
Static Validation of Dynamically Generated HTML

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach
BRICS

Department of Computer Science
University of Aarhus, Denmark

{brabrand,amoeller,mis }@brics.dk

ABSTRACT
We describe a static analysis of<bigwig> programs that effi-
ciently decides if all dynamically computed XHTML documents
presented to the client will validate according to the official DTD.
We employ two data-flow analyses to construct a graph summariz-
ing the possible documents. This graph is subsequently analyzed
to determine validity of those documents. By evaluating the tech-
nique on a number of realistic benchmarks, we demonstrate that it
is sufficiently fast and precise to be practically useful.

1. INTRODUCTION
Increasingly, HTML documents are dynamically generated by

scripts running on a Web server, for instance using PHP, ASP, or
Perl. This makes it much harder for authors to guarantee that such
documents are reallyvalid, meaning that they conform to the offi-
cial DTD for HTML 4.01 or XHTML 1.0 [9]. Static HTML docu-
ments can easily be validated by tools made available by W3C and
others. So far, the best possibility for a script author is to validate
the dynamic HTML documents after they have been produced at
runtime. However, this is an incomplete and costly process which
does not provide any static guarantees about the behavior of the
script. Alternatively, scripts may be restricted to use a collection
of pre-validated templates, but this is generally not sufficiently ex-
pressive.

We present a novel technique for static validation of dynamic
XHTML documents that are generated by a script. Our work takes
place in the context of the<bigwig> language [2, 10], which is a
full-fledged programming language for developing interactive Web
services. In<bigwig> , XHTML documents are first-class citi-
zens that are subjected to computations like all other data values.
We instrument the compiler with an interprocedural data-flow anal-
ysis that extracts a grammatical structure, called asummary graph,
covering the class of XHTML documents that a given program may
produce. Based on this information, the compiler statically deter-
mines if all documents in the given class conform to the DTD for
XHTML 1.0. To accomplish this, we need to reformulate DTDs
in a novel way that may be interesting in its own right. The anal-
ysis has efficiently handled all available examples. Furthermore,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’01,June 18-19, 2001, Snowbird, Utah, USA..
Copyright 2001 ACM 1-58113-413-4/01/0006 ...$5.00.

our technique can be generalized to more powerful grammatical
descriptions.

Outline
First, in Section 2, we give a brief introduction to dynamically gen-
erating XHTML documents in the<bigwig> language. Section 3
formally defines the notion of summary graphs. In Sections 4 and 5,
the two parts of the data-flow analysis are specified. Then, in Sec-
tion 6, a notion of abstract DTDs is defined and used for specifying
XHTML 1.0. Section 7 describes the algorithm for validating sum-
mary graphs with respect to abstract DTDs. In Section 8 we eval-
uate our implementation on ten<bigwig> programs. Finally, in
Sections 9 and 10 we briefly describe related techniques and plans
and ideas for future work.

2. XHTML DOCUMENTS IN <bigwig>
XHTML documents are just XML trees. In the<bigwig>

language, XMLtemplatesare first-class data values that may be
passed and stored as any other values. Templates are more gen-
eral than XML trees since they may containgaps, which are named
placeholders that can bepluggedwith templates and strings: Ifx is
an XML template with a gap namedg andy is another XML tem-
plate or a text string, then the plug operation,x<[g=y] , results
in a new template which is copy ofx where a copy ofy has been
inserted into theg gap:

x:

x<[=y]:

y:

g

g

A <bigwig> service consists of a number ofsessions. A ses-
sion thread can be invoked by a client who is subsequently guided
through a number of interactions, controlled by the service code
on the server. Adocumentis a template where all gaps have been
filled. When a complete XHTML document has been built on the
server, it can be shown to the client who fills in the input fields,
selects menu options, etc., and then continues the session by sub-
mitting the input to the session thread.

This plug-and-show mechanism provides a very expressive way
of dynamically constructing Web documents. It is described in
more detail in [10, 2] where a thorough comparison with other
mechanisms is given and other aspects of<bigwig> are described.
Since templates can be plugged into templates, these arehigher-
order templates, as opposed to the less flexible templates in the
Mawl language [6, 1] where only strings can be plugged in.

Note that the number of gaps may both grow and shrink as the
result of a plug operation. Also, gaps may appear in a non-local
manner, as exemplified by thewhat gap being plugged with the
templateBRICS in the following simple example in the
actual<bigwig> syntax:

service {
html cover = < html >

<head><title>Welcome</title></head>
<body bgcolor=[color]>

<[contents]>
</body>

</ html >;

html greeting = < html >
Hello <[who]>, welcome to <[what]>.

</ html >;

html person = < html >
<i>Stranger</i>

</ html >;

session welcome() {
html h;
h = cover<[color ="#9966ff",

contents =greeting<[who=person]];
show h<[what =<html >BRICS</ html >];

}
}

This service contains four constant templates and a session which
when invoked will assemble a document using plug operations and
show it to the client. Note thatcolor is anattribute gapwhich
can only be plugged with a string value, while the other gaps can
also be plugged with templates. Constant templates are delim-
ited by<html >. . .</ html >. Implicitly, the mandatory surround-
ing <html> element is added to a document before being shown.
Also, <head> , <title> , and<body> elements and a form with
a default submit button is added if not already present. To sim-
plify the presentation, we do not distinguish between HTML and
XHTML since there are only minor syntactical differences. In the
implementation, we allow HTML syntax but convert it to XHTML.

Note that<bigwig> is as general as all other languages for pro-
ducing XML trees, since it is possible to define for each different
element a tiny template like:

<html ><ul style=[style]><[items]></ html >

that corresponds to a constructor function. The typical use of larger
templates is mostly a convenience for the<bigwig> programmer.

The <bigwig> compiler already contains an interprocedural
data-flow analysis that keeps track of gaps and input fields in tem-
plates to enable type checking of plug and show operations [10].
That analysis statically ensures that the gaps are present when per-
forming a plug operation and that the input fields in the documents
being shown match the code that receives the values. However, the
validity of the documents being shown has not been considered be-
fore, neither for<bigwig> or—to our knowledge—for any other
programming language with such a flexible document construction
mechanism.

XML Templates
We now formally define an abstract XML template. We are given
an alphabetΣ of characters, an alphabetE of element names, an al-
phabetA of attribute names, an alphabetG of template gap names,
and an alphabetH of attribute gap names. For simplicity, all alpha-
bets are assumed to be disjoint. AnXML templateis generated by
Φ in the following grammar:

Φ → ε
→ •
→ g g ∈ G
→ e(∆)Φ e ∈ E
→ Φ1Φ2

∆→ ε
→ (a = s) a ∈ A, s ∈ Σ∗

→ (a = h) a ∈ A, h ∈ H
→∆1∆2

An XML template is a list of ordered trees where the internal nodes
areelementswith attributesand the leaves are either empty nodes,
character datanodes, orgap nodes. Element attributes are gen-
erated by∆. The • symbol represents an arbitrary sequence of
character data. We ignore the actual data, since those are never
constrained by DTDs, unlike attribute values which we accordingly
represent explicitly. As an example, we view thecover template
abstractly as follows if we ignore character data nodes consisting
only of white-space:

l
l

l
,

,
,

title()

head() body(bgcolor= color)

•

contents

We introduce a function:

gaps : (Φ ∪∆) → 2G∪H

which gives the set of gap names occurring in a template or attribute
list:

gaps(ε) = ∅
gaps(•) = ∅
gaps(g) = {g}

gaps(e(δ)φ) = gaps(δ) ∪ gaps(φ)
gaps(φ1φ2) = gaps(φ1) ∪ gaps(φ2)
gaps(a = s) = ∅
gaps(a = h) = {h}
gaps(δ1δ2) = gaps(δ1) ∪ gaps(δ2)

A templateφ with a unique root element and withgaps(φ) = ∅ is
considered a completedocument.

Programs
We represent a<bigwig> program abstractly as a control-flow
graph with atomic statements at each program point. The actual
syntax for<bigwig> is very liberal and resembles C or Java code
with control structures and functions. For<bigwig> it is a simple
task to extract the normalized representation. If the underlying lan-
guage had a richer control structure, for instance with inheritance
and virtual methods or higher-order functions, we would need a
preliminary control-flow analysis to provide the control-flow graph.

A program uses a setX of XML template variables and a setY
of string variables. The atomic statements are:

xi = xj ; (template variable assignment)
xi = φ; (template constant assignment)
yi = yj ; (string variable assignment)
yi = s; (string constant assignment)
yi = •; (arbitrary string assignment)
xi = xj<[g=xk]; (template gap plugging)
xi = xj<[h=yk]; (attribute gap plugging)
show xi; (client interaction)

wherex ∈ X andy ∈ Y for eachx andy. The assignments have
the obvious semantics. The plug statement replaces all occurrences
of a named gap with the given value. Theshow statement implic-
itly plugs all remaining gaps withε before the template is displayed
to the client. Also, the template is implicitly plugged into a wrapper
template like the following:

<html>
<head><title></title></head>
<body>

<form action="...">
<[doc]>
<input type="submit" value="continue">

</form>
</body>

</html>

for completing the document and adding a “continue” button. The
<head> , <title> , <body> , and <input> elements are of
course only added if not already present. Since we here ignore
input fields in documents, thereceive part ofshow statements
is omitted in this description.

3. SUMMARY GRAPHS
Given a program control-flow graph, we wish to extract a finite

representation of all the templates that can possibly be constructed
at runtime. A program contains a finite collection of constant XML
templates that are identified through a mapping function:

f : N → Φ

whereN is the finite set of indices of the templates occuring in
the program. A program also contains a finite collection of string
constants, which we shall denote byC ⊆ Σ∗. We now define a
summary graphas a triple:

G = (R,E, α)

whereR ⊆ N is a set ofroots, E ⊆ N × G × N is a set of
edges, andα : N×H → S is an attribute labeling function, where
S = 2C ∪ {•}. Intuitively, • denotes the set of all strings.

Each summary graphG defines a set of XML templates, which is
called thelanguageof G and is denotedL(G). Intuitively, this set
is obtained by unfolding the graph from each root while perform-
ing all possible pluggings enabled by the edges and the labeling
function. Formally, we define:

L(G) = {φ ∈ Φ | ∃r ∈ R : G, r ` f(r) ⇒ φ}

where the derivation relation⇒ is defined for templates as:

G, n ` ε⇒ ε G, n ` • ⇒ •

(n, g,m) ∈ E G,m ` f(m) ⇒ φ

G, n ` g ⇒ φ

G, n ` δ ⇒ δ′ G,n ` φ⇒ φ′

G, n ` e(δ)φ⇒ e(δ′)φ′

G,n ` φ1 ⇒ φ′1 G, n ` φ2 ⇒ φ′2
G,n ` φ1φ2 ⇒ φ′1φ

′
2

and for attribute lists as:

α(n, h) 6= • s ∈ α(n, h)

G,n ` (a = h) ⇒ (a = s)

α(n, h) = • s ∈ Σ∗

G,n ` (a = h) ⇒ (a = s)

G,n ` δ1 ⇒ δ′1 G,n ` δ2 ⇒ δ′2
G,n ` δ1δ2 ⇒ δ′1δ

′
2

As an example, consider the following summary graph consisting
of four template nodes, four plug edges, and a single attribute la-
beling:

items

items

text

ε

text

items

 <[]>

<[]>

itemslarge

<ul class=[]>
 <[]>

kind

kind
items

Template nodes, root nodes, and attribute labels are drawn as cir-
cles, double circles, and boxes, respectively. The language of this
summary graph is the set of allul lists of classlarge with one or
more character data items.

4. GAP TRACK ANALYSIS
To obtain sufficient precision of the actual validation analysis,

we first perform an initial analysis that tracks the origins of gaps.
We show in Section 5 exactly why this information is necessary.

Lattices
The lattice for this analysis is simply:

T = (G ∪H) → 2N

ordered by pointwise subset inclusion. For each program point`
we wish to compute an element of the derived lattice:

TrackEnv ` : X → T

which inherits its structure fromT . Intuitively, an element of this
lattice tells us for a given variablex and a gap nameg whether
or notg can occur in the value ofx, and if it can, which constant
templatesg can originate from.

Transfer Functions
Each atomic statement defines a transfer functionTrackEnv ` →
TrackEnv ` which models its semantics in a forward manner. If the
argument isχ, then the results of applying this transfer function are:

xi = xj ; χ[xi 7→ χ(xj)]
xi = φ; χ[xi 7→ tfrag(φ, n)], whereφ has indexn
xi = xj<[g=xk]; χ[xi = tplug(χ(xj), g, χ(xk))]
xi = xj<[h=yk]; χ[xi = tplug(χ(xj), h, λp.∅)]

where we make use of some auxiliary functions:

tfrag(φ, n) = λp.if p ∈ gaps(φ) then {n} else ∅

tplug(τ1, p, τ2) = λq.if p=q then τ2(q) else τ1(q) ∪ τ2(q)

For the remaining statement types, the transfer function is the iden-
tity function. Thetfrag function states that all gaps in the given
template originates from just that template. Thetplug function
adds all origins from the template being inserted and removes the
existing origins for the gap being plugged.

The Analysis
It is easy to see that all transfer functions are monotonic, so we can
compute the least fixed point iteratively in the usual manner [8].
The end result is for each program point` an environmenttrack ` :
X → T , which we use in the following as a conservative, upper
approximation of the origins of the gaps. We omit the proof of
correctness.

5. SUMMARY GRAPH ANALYSIS
We wish to compute for every program point and for every vari-

able a summary of its possible values. A set of XML templates is
represented by a summary graph and a set of string values by an
element ofS .

Lattices
To perform a standard data-flow analysis, we need both of these
representations to be lattices. The setS is clearly a lattice, ordered
by set inclusion and with• as a top element. The set of summary
graphs, calledG, is also a lattice with the ordering defined by:

G1 v G2 ⇔ R1 ⊆ R2 ∧ E1 ⊆ E2 ∧ α1 v α2

where the ordering onS is lifted pointwise to labeling functionsα.
Clearly, bothS andG are finite lattices. For each program point we
wish to compute an element of the derived lattice:

Env` = (X → G)× (Y → S)

which inherits its structure from the constituent lattices.

Transfer Functions
Each atomic statement defines a transfer functionEnv ` → Env`,
which models its semantics. If the argument is the pair of functions
(χ, γ) and` is the entry program point of the statement, then the
results are:

xi = xj ; (χ[xi 7→ χ(xj)], γ)
xi = φ; (χ[xi 7→ frag(n)], γ), whereφ has indexn
yi = yj ; (χ, γ[yi 7→ γ(yj)])
yi = s; (χ, γ[yi 7→ {s}])
yi = •; (χ, γ[yi 7→ •])
xi = xj<[g=xk]; (χ[xi 7→ gplug(χ(xj), g, χ(xk),

track `(xj))], γ)
xi = xj<[h=yk]; (χ[xi 7→ hplug(χ(xj), h, γ(yk),

track `(xj))], γ)
show xi; (χ, γ)

where we make use of some auxiliary functions:

frag(n) = ({n}, ∅, λ(m,h).∅)

gplug(G1, g,G2, τ) = (R1,
E1 ∪ E2 ∪
{(n, g,m) | n ∈ τ (g) ∧ m∈R2},
α1 t α2)

hplug(G,h, s, τ) = (R,E,
λ(n, h′).if n ∈ τ (h) then α(n, h′) t s

else α(n, h′))

whereGi = (Ri, Ei, αi) andG = (R,E, α). A careful inspection
shows that all transfer functions are monotonic. Thefrag function
constructs a tiny summary graph whose language contains only the
given template. Thegplug function joins the two summary graphs
and adds edges from all relevant template gaps to the roots of the
summary graph being inserted, which can be illustrated as follows:

<[g =]

g

The hplug function adds additional string values to the relevant
attribute gaps:

h

<[=h]

We are now in a position to point out the need for the gap track
analysis specified in Section 4. Without that initial analysis, theτ
argument togplug andhplug would always have to be the setN
of all constant template indices to maintain soundness. Plugging
a value into a gapg would then be modeled by adding an edge
from all nodes having ag gap, even from nodes that originate from
completely unrelated parts of the source code or nodes where theg
gaps already have been filled. For instance, it is likely that a pro-
gram building lists as in the summary graph example in Section 4
would contain other templates with a gap nameditems . Requir-
ing each gap name to appear only in one constant template would
solve the problem, but such a restriction would limit the flexibility
of the document construction mechanism significantly. Hence, we
rely on a program analysis to disregard the irrelevant nodes when
adding plug edges.

The Analysis
Since we are working with monotonic functions on finite lattices,
we can again use standard iterative techniques to compute a least
fixed point [8]. The proof of soundness is omitted here, but it is
similar to the one presented in [10]. The end result is for each
program point̀ an environmentsummary` : X → G such that
L(summary`(xi)) contains all possible XML templates thatxi

may contain at̀ . Those templates that are associated withshow
statements are required to validate with respect to the XHTML
specification. We assume that the implicitly surrounding continue-
button wrapper from Section 2 has been added already. Still, we
must model the implicit plugging of empty templates and strings
into the remaining gaps, so for the statement:

show xi;

with entry program pointq, the summary graph that must validate
with respect to the XHTML DTD is:

close(summary`(xi), track `(xi))

whereclose is defined by:

close(G, τ) = (R,
E ∪ {(n, g,mε) |n ∈ τ (g)},
λ(n, h).if n ∈ τ (h) then α(n, h) t {ε}

else α(n, h))

whereG = (R,E, α) and it is assumed thatf(mε) = ε. The
close function adds edges to an empty template for all remaining
templates gaps, and adds the empty string as a possibility for all
remaining attribute gaps.

The Example Revisited
For the small<bigwig> example in Section 2, the summary graph
describing the document being shown to the client is inferred to be:

<head><title>Welcome</title></head>

</body>

<i>Stranger</i>

color

<body bgcolor=[]>color
 <[]>contents

who

what

Hello <[]>, welcome to <[]>.who what

contents

<html>
...

</html>

#9966ff

BRICS

As expected for this simple case, the language of the summary
graph contains exactly the single template actually being computed:
Note that the XHTML template is implicitly completed with the
<html> fragment.

6. AN ABSTRACT DTD FOR XHTML
XHTML 1.0 is described by an official DTD [9]. We use a more

abstract formalism which is in some ways more restrictive and in
others strictly more expressive. In any case, the DTD for XHTML
1.0 can be captured along with some restrictions that merely appear
as comments in the official version. We define an abstract DTD to
be a quintuple:

D = (N , ρ,A, E ,F)

whereN ⊆ E is a set ofdeclaredelement names,ρ ∈ N is
a root element name,A : N → 2A is anN -indexed family of
attribute name declarations,E : N → 2N

•
a family of element

name declarations, andF : N → Ψ a family of formulas. We let
N • = N ∪ {•}, where• represents arbitrary character data.

Intuitively, an abstract DTD consists of a number of element dec-
larations whereof one is designated as the root. Each element decla-
ration consists of an element name, a set of allowed attribute names,
a set of allowed contents, and a formula constraining the use of the
element with respect to its attribute values and contents. A formula
has the syntax:

Ψ→ Ψ ∧ Ψ
→ Ψ ∨ Ψ
→ ¬Ψ
→ true
→ attr(a) a ∈ A
→ content(c) c ∈ N •

→ order(c1, c2) ci ∈ N •

→ value(a, {s1, . . . , sk}) a ∈ A, k ≥ 1, si ∈ Σ∗

We define thelanguageof D as follows:

L(D) = {ρ(δ)φ | D |= ρ(δ)φ ∧ gaps(φ) = ∅}

That is, the language is the set of documents where the root element
is ρ and the acceptance relation|= is satisfied. This relation is

defined inductively on templates as follows:

D |= ε D |= •

D |= φ1 D |= φ2

D |= φ1φ2

names(δ)⊆A(e) D, δ, φ |= F(e)
set(φ)⊆E(e) D |= φ

D |= e(δ)φ

For each element, it is checked that its attributes and contents are
declared and that the associated formula is satisfied. The auxiliary
functionsnames andset are formally defined by:

names(ε) = ∅
names(a = s) = {a}
names(a = h) = {a}
names(δ1δ2) = names(δ1) ∪ names(δ2)

set(ε) = ∅
set(•) = {•}
set(g) = ∅

set(e(δ)φ) = {e}
set(φ1φ2) = set(φ1) ∪ set(φ2)

On formulas, the|= relation is defined relative to the attributes and
contents of an element:

D, δ, φ |= ψ1 D, δ, φ |= ψ2

D, δ, φ |= ψ1 ∧ ψ2

D, δ, φ |= ψ1

φ |= ψ1 ∨ ψ2

D, δ, φ |= ψ2

φ |= ψ1 ∨ ψ2

D, δ, φ |= true

D, δ, φ 6|= ψ

D, δ, φ |= ¬ψ

a ∈ names(δ)

D, δ, φ |= attr(a)

exists(word(φ), c)

D, δ, φ |= content(c)

before(word(φ), c1, c2)

D, δ, φ |= order(c1, c2)

a /∈ names(δ)

D, δ, φ |= value(a, {s1, . . . , sk})

(a, si) ∈ atts(δ) 1 ≤ i ≤ k

D, δ, φ |= value(a, {s1, . . . , sk})

The attr(a) formula checks whether an attribute of namea is
present, andcontent(c) checks whetherc occurs in the contents.
Thevalue(a, {s1, . . . , sk}) formula checks whether ana attribute
has one of the values ins1, . . . , sk or is absent, andorder(c1, c2)
checks that no occurence ofc1 comes after an occurence ofc2 in
the contents sequence. The auxiliary functionsatts andword and
the predicatesexists andbefore are formally defined by:

atts(ε) = ∅
atts(a = s) = {(a, s)}
atts(a = h) = {(a, h)}
atts(δ1δ2) = atts(δ1) ∪ atts(δ2)

word(ε) = ε
word(•) = •
word(g) = ε

word(e(δ)φ) = e
word(φ1φ2) = word(φ1)word(φ2)

exists(w1 · · ·wk, c) ≡ ∃1 ≤ i ≤ k : wi =c

before(w1 · · ·wk, c1, c2) ≡ ∀1 ≤ i, j ≤ k :
wi =c1 ∧ wj =c2 ⇒ i ≤ j

Two common abbreviations areunique(c) ≡ order(c, c) (“c oc-
curs at most once”) andexclude(c1, c2) ≡ ¬ (content(c1) ∧
content(c2)) (“c1 andc2 exclude each other”).

Standard DTDs use restricted regular expressions to describe
content sequences. Instead, we use boolean combinations of four
basic predicates, each of which corresponds to a simple regular lan-
guage. This is less expressive, since for example we cannot express
that a content sequence must have exactly three occurrences of a
given element. It is also, however, more expressive than DTDs
since we allow the requirements on contents and attributes to be
mixed in a formula. While the two formalism are thus theoretically
incomparable, our experience is that XML languages described by
DTDs or by more advanced schema languages typically are within
the scope of our abstract notion.

Examples for XHTML
The DTD for XHTML 1.0 can easily be expressed in our formal-
ism. The root elementρ is html and some examples of declara-
tions and formulas are:

A(html) = {xmlns , lang , xml:lang , dir }
E(html) = {head , body }
F(html) = value(dir , {ltr , rtl }) ∧ content(head) ∧

content(body) ∧ unique(head) ∧
unique(body) ∧ order(head , body)

A(head) = {lang , xml:lang , dir , profile }
E(head) = {script , style , meta , link , object , isindex

title , base }
F(head) = value(dir , {ltr , rtl }) ∧ content(title) ∧

unique(title) ∧ unique(base)

A(input) = {id , class , style , title , lang , xml:lang ,
dir , onclick , ondblclick , onmousedown,
onmouseup , onmouseover , onmousemove,
onmouseout , onkeypress , onkeydown ,
onkeyup , type , name, value , checked ,
disabled , readonly , size , maxlength ,
src , alt , usemap, tabindex , accesskey ,
onfocus , onblur , onselect , onchange ,
accept , align }

E(input) = ∅
F(input) = value(dir , {ltr , rtl }) ∧

value(checked , {checked }) ∧
value(disabled , {disabled }) ∧
value(readonly , {readonly }) ∧
value(align , {top , middle , bottom ,

left , right }) ∧
value(type , {text , password , checkbox ,

radio , submit , reset , file ,
hidden , image , button }) ∧

(value(type , {submit , reset }) ∨ attr(name))

In five instances we were able to express requirements that were
only stated as comments in the official DTD, such as the last con-
junct inF(input). The full description of XHTML is available
at http://www.brics.dk/bigwig/xhtml/ .

Exceptions in<bigwig>
In one situation does<bigwig> allow non-standard XHTML no-
tation. In the official DTD, theul element is required to contain
at least oneli element. This is inconvenient, since the items of a
list are often generated iteratively from a vector that may be empty.
To facilitate this style of programming,<bigwig> allows empty
ul elements but removes them at runtime before the XHTML is
sent to the client. Accordingly, the abstract DTD that we employ
differs from the official one in this respect. Similar exceptions are
allowed for other kinds of lists and for tables. In the implementa-
tion, these fragment removal rules are specified the same way as
the element constraints in the abstract DTD for XHTML, so es-
sentially, we have just moved a few of the DTD constraints into a
separate file.

7. VALIDATING SUMMARY GRAPHS
For everyshow statement, the data-flow analysis computes a

summary graphG = (R,E, α). We must now for all such graphs
decide the validation requirement:

L(G) ⊆ L(D)

for an abstract DTDD = (N , ρ,A, E ,F). The root element name
requirement ofD is first checked separately by verifying that:

∀r ∈ R : f(r) = ρ(δ)φ for someδ andφ

Then for each sub-templatee(δ)φ of a template with indexn in G
we perform the following checks:

• e ∈ N (the element is defined)

• names(δ) ⊆ A(e) (the attributes are declared)

• occurs(n, φ) ⊆ E(e) (the content is declared)

• n, δ, φ F(e) (the constraint is satisfied)

The validity relation is given by:

n, δ, φ ψ1 n, δ, φ ψ2

n, δ, φ ψ1 ∧ ψ2

n, δ, φ ψ1

n, δ, φ ψ1 ∨ ψ2

n, δ, φ ψ2

n, δ, φ ψ1 ∨ ψ2

n, δ, φ true

n, δ, φ 6 ψ
n, δ, φ ¬ ψ

a ∈ names(δ)

n, δ, φ attr(a)

c ∈ occurs(n, φ)

n, δ, φ content(c)

order (n, φ, c1, c2)

n, δ, φ order(c1, c2)

a 6∈ names(δ)

n, δ, φ value(a, {s1, . . . , sk})

(a, si) ∈ atts(δ) 1 ≤ i ≤ k

n, δ, φ value(a, {s1, . . . , sk})

(a, h) ∈ atts(δ) α(n, h) ⊆ {s1, . . . , sk}
n, δ, φ value(a, {s1, . . . , sk})

whereoccurs is the least function satisfying:

occurs(n, ε) = ∅
occurs(n, •) = {•}
occurs(n, g) =

⋃
(n,g,m)∈E

occurs(m, f(m))

occurs(n, e(δ)φ) = {e}
occurs(n, φ1φ2) = occurs(n, φ1) ∪ occurs(n, φ2)

andorder is the most restrictive function satisfying:

order(n, ε, c1, c2) = true
order (n, •, c1, c2) = true
order (n, g, c1, c2) =

∧
(n,g,m)∈E

order (m, f(m), c1, c2)

order(n, e(δ)φ, c1, c2) = true
order (n, φ1φ2, c1, c2) = order (n, φ1, c1, c2)∧

order (n, φ2, c1, c2)∧
¬ (c2∈occurs(n, φ1)∧
c1∈occurs(n, φ2))

The definition of the validity relation is straightforward. It duals
the definition of the acceptance relation in Section 6, except that we
now have to take gaps into account. Only the auxiliary functions,
occurs andorder , are non-trivial. The functionoccurs(n, φ) finds
the subset ofN • that can occur as contents of the current element
after plugging some gaps according to the summary graph, and
order (n, φ, c1, c2) checks that it is not possible to obtain anc2
before anc1 in the contentsφ. These two functions are defined as
fixed points because the summary graphs may contain loops. In the
implementation we ensure termination by applying memoization to
the numerous calls tooccurs andorder .

Note that the validation algorithm is both sound and complete
with respect to summary graphs: A graph is rejected if and only
if its language contains a template that is not in the language of
the abstract DTD. Thus, in the whole validation analysis the only
source of imprecision is the data-flow analysis that constructs the
summary graph.

Also note that our notion of abstract DTDs has a useful local-
ity property: All requirements defined by an abstract DTD spec-
ify properties of single XML document nodes and their attributes
and immidiate contents, so if some requirement is not fulfilled by a
given summary graph, it is possible to give a precise error message.

8. EXPERIMENTS
The validation analysis has been fully implemented as part of the

<bigwig> system using a monovariant data-flow analysis frame-
work. It has then been applied to all available benchmarks, some
of which are shown in the following table:

Name Lines Templates Size Shows Time

chat 65 3 (0,5) 2 0.1
guess 75 6 (0,3) 6 0.1
calendar 77 5 (8,6) 2 0.1
xbiff 561 18 (4,12) 15 0.1
webboard 1,132 37 (34,18) 25 0.6
cdshop 1,709 36 (6,23) 25 0.5
jaoo 1,941 73 (49,14) 17 2.4
bachelor 2,535 137 (146,64) 15 8.2
courses 4,465 57 (50,45) 17 1.3
eatcs 5,345 133 (35,18) 114 6.7

The entries for each benchmark are its name, the lines of code de-
rived from a pretty print of the source with all macros expanded,

the number of templates, the size(|E|, |α|) of the largest summary
graph, the number ofshow statements, and the analysis time in
seconds (on an 800 MHz Pentium III with Linux).

Thechat benchmark is a simple chat service,guess is a num-
ber guessing game,calendar shows a monthly calendar,
xbiff is a soccer match reservation system,webboard is a bul-
letin board service,cdshop is a demonstration of an online shop,
jaoo is a conference administration system,bachelor is a stu-
dent management service,courses is a course administration
system, andeatcs is a collection of services used by the EATCS
organization. Some of the benchmarks are taken from the<big-
wig> documentation, others are services currently being used or
developed at BRICS.

The analysis found numerous validation errors in all benchmarks,
which could then be fixed to yield flawless services. No false errors
were reported. As seen in the table above, the enhanced compiler
remains efficient and practical. Thebachelor service constructs
unusually complicated documents, which explains its high com-
plexity.

Error Diagnostics
The<bigwig> compiler provides detailed diagnostic messages in
case of validation errors. For the flawed example:

1 service {
2 html cover = < html >
3 <head><title>Welcome</title></head>
4 <body bgcolo=[color]>
5 <table><[contents]></table>
6 </body>
7 </ html >;
8
9 html greeting = < html >

10 <td>Hello <[who]>,<br clear=[clear]>
11 welcome to <[what]>.
12 </td>
13 </ html >;
14
15 html person = < html >
16 <i>Stranger</i>
17 </ html >;
18
19 session welcome() {
20 html h;
21 h = cover<[color ="#9966ff",
22 contents =greeting<[who=person],
23 clear ="righ"];
24 show h<[what =<html >BRICS</ html >];
25 }
26 }

the compiler generates the following messages for the singleshow
statement:

--- brics.wig:24: HTML validation:
brics.wig:4:

warning: illegal attribute ’bgcolo’ in ’body’
template: <body bgcolo=[color]><form>...</form></body>

brics.wig:5:
warning: possible illegal subelement ’td’ of ’table’
template: <table><[contents]></table>
contents: td
plugs: contents:{brics.wig:22}

brics.wig:10:
warning: possible element constraint violation at ’br’
template: <br clear=[clear]/>
constraint: value(clear,{left,all,right,clear,none})
plugs: clear:{brics.wig:23}

At each error message, a line number of an XML element is printed
together with an abbreviated form of the involved template, the

names of the root elements of each template that can be plugged
into the gaps, the constraint being violated, and the line numbers of
the involved plug operations. Such reasonably precise error diag-
nostics is clearly useful for debugging.

9. RELATED WORK
There are other languages for constructing XML documents that

also consider validity. The XDuce language [3, 4] is a functional
language in which XML templates are data types, with a construc-
tor for each element name and pattern matching for deconstruction.
A type is a regular expression overE•. Type inference for pattern
variables is supported. In comparison, we have a richer language
and consequently need more expressive types that also describe the
existence and capabilities of gaps. It seems unlikely that anything
simpler than summary graphs would work. Also, we do not rely on
type annotations. Since we perform an interprocedural data-flow
analysis, we obtain a high degree of polymorphism that is diffi-
cult to express in a traditional type system. The XMλ language [7]
compares similarly to our approach.

The initial design of the<bigwig> template mechanism was
inspired by the Mawl language [6, 1]. The main difference is that
Mawl only allows strings to plugged into the gaps. Validating that
Mawl programs only generate valid XHTML is therefore as easy as
validating static documents, but such a simple document construc-
tion mechanism often becomes too restrictive for practical use. We
have shown that using a highly flexible mechanism does not require
validity guarantees to be sacrificed.

Most Web services are currently written either in Perl using CGI,
in embedded scripting languages such as ASP, PHP, or JSP, or as
server-integrated modules, for instance with Apache. Common to
all these approaches is that there is no inherent type system for
HTML or XML documents. In general, documents are constructed
by concatenating text strings. These strings contain HTML or XML
tags, attributes, etc., but the compiler or interpreter is completely
unaware of that. This means that evenwell-formedness, that is, that
tags are balanced and nested properly, which is one requirement
for validity, becomes difficult to verify. We get that for free during
parsing of the individual constant XML fragments and can con-
centrate on the many other validity requirements given by specific
DTDs.

However, a common way of programming services in these lan-
guages is to use HTML or XMLconstructor functionsto build doc-
uments more abstractly as trees instead of strings. This style is not
enforced by the language, but if used consistently well-formedness
is guaranteed. The difference between this and the<bigwig>
style is that gaps in<bigwig> templates may appear non-locally,
as described in Section 1, which gives a higher degree of flexibil-
ity. Since the constructor-based style is subsumed under the<big-
wig> style as also described in Section 1, the summary graph tech-
nique could be applied for other languages.

10. EXTENSIONS AND FUTURE WORK
Instead of our four basic predicates we could allow general reg-

ular expressions over the alphabetE•. We could then still validate
a summary graph, but this would reduce to deciding if a general
context-free language is a subset of a regular language, which has
an unwieldy algorithm compared to the simple transitive closures
that we presently rely upon. Fortunately, our restricted regular lan-
guages appear sufficient. It is also possible to include many features
from a richer XML schema language such as DSD [5], in particular
context dependency and regular expression constraints on attribute
values and character data.

Since our technique is parameterized in the choice of the ab-
stract DTD, it easily generalizes to many other XML languages
that can be described by such abstract DTDs. Finally, we could
enrich<bigwig> with a set of operators for combining and de-
constructing XML templates, making it a general XML transfor-
mation language. All such ideas readily permit analysis by means
of summary graphs. However, a method for translating a DTD into
a summary graph will be required.

11. CONCLUSION
We have combined a data-flow analysis with a generalized val-

idation algorithm to enable the<bigwig> compiler to guarantee
that all HTML or XHTML documents shown to the client are valid
according to the official DTD. The analysis is efficient and does not
generate many spurious error messages in practice. Furthermore, it
provides precise error diagnostics in case a given program fails to
verify.

Since our algorithm is parameterized with an abstract DTD, our
technique generalizes in a straightforward manner to arbitrary XML
languages that can be described by DTDs. In fact, we can even
handle more expressive grammatical formalisms. The analysis has
proved to be feasible for programs of realistic sizes. All this lends
further support to the unique design of dynamic documents in the
<bigwig> language.

12. REFERENCES
[1] David Atkins, Thomas Ball, Glenn Bruns, and Kenneth Cox.

Mawl: a domain-specific language for form-based services.
In IEEE Transactions on Software Engineering, June 1999.

[2] Claus Brabrand, Anders Møller, and Michael I.
Schwartzbach. The<bigwig> project. Submitted for
publication. Available from
http://www.brics.dk/bigwig/ .

[3] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed
XML processing language. InWorkshop on the Web and
Databases (WebDB2000), 2000.

[4] Haruo Hosoya and Benjamin C. Pierce. Regular expression
pattern matching for XML. InSymposium on Principles of
Programming Languages (POPL’01). ACM, 2001.

[5] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
DSD: A schema language for XML. InWorkshop on Formal
Methods in Software Practice (FMSP’00). ACM, 2000.

[6] David A. Ladd and J. Christopher Ramming. Programming
the web: An application-oriented language for hypermedia
services. In4th Intl. World Wide Web Conference (WWW4),
1995.

[7] Erik Meijer and Mark Shields. XMλ: A functional language
for constructing and manipulating XML documents. Draft,
1999.

[8] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.
Principles of Program Analysis. Springer, 1999.

[9] Steven Pemberton et al.XHTML 1.0: The Extensible
HyperText Markup Language. W3C, January 2000. W3C
Recommendation,http://www.w3.org/TR/xhtml1 .

[10] Anders Sandholm and Michael I. Schwartzbach. A type
system for dynamic Web documents. InPrinciples of
Programming Languages (POPL’00). ACM, 2000.

