A Tool for Improving Maintainability of Preprocessor-based
Product Lines

Marcio Ribeiro', Tarsis Toléedo', Paulo Borba', Claus Brabrand?

!Centro de Informética — Universidade Federal de Pernambuco (UFPE), Recife, Brasil
2IT University of Copenhagen (ITU), Copenhangen, Denmark
3Instituto de Computagdo — Universidade Federal de Alagoas (UFAL), Maceid, Brasil

{mmr3, twt, phmb}@cin.ufpe.br, brabrand@itu.dk

Abstract. Virtual Separation of Concerns (VSoC) reduces drawbacks when im-
plementing preprocessor-based product lines. Developers can focus on certain
features and hide others of no interest. But features eventually share elements
between them, which might break feature modularization, since modifications
in a feature can result in problems for another. Emergent interfaces can help
in the sense they capture dependencies between the feature being maintained
and the other ones. Developers then become aware of feature dependencies and
are likely to avoid wrong feature implementations. In this paper, we present a
tool that implements the emergent concept. We capture feature dependencies
by using feature-sensitive data-flow analysis capable of analyzing all variants
simultaneously: there is no need to analyze each one separately.

1. Introduction

A Software Product Line (SPL) is a family of software-intensive systems devel-
oped from reusable assets. These systems share a common set of features that sat-
isfy the specific needs of a particular market segment [Clements and Northrop 2002].
In this context, features are the semantic units by which we can differentiate pro-
grams in a SPL [Trujillo et al. 2006]. Features are often implemented using prepro-
cessors [Kastner et al. 2008]. Conditional compilation directives such as #ifdef and
#endif encompass code associated with features, mixing common, optional and even
alternative behavior in the same code asset.

Despite their widespread use, preprocessors have some drawbacks, including no
support for separation of concerns [Spencer and Collyer 1992]. Virtual Separation of
Concerns (VSoC) [Kistner et al. 2008] allows developers to hide feature code not rel-
evant to the current task, reducing some of the preprocessors drawbacks. The idea is to
provide developers a way to focus on a feature without being distracted by others.

However, VSoC is not enough to provide feature modularization, which
aims at achieving independent feature comprehensibility, changeability, and develop-
ment [Parnas 1972]. In fact, by visualizing and trying to maintain a feature individually, a
developer might introduce errors into the other features due to dependencies, since these
features possibly share elements—such as variables and methods—with the maintained
feature. Thus, we face the lack of feature modularization: because of feature dependen-
cies, the new value of a variable, for example, might be correct to the maintained feature,

but incorrect to another one that uses this variable. In fact, these feature dependencies are
quite common in practice [Ribeiro et al. 2011].

To minimize these problems, we proposed the concept of emergent inter-
faces [Ribeiro et al. 2010]. The idea consists of capturing dependencies between the fea-
ture a programmer is maintaining and the others. These interfaces emerge and provide
information about other features that might be affected by maintenance tasks. Developers
then become aware of the dependencies and, consequently, might avoid the maintainabil-
ity problems. Developers still have the VSoC benefits. Emergent interfaces complement
VSoC in that in addition to hiding feature code, they provide dependency information.

In this paper, we present a tool that implements the emergent feature modular-
ization concept. Our tool is based on CIDE [Kistner et al. 2008], an implementation for
the VSoC concept. Like CIDE, our emergent tool is an Eclipse plug-in. In addition, we
use the SOOT [Vallée-Rai et al. 1999] framework to execute data-flow analysis and then
capture feature dependencies. Since we consider SPLs, we extend SOOT to implement
feature-sensitive data-flow analyses.

2. Motivating Example

The scenario we illustrate here is based on the best lap' SPL. Best lap is a racing game
where the player tries to achieve the best time in one lap and qualify for the pole position.
In this game, there is a method responsible for computing the game score, as illustrated
in Figure 1. The method contains small rectangles, representing hidden features that the
developer is not concerned with and thus not seeing. Note that there are no #ifdef state-
ments. Instead, the VSoC approach relies on tools that use background colors to represent
features, which helps on not polluting the code with preprocessors [Kistner et al. 2008].

public void computeLevel() { public void computeLevel() {
t‘:;{:aIScore = curves * CURVE BONUS totalScore = curves * CURVE_BONUS
+ straight * STRAIGHT BONUS + straight * STRAIGHT_BONUS
+ levelManager.getCountryId() + levelManager.getCountryId()
- totalLapTime * TIME; - totalLapTime * TIME;
D\ o~ if (!turboUsed)
=" A Turbo » nextLevelAvailableTurbos = ...;
D‘-’ LN Ranking |updateScoreRanking(totalScore); |
i, 3 [wetworkFacade. setscore (totalscore) s |
} -
}

Figure 1. Maintenance correctly accomplished only for products without arena.

The hidden features are the following: turbo, ranking, and arena. They are op-
tional and responsible respectively for: increasing the car speed; computing the score
ranking; and publishing the score in the network. The method contains a variable respon-
sible for storing the player’s total score (totalScore).

'Best lap is a commercial product developed by Meantime Mobile Creations.

Now, suppose the developer were to implement the following new requirement in
the (mandatory) score feature: let the game score be not only positive, but also negative.
Also, suppose that the developer is using VSoC, so that there are hidden features through-
out the code. The developer might well judge that they are not important for the current
task. To accomplish the task, he localizes the maintenance point (the totalScore as-
signment) and changes its value (see the bold line in Figure 1). Building a product with
the arena feature enabled and running it may make the developer incorrectly assume that
everything is correct, since the negative total score correctly appears after the race. How-
ever, when publishing the score on the network, he notices that the negative score is in
fact stored as zero (see the right side of Figure 1). Consequently, the maintenance was
only correctly accomplished for products without arena.

Because there are hidden features, the developer might be unaware that another
feature he is not maintaining uses totalScore and thus also needs to be changed ac-
cordingly to correctly complete the maintenance task. In fact, the impact on other features
leads to two kinds of problems. The first one is late error detection, since we can only
detect errors when we eventually happen to build and execute a product with the prob-
lematic feature combination (here, any product with arena). Second, developers face
difficult navigation throughout the code. Searching for uses of totalScore might in-
crease developer effort. Depending on the number of hidden features, the developer needs
to consider many locations to make sure the modification did not impact other features.
Further, it is possible that some —or even all —features might not need to be considered if
they did not use the variables that were modified. In our example, the developer is likely
to analyze 3 features. However, since only ranking and arena uses totalScore, he
would analyze the furbo feature unnecessarily, increasing maintenance effort.

3. A Tool for Emergent Interfaces

Now, we present how emergent interfaces deal with the aforementioned problems. Then,
we describe our tool that implements the emergent concept in terms of architecture (Sec-
tion 3.1) and main functionalities (Section 3.2).

Previously, we presented the Emergent Interfaces [Ribeiro et al. 2010] approach
intended to help developers avoid the problems related to feature dependencies. The
idea consists of determining, on demand, interfaces for feature implementations. The
interfaces are neither predefined nor have a rigid structure. Instead, they emerge to pro-
vide information to the developer on feature dependencies, so he can avoid introducing
problems to other features. To do so, emergent interfaces capture dependencies between
the feature we are maintaining and the others. In other words, when maintaining a fea-
ture, interfaces emerge to give information about other features we might impact with our
maintenance. Notice that emergent interfaces rely on feature code already annotated.

To better illustrate these ideas, consider the scenario of Section 2, where the de-
veloper is supposed to change the totalScore value. The first step when using our
emergent approach consists of selecting the maintenance point. The developer is respon-
sible for such a selection which in this case is the totalScore assignment. Then, we
perform code analysis based on data-flow analysis to capture the dependencies between
the feature we are maintaining and the other ones. Finally, the interface emerges.

To support developers, we extend the Colored IDE (CIDE) [Kistner et al. 2008], a

tool that enables feature annotations by using colors and implements the VSoC approach.
We name our tool CIDE EI* (CIDE + Emergent Interfaces). Figure 2 presents the emer-
gent interface in an Eclipse view. It states that the maintenance may impact products
containing ranking and arena. In other words, we provide the actual totalScore value
to both features. The developer is now aware of the dependencies. Reading the interface
is important, since the emerged information alerts the developer that he should also ana-
lyze those features (see lines 40 and 42 and the “Location” column in the CIDE EI view).
When investigating, he is likely to discover that he also needs to modify arena, and thus
avoid the late error detection problem.

public void computeLewvel () {

int totallcore = perfectCurvesCounter * PERFECT CURVERS DONUS
+ perfectitraightCounter * PERFECT STRATGHT BONUS

+ ge_levelManager.getCurrentCountryIdi)
- cotallapTime * TIME:

nom

A
if [!'turbolsed)
nextlevelAvailTurbos = 0
A
updatelicoreRanking (totall3core) ;
A
} -

Details
& CIDE ElResults 23 [Feature List =0
2 items

~
Description Configuration Location Feature Resource

Provides totalScore to wirtualinweoke this, <brufal.cidexMain: void updateScareRanking(int) = (totalScore) [RANKING] line 40 [RAMEIMG] Main java
Provides totalScore to staticinwoke <brufal.cidex.MNetworkFacade: woid setScarefint) »(totalScore) [AREMA] line 42 [AREMNA] Main java

Figure 2. CIDE El view: code locations and configurations possibly impacted.

Emergent interfaces assist the difficult navigation problem since they indicate
precisely the product configurations the developer needs to analyze. To achieve this, emer-
gent interfaces rely on feature-sensitive data-flow analysis [Ribeiro et al. 2010]. Thus, our
interfaces focus on the configurations we indeed might impact, avoiding developers from
the task of analyzing unnecessary features. When clicking on any interface element, the
tool points directly to the line described in the “Location” column, being helpful specially
in complex code that contains many features.

3.1. Architecture
Figure 3 depicts the architecture our tool.

As mentioned, our tool is based on CIDE, which is an Eclipse plug-in that extends
the IDE editor to display annotated and colored source code. Colors are associated with
features. Internally, CIDE instruments the nodes of the AST with feature information. The
information from the instrumented AST is retrieved to feed SOOT; a Java optimization
framework for analyzing and transforming source and bytecode. To analyze code, SOOT
transforms it into an intermediary representation, called Jimple.

Now, we present the two components we implemented. The Feature Sensitive
plug-in is responsible for extracting feature information from CIDE and associating it
with the Jimple representation of the source code (note the arrows pointing from Fea-
ture Sensitive to CIDE and SOOT). In SOOT, the data-flow information is stored in ob-

2Available at http: //www.cin.ufpe.br/-mmr3/cbsoft2011

| c1e |ap
i)

@@ retuze sensicive |up
{

[Emergent Interfaces] »

Legend:

[: Component
» Depends on

SOO0T

(7 B o B o I

Figure 3. Architecture of CIDE EI (CIDE + Emergent Interfaces).

jects that implements the FlowSet interface. We created our own implementation of
FlowSet —LiftedFlowSet —that contains a set of FlowSet objects; one for each
product configuration. This is important to indicate precisely the product configurations
we might reach during our maintenance task.

After computing data-flow analysis for each product configuration, we need to
generate the emergent interfaces. The Emergent Interfaces plug-in is responsible for this
task. First, it calls the Feature Sensitive plug-in to obtain data-flow information for each
possible configuration within the method being maintained. Then, it computes the emer-
gent interface by crossing the obtained information with the maintenance point; finally, it
displays the interface to the developer by using an Eclipse view.

The Feature Sensitive plug-in implements a more general idea: data-flow analysis
taking features into account. The Emergent Interfaces plug-in is just one application of
such a data-flow analysis to compute interfaces. So, we separated them; note that only
the later depends on the former. In fact, the Feature Sensitive is capable of executing
feature-sensitive analyses in all methods of an entire Eclipse project, not only individual
methods as we do in the emergent context.

3.2. Main Functionalities

In summary, our tool provides the following functionalities:

e Computes emergent interfaces that helps us to focus on the features (or feature
combinations) we might indeed impact during the maintenance task; when click-
ing on any element of the interface, the tool points directly to the impacted feature;

e Computes feature dependencies based on feature-sensitive data-flow analyses
used to analyze all method variants simultaneously: there is no need to analyze
each one separately. Notice that when not using feature-sensitive data-flow anal-
yses, the tool might point out false positives. For example, we might select a
variable in feature A and the tool indicates variable usage in feature B. Since they
can be mutually exclusive due to a feature model constraint, the tool points out a
false positive, which means that the dependency does not exist;

e Exports feature dependencies graph for a given maintenance point to a DOT? file.
We intend to create a view based on this graph as well.

Shttp://www.graphviz.org/content/dot-language

4. Related Work

Besides CIDE, we relate our tool to the following. Mylyn [Kersten and Murphy 2006] is
a task-focused approach to reduce information overload through information hiding, so
that only assets (like packages, classes and methods) relevant to a current task are visible.
This information is filtered by using a task context that is created during a programming
activity. This way, tasks are monitored by Mylyn aiming at storing information about
what developers are doing to complete the task. Developers can select a task and Mylyn
provides only the assets related to it, improving productivity. Like Mylyn, our approach
also needs a selection. The developer selects the snippet to maintain it, whereas when
using Mylyn developers select tasks. Our interfaces and the task context of Mylyn emerge
during maintenance. We also provide information reduction, since we show only elements
shared with other features in the interface.

Conceptual Module [Baniassad and Murphy 1998] is an approach to support de-
velopers on maintenance tasks. Developers can set lines of code to be part of a conceptual
module and use queries to capture other lines that should be part of it and to compute
dependencies among other conceptual modules. Our tool also capture dependencies, but
goes further, since it takes feature into consideration. Both approaches abstract details
from developers so that they concentrate on relationships among features or conceptual
modules rather than on code of no interest, which is important for comprehensibility.

5. Concluding Remarks

This paper presented a tool for computing emergent interfaces in SPLs. The tool helps us
to focus on the features (or feature combinations) we might impact with our maintenance.
Our tool is based on CIDE to annotate feature code and SOOT to compute data-flow
analysis aiming at capturing feature dependencies. To avoid building all possible method
variants, we extended SOOT to compute feature-sensitive data-flow analysis.

The tool consists mainly of two Eclipse plug-ins: one implements the feature-
sensitive data-flow analysis and the other relies on the first one to compute emergent in-
terfaces. We split our implementation into two different plug-ins so that new applications
may use our feature-sensitive implementation of data-flow analysis.

6. Acknowledgments

We would like to thank CNPq, a Brazilian research funding agency, and National In-
stitute of Science and Technology for Software Engineering (INES), funded by CNPq
and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08, for partially supporting this
work. Also, we thank SPG* members for feedback and fruitful discussions about this

paper.
References

Baniassad, E. L. A. and Murphy, G. C. (1998). Conceptual module querying for software
reengineering. In Proceedings of ICSE’98, pages 64-73. IEEE Computer Society.

Clements, P. and Northrop, L. (2002). Software Product Lines: Practices and Patterns.
Addison-Wesley.

“http://www.cin.ufpe.br/spg

Kistner, C., Apel, S., and Kuhlemann, M. (2008). Granularity in Software Product Lines.
In Proceedings of ICSE’08, pages 311-320. ACM.

Kersten, M. and Murphy, G. C. (2006). Using task context to improve programmer pro-
ductivity. In Proceedings of FSE 06, pages 1-11. ACM.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
CACM, 15(12):1053-1058.

Ribeiro, M., Pacheco, H., Teixeira, L., and Borba, P. (2010). Emergent Feature Modular-
ization. In Onward! 2010, affiliated with SPLASH’10, pages 11-18. ACM.

Ribeiro, M., Queiroz, F., Borba, P., Tolédo, T., Brabrand, C., and Soares, S. (2011). On
the Impact of Feature Dependencies when Maintaining Preprocessor-based Software
Product Lines. In Proceedings of GPCE’11. ACM. To appear.

Spencer, H. and Collyer, G. (1992). #ifdef considered harmful, or portability experience
with C news. In Proceedings of the Usenix Summer 1992, pages 185-198.

Trujillo, S., Batory, D., and Diaz, O. (2006). Feature refactoring a multi-representation
program into a product line. In Proceedings of GPCE’06, pages 191-200, New York,
NY, USA. ACM.

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V. (1999). Soot
- a java bytecode optimization framework. In Proceedings of CASCON’99. IBM Press.

