (Nt,Σt,Pt, πt), l�s = (N �

s,Σ
�
s,P �

s, π
�
s), and l�t = (N �

t ,Σ
�
t,P �

t, π
�
t) – is defined

when �wfl lt, �wfx x
�, and lt �l l

�
s as:

x
� ◦x x = (ls, l

�
t, τ

� ◦ τ, c� ◦c c)

Note that τ � ◦ τ is defined due to proposition 6, which states that Nt ⊆ N �
s.

Composition of reconstructor functions (◦c) is defined by:

(c� ◦c c)(n) = {(p,Tc�(A)) | (p,A) ∈ c(n)}

And, of course we also have:

Proposition 11 (Transformation composition preserves well-formedness). When
composing two well-formed transformations, the resulting transformation will be
well-formed:

∀x = (ls, lt, τ, c), x
� = (l�s, l

�
t, τ

�
, c

�) ∈ CATA :

(lt �l l
�
s ∧ �wfx x ∧ �wfx x

�) ⇒ �wfx (x
� ◦x x)

Proof. Assuming that lt �l l
�
s and �wfx x, which implies that �wfl lt, we have

that x�◦xx is defined, and we just have to check the 4 conditions of definition 16.
Condition (i) follows directly from the well-formedness of x and x�. Condition
(iv) can easily be obtained from this assumption as well by serial application.
Condition (ii) follows directly from the definition of ◦c and the well-formedness
of x and x�, and the same reasoning is used to establish the left-hand side of
the conjunction in condition (iii) – for the right-hand side of the conjunction,
proposition 8 is used together with the well-formedness of x.

The identity transformation on a grammar is defined as:

Definition 23 (Identity transformation idx). The identity transformation on
a grammar, l = (N ,Σ,P, π) ∈ CFG is given as:

idx(l) = (l, l, idτ (l), idc(l))

where idτ (l) = τ : N → N is defined as the identity nonterminal typing
τ(n) = n; and where idc(l) = c : N → 2P×AG is defined as the identity
reconstructor:

c(n) = {(p,A) | (p, α) ∈ π(n), A = (n, p, [1, 2, . . . , |α|N ])}
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Proposition 12 (Identity transformation preserves well-formedness). When
the identity transformation of a well-formed grammar is constructed, the result
is a well-formed transformation:

∀l ∈ CFG : �wfl l ⇒ �wfx idx(l)

Proof. It is easy to verify that the 4 conditions of definition 16 holds whenever
l is well-formed.

Definition 24 (Transformation typing renaming [ ]τ ). Let ls = (Ns,Σs,Ps, πs) ∈
CFG be a grammar, Nt a set of nonterminals, τ : Ns → Nt a nonterminal
typing function, and R a renaming (as defined in Figure 2(c)) with R ∼r ls.
Now, let (N �

s,Σ
�
s,P �

s, π
�
s) = ls[R] and define the renamed transformation typing

τ [R] : N �
s → Nt as:

τ [R](n̂) =

�
τ(n) , if R = m /n, n̂ = m

τ(n̂) , otherwise

Definition 25 (Transformation reconstructor renaming [ ]c). Let lt ∈ CFG and
ls = (Ns,Σs,Ps, πs) ∈ CFG be grammars, c : Ns → 2Ps×Alt a reconstructor
function, and R a renaming (as defined in Figure 2(c)) with R ∼r ls. Now,
let (N �

s,Σ
�
s,P �

s, π
�
s) = ls[R] and define the renamed reconstructor function

c[R] : N �
s → 2P

�
s×Alt as:

c[R](n̂) =






c(n) , if R = m /n, n̂ = m�
{(p̂, A) | (p̂, A) ∈ c(n) ∧ p̂ �= p}

∪ {(q,A) | (p,A) ∈ c(n)}

�
, if R = q /n.p, n̂ = n

c(n̂) , otherwise

Proposition 13 (Transformation source language renaming preserves well–
formedness). Renaming the source language of a well-formed transformation
with a compatible renaming, R, produces a transformation which is well-formed:

∀x = (ls, lt, τ, c) ∈ CATA : R ∼r ls ∧ �wfx x ⇒ �wfx (x[R | ])

Proof. The transformation source renaming is defined by rule [REN3X] on figure 4
as x[R | ] = (ls[R], lt, τ [R], c[R]). Since x is well-formed, ls is also well-
formed, and by propositions 4 and 5 this goes for ls[R] as well. Verifying that
the last three conditions of definition 16 hold, is easy.
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Appendix C. Performance

Proposition 14 (Linear runtime of simple bananas). Given a well-formed
transformation, x = (ls, lt, τ, c) ∈ CATA, and a reconstructor, A ∈ Als : If
the reconstructors of c each contain at most one instance of each gap, then
Tc(A) can be evaluated in time O(|A|), where |A| counts the number of nodes
(internal and leaves) in the abstract syntax tree A.

Proof. The proof of this proposition has two steps: first we prove that if a
reconstructor, A� contain at most one instance of each gap and (i �→ A�

i) �
A� � A��, then |A��| ≤ |A�|+

�
i |A�

i|. Next, we use this and structural induction
on the structure of A to prove the original claim. We assume that execution time
is in the order of the number of recursive calls and symbols read or generated
during execution.

For the first part of the proof, we look at the definition of � in Definition
17 (i) and (ii). By structural induction in A�, we can see that if A� is a gap
(A� = j), then |A�| = 1 and |A��| = |A�

j | < 1 + |A�
j | ≤ |A�| +

�
i |A�

i|. If, on the
other hand, A� is not a gap, by the assumption that each gap appears at most
once in A�, we can split µ = (i �→ A�

i) in a disjoint set of partial functions µj

such that each i �→ A�
i appears in exactly one µj . This will allow us to slightly

rewrite Definition 17 (i) into the following:

∀j ∈ {1, . . . ,m} : µj � Aj � Âj

µ � (n, p, [A1, . . . , Am]) � (n, p, [Â1, . . . , Âm])

For µ = (i �→ A�
i) we define |µ| =

�
i |A�

i| and thus |µ| =
�

j |µj | due to the
definition of µj . Now, assuming the induction hypothesis:

∀j ∈ {1, . . . ,m} : |Âj | ≤ |Aj |+ |µj |

we get:

|A��| = 1 +
�

i

|Âi| ≤ 1 +
�

i

(|Ai|+ |µi|) = 1 +
�

i

|Ai|+ |µ| = |A�|+ |µ|

Which is what we expected. The next step is to prove that |Tc(A)| ≤ K · |A|
for some constant K which depends only on the transformation x. Since the
reconstructor function, c, has a finite domain and all function values are finite
sets (as x is well-formed), there must be some constant, K, such that for any
A, if ∃n, p : (p,A) ∈ c(n) then |A| ≤ K. Again, using structural induction
on the rules in Definition 17 (iii) and (iv) we get the desired result. Looking
at (iii), using the previous result and assuming the induction hypothesis, ∀i ∈
{1, . . . ,m} : |A�

i| ≤ K · |Ai|, we get:

|A��| ≤ |A�|+
�

i

|A�
i| ≤ K+

�

i

|A�
i| ≤ K+

�

i

(K·|Ai|) = K·(1+
�

i

|Ai|) = K·|A|

Finally, we calculate the execution time as the number of recursive calls and
input/output elements (the size of a node in a reconstructor tree is limited by
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some small constant). All in all, the time spent on each node is limited by some
constant depending only on x, which means that the total execution time must
be O(|A|).

Proposition 15 (Linear runtime with concrete syntax). Given a well-formed
transformation, x = (ls, lt, τ, c) ∈ CATA, and a reconstructor, A ∈ Als : If
the reconstructors of c each contain at most one instance of each gap, then the
transformation of ω ∈ L(ls) to L(lt) can be performed in time O(|ω|).

Proof. Using Proposition 14 and suitable parser and pretty-print algorithms.
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Appendix D. Syntax of the Fun Language (cf. Section 8)

{ Wsp = [\ \n\r] ;

Comment = ("//" [^\n\r]*) | ("/*" ([^*/] | (\* [^/]))* "*/") ;

Id = [a-zA-Z][0-9a-zA-Z_]* ;

Exp.letexp : LetExp ;

LetExp.letvar : "let" Id "=" LetExp "in" LetExp ;

.letfun : "let" Id "(" Id ")" "=" LetExp "in" LetExp ;

.letrec : "letrec" Id "(" Id ")" "=" LetExp "in" LetExp ;

.if : OrExp "?" LetExp ":" LetExp ;

.orexp : OrExp ;

OrExp.or : OrExp "|" AndExp ;

.xor : OrExp "^" AndExp ;

.andexp : AndExp ;

AndExp.and : AndExp "&" NotExp ;

.notexp : NotExp ;

NotExp.not : "!" RelExp ;

.relexp : RelExp ;

RelExp.simple : SimpleExp ;

SimpleExp.uplus : "+" Term ;

.uminus : "-" Term ;

.add : SimpleExp "+" Term ;

.sub : SimpleExp "-" Term ;

.term : Term ;

Term.mul : Term "*" Factor ;

.factor : Factor ;

Factor.facparen : FacParen ;

.noparen : FacNoPar ;

FacParen.paren : "(" LetExp ")" ;

.app : Factor "(" LetExp ")" ;

.iszero : "zero?" "(" LetExp ")" ;

.succ : "++" "(" LetExp ")" ;

.pred : "--" "(" LetExp ")" ;

.cons : "cons" "(" LetExp "," LetExp ")" ;

.car : "car" "(" LetExp ")" ;

.cdr : "cdr" "(" LetExp ")" ;

FacNoPar.app1 : FacNoPar Prim ;

.app2 : FacParen Prim ;

.iszero : "zero?" Prim ;

.succ : "++" Prim ;

.pred : "--" Prim ;

.car : "car" Prim ;

.cdr : "cdr" Prim ;

.prim : Prim ;

Prim.true : "#t" ;

.false : "#f" ;

.var : Id ;

.intConst : IntConst ;

IntConst.digit : Digit ;

.more : IntConst Digit ;

Digit.zero : "0" ;

.one : "1" ;

.two : "2" ;

...

.nine : "9" ;

}
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