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Abstract

XML is successful as a machine processable data interchange format, but it is often
too verbose for human use. For this reason, many XML languages permit an alter-
native more legible non-XML syntax. XSLT stylesheets are often used to convert
from the XML syntax to the alternative syntax; however, such transformations are
not reversible since no general tool exists to automatically parse the alternative
syntax back into XML.

We present XSugar, which makes it possible to manage dual syntax for XML lan-
guages. An XSugar specification is built around a context-free grammar that unifies
the two syntaxes of a language. Given such a specification, the XSugar tool can
translate from alternative syntax to XML and vice versa. Moreover, the tool stat-
ically checks that the transformations are reversible and that all XML documents
generated from the alternative syntax are valid according to a given XML schema.
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1 Introduction

XML has proven successful as a machine processable data interchange for-
mat. There exist numerous APIs for processing XML data in general purpose
programming languages and also many specialized XML processing languages,
such as XSLT and XQuery. Realizing the benefits of using XML, an increasing
number of new languages, ranging from loosely structured document-oriented
languages to purely data-oriented ones, use an XML syntax. The XML for-
mat, however, is verbose and not always ideal for human use. Yet, in many of
these new languages, documents are intended to be read and written directly
by humans. For this reason, many languages have two syntaxes—an XML
syntax intended for machine processing and interchange, and an alternative
non-XML syntax for human use. This necessitates automated translation in
one or both directions.
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As a representative example, consider the language RELAX NG [12]. It is
a schema language for XML, but we are not interested in the semantics of
RELAX NG documents here, only in their syntax. The original language def-
inition specifies an XML syntax, and a later separate specification provides a
compact non-XML syntax [11]. A main goal of providing the non-XML syntax
is to maximize readability. As an example (taken from the RELAX NG docu-
mentation), consider the following tiny RELAX NG document written using
the XML syntax:

<element name="addressBook"
xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>
<element name="card">
<element name="name">
<text/>
</element>
<element name="email">
<text/>
</element>
</element>
</zero0rMore>
</element>

In the alternative non-XML syntax, this document looks as follows:

element addressBook {
element card {
element name { text 7},
element email { text }

Fx
+

The former can be manipulated by standard XML tools, whereas the latter
is more friendly towards human beings. The XML syntax may be formal-
ized by an XML schema language, such as DTD (or RELAX NG itself). The
main structure of the non-XML syntax may be formalized using, for example,
EBNF.

With the two syntaxes in place, we need to be able to transform documents
between them. For RELAX NG, there are numerous implementations of such
converters. Converting from the XML syntax to the non-XML syntax, a com-
mon approach is to use an XSLT stylesheet. In the other direction, there are
no obvious choices, so typically one resorts to programming the conversion in
a general purpose programming language, for example Java or Python.

This raises a number of problems: The translations in the two directions are
made as two entirely different programs, often even using two different pro-



gramming languages. This requires lots of tedious programming. Also, it makes
maintenance difficult in case the syntax evolves. Since the programming lan-
guages being used are typically Turing complete (even XSLT is so), it is gen-
erally difficult to reason about their correctness. Specifically,

e there is no guarantee that the translations are reversible in the sense that
translating a document in one direction and then back again will result in
the original document (modulo whitespace or similar irrelevant details); and

e there is no guarantee that the translation into the XML syntax always
produces documents that are valid according to a schema description.

These problems are not specific to the RELAX NG example. Similar situations
occur for many other languages, however, RELAX NG is among the more
complicated ones.

To attack these problems, we first make an interesting observation. Consid-
ering the grammars for the two syntaxes (one given by an XML schema, the
other by an EBNF grammar), they commonly have a similar overall structure.
The variations mainly occur at the level of individual grammar productions
where the two syntaxes may vary in the order of production constituents,
choices of literals, and whitespace and other ignorable parts. Notably, there
are typically no drastic reorganizations or computations involved when con-
verting one way or the other. In the remainder of this paper, we exploit this in
the design of XSugar, a system for managing dual syntax of XML languages.

1.1 Contributions

Our contributions are the following.

e We describe the XSugar language and show how it can be used for concisely
specifying two-way translations between XML and non-XML syntax.

e We identify conditions for reversibility and present an approach for conser-
vatively checking these conditions.

e Based on previous results on static analysis of XML transformations
[7,10,20,19,28], we show that it is possible to statically guarantee validity of
output for the translation to XML, using, for example, XML Schema [33,4].

e Using a prototype implementation, we evaluate the approach on a num-
ber of real-world examples: RELAX NG, XFlat [34], BibTeXML [16], and
Wiki [23].

We imagine various possible usage scenarios of XSugar. Non-XML languages
can easily be given an alternative XML syntax for enhancing data interchange;
XML-based languages may be given a more human readable non-XML syntax;
and, as in the case of RELAX NG, for languages where both syntaxes already
exist, XSugar may be used to concisely specify the relation between the two.



1.2 Related Work

Several other projects and technologies are aimed at providing alternative
syntax for XML languages. While they have overlapping goals with XSugar,
none of them simultaneously consider general two-way translations and static
guarantees of validity.

XSLT is often used for translating XML documents into other representa-
tions; however, stylesheets are not reversible, so these representations cannot
in general be parsed back into XML.

The Presenting XML project [32] provides a domain-specific language for pro-
gramming transformations between XML and flat files. However, translations
are not reversible and, thus, two separate specifications must be maintained
for a given dual syntax. The XFlat project [34] has largely the same approach
as XSugar, as it allows translations between flat file formats and XML, spec-
ified by a single XFlat schema. However, it is restricted to files consisting
of sequences of records, rather than general context-free syntax. Section 5.1
contains a more detailed comparison.

The PADS project [24] translates data into other representations, including
XML. Data formats are described using a sophisticated calculus that include
dependent types and computations—thus going beyond context-free parsing.
The translations into XML format are generic, in the sense that the XML
schema is generated automatically based on the PADS specification, thus the
programmer cannot target an existing XML format. Also, PADS differs from
XSugar in that its translations are not automatically reversible.

Other approaches provide bidirectional translations between two XML lan-
guages, without considering the case of parsing or generating alternative, non-
XML syntax: The biXid project [18] proposes a language inspired by regular
expression patterns from XDuce, and the paper [29] presents a framework
based on Haskell.

Several projects, such as [13,2,25], suggest an alternative syntax for XML itself,
independently of any particular XML language. Such work is only superficially
similar to our work, since this alternative syntax is fixed while our is different
for each application domain. Program inversion [1] attacks reversibility in a
general context, but does not provide a solution to our particular problem.

2 The XSugar Language

We describe the XSugar language by a small example and then explain how
to translate between XML- and non-XML syntax based on an XSugar speci-
fication.



2.1 FExample: Student Information

Assume that we have an XML representation of student information as de-
scribed by the following DTD:

<!ELEMENT students (studentx*)>
<!ELEMENT student (name,email)>
<!ATTLIST student sid CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

All elements belong to the namespace http://studentsRus.org/. Addition-
ally, the values of name, email, and sid are required to satisfy some extra
syntactic requirements, which we describe later. The syntax can also be for-
malized using XML Schema as shown in Section 4. The following is an example
of a valid document:

<students xmlns="http://studentsRus.org/">
<student sid="19701234">
<name>John Doe</name>
<email>john_doe@notmail.org</email>
</student>
<student sid="19785678">
<name>Jane Dow</name>
<email>dow@bmail.org</email>
</student>
</students>

There is also an alternative non-XML syntax for this document:

John Doe (john_doe@notmail.org) 19701234
Jane Dow (dow@bmail.org) 19785678

Here, each student corresponds to one line. The name is written first, then the
email address in parentheses surrounded by whitespace, and finally the ID.
Notice that the ordering of the constituents differs from the XML version.

With XSugar, we can concisely specify the connection between the two syn-
taxes:

xmlns = "http://studentsRus.org/"

Name = [a-zA-Z]+(\ [a-zA-Z]+)*
Email = [a-zA-Z._]+\Q@[a-zA-Z._]+
Id = [0-9]1{8}

NL = \r\n|\r|\n

file : [persons p] = <students> [persons p] </>



persons : [person p] [NL] [persons more] =
[person p] [persons more]

person : [Name name] _ "(" [Email email] ")" _ [Id id] =
<student sid=[Id id]>
<name> [Name name] </>
<email> [Email email] </>
</>

The first line declares the namespace associated with the empty prefix. The
next four lines define some reqular expressions, which are used for describing
syntactic tokens. For example, Name matches one or more blocks of alphabetic
characters, separated by space characters. The remaining lines define grammar
productions, each having the form

nonterminal : o= (3 ;

(If the nonterminal is omitted in a production, the one from the preceding
production is assumed.) Unlike ordinary grammar productions, we here have
two right-hand sides—one for the non-XML syntax («) and one for the XML

syntax (3).

The « part is generally a sequence of items of the form [X namel] or [X],
where X is either a nonterminal or a regular expression name, and of quoted
literals such as "(" and ")" above. Additionally, the special character _ is
used for describing whitespace, which we return to later. The item names (for
example, email above) are used for connecting the non-XML and the XML
descriptions, as explained below.

The ( part consists of an XML template, which is a fragment of well-formed
XML that may contain items in place of attribute values (like sid=[Id id]
in the example) and in element content (like [Email emaill). End tags are
written </> for brevity. We also allow dynamic element and attribute names
(written as [X namel in place of the name).

The nonterminal or regular expression name associated with a given item
name must be the same in both a and 3. We use the convention that regular
expression names start with a capital letter (such as Email), and nonterminals
start with a lower case letter (such as persons). Special characters can be
escaped with a backslash notation, with Unicode character numbers, or with
XML-style character references.

Notice that if we ignore the § part in every production and the name part
in every item, an XSugar specification S is essentially an ordinary BNF-like
context-free grammar S, (where the first occurring nonterminal is the start
nonterminal). This grammar specifies the non-XML syntax of the language.



Conversely, we obtain a grammar Sz for the XML syntax by ignoring the
« parts. Literals and unnamed items correspond to information that has no
counterpart in the opposite grammar. For both grammars, we require all non-
terminals to be productive. For later use, we assume that the productions in
S are implicitly indexed in order of occurrence.

As an extension of the notion of grammars presented above, we also allow
unordered productions: In a production where the delimiter :& appears in
place of :, the «a part is unordered, meaning that it matches any permutation
of the constituents. Similarly, if the = symbol is replaced by =&, the (3 part is
unordered. We show a use of unordered productions in Section 5.3.

Also, productions may be given priorities to allow disambiguation during pars-
ing. If the : symbol in a production is replaced by the symbol >: then it is
given lower priority than all previously occurring productions for the same
nonterminal. This feature is used in Section 5.4.

Figure 1 shows the abstract syntax for XSugar specifications.

2.2 Transforming via Unifying Syntax Trees

An XSugar specification S defines a translation from the non-XML syntax to
the XML syntax and vice versa. This translation goes via a unifying syntax tree
(UST), which abstracts away the ordering of the constituents of each grammar
production and also ignores parts corresponding to literals and unnamed items.
More precisely, a UST is an unordered labeled tree of nodes where each node
is either a terminal node or a nonterminal node. A terminal node is a leaf that
is labeled with a string. A nonterminal node is labeled with a nonterminal,
each edge to a child node is labeled with an item name, and every node has at
most one outgoing edge with a given item name. Moreover, every nonterminal
node is labeled with a production index, which we will need later.

Assume that we want to transform a text x from the non-XML syntax to the
XML syntax. This is done in two steps:

e first parse the text x according to S,, yielding a UST wu;
e then unparse u relative to Ss yielding the resulting XML document.

The other direction—translating from XML syntax to non-XML syntax—is
symmetric. The processes of parsing and unparsing with USTs is illustrated
in Figure 2 and described in the following sections. As an example of a UST,
the one corresponding to the example student information document is shown
in Figure 3.



Grammar — NamespaceDecl* RegexpDef* Production®
NamespaceDecl — xmlns PREFIX’ =" URI "
RegexpDef — REGEXP = Regexp
Production — NONTERMINAL’ >” : & LeftItem* = &' RightItem*
Leftltem — Item
Rightltem — Item
|  ElementlItem
Item — " STRING "
| [ NONTERMINAL NameOrExample’ ]
| [ REGEXP NameOrExample® ]
|

Elementltem — < Name Attributeltem® > Rightltem* </>
| < Name Attributeltem* />
Attributeltem — Name =" STRING "
| Name = [ NONTERMINAL NameOrExample’ ]
|  Name = [ REGEXP NameOrExample® ]
Name — NCNAME
| PREFIX : NCNAME
| [ REGEXP NameOrExample® ]
NameOrExample — ITEM
| " STRING "

Fig. 1. Abstract syntax for XSugar specifications. We here use * and * to denote
“zero-or-more” and “optional”, respectively. The syntax of regular expressions (Reg-
exp) is as in the BRICS Automaton package [30]. The nonterminals PREFIX and
NCNAME describe valid prefixes of qualified XML names and local names, respec-
tively); REGEXP, NONTERMINAL, and ITEM are names of regular expressions,
nonterminals, and items, respectively; STRING consists of literal strings; and _ and

__ describe optional whitespace and nonempty whitespace, respectively.

Py, Ag CB UB
parsing abstraction concretization unparsing
unparsing concretization abstraction parsing
Uy Co AB PB
non—XML parse tree UST parse tree

Fig. 2. The transformation process.

XML




id p ore
John Doe email 19701234 (pmst4 . (pmson93
i

name
Jane Dow

john_doe@notmail.org email
19785678

dow@bmail.org

Fig. 3. UST for the student information document.

Parsing

Given a text z and a grammar S; (where i is either o or 3, depending on
which direction we are translating), we construct the UST w as follows. First,
we run a context-free-grammar parser on x and §;, yielding an ordinary parse
tree t. Since we work with the full class of context-free languages and do
not apply lexical analysis, we use Earley-style parsing [14] (rather than, for
example, LALR(1) parsing). The parser must of course be equipped to handle
our extensions with unordered productions and priorities. If S; is ambiguous,
t is chosen arbitrarily among the possibilities but respecting priorities; we
discuss ambiguity further in Section 3.

Note that we use the same parsing technique for both directions. Using context-
free grammar parsing for XML documents allows us to describe, in a uniform
framework, structure of character data and attribute values, which would not
be possible with a conventional XML parser.

From the parse tree, we construct the UST u as follows.

e Every parse tree node corresponding to a named regular expression item in
S; becomes a terminal node labeled with the corresponding string.

e Every parse tree node corresponding to a named nonterminal item in S;
becomes a nonterminal node. Its label is the nonterminal, and its index is
the index of the associated grammar production of the parse tree node. For
each named item in the production, a child edge with that name is made to
the UST node of the corresponding child node in the parse tree.

All parse tree nodes corresponding to literals or unnamed items are ignored in
the construction. Figure 4 shows the parse tree for the student example which
yields the UST shown in Figure 3. Note that the parse tree as opposed to the
UST is ordered and includes values of ignorable items.

The whitespace marker _ is implicitly defined as an abbreviation of the un-
named regular expression item [OPT_WHITESPACE] where OPT_WHITESPACE
is the regular expression [ \t\r\n]* (that is, strings of whitespace charac-



John Doe " " "(" john_doe@notmail.org 19701234

wywowow

Jane Dow " " "(" dow@bmail.org ")" " " 19785678

Fig. 4. Parse tree for the non-XML student information document.

ters). Similarly, __ refers to WHITESPACE, which represents nonempty strings
of whitespace. For convenience, some other widely used regular languages are
also built in: NCNAME, QNAME, CHAR, NAMECHAR, LETTER, and URI correspond to
central syntactic categories found in the specifications of XML [9] and XML
Namespaces [8].

In case z is an XML document and 7 = 3, we initially normalize both x and S
in a process that resembles XML canonicalization [5] but results in a different
representation:

(1) whitespace inside tags (but outside attribute values) is reduced to a min-
imum;

(2) attribute values are enclosed by double quotes (that is, sid=’19701234"
is changed to s1d="19701234");

(3) the short form of empty elements is expanded (for instance, <p/> becomes
<p></p>);

(4) character encoding is set to UTF-§;

(5) character and entity references are expanded,;

(6) all whitespace character data is removed in elements that do not contain
non-whitespace character data;

(7) XML comments, XML declarations, processing instructions, DOCTYPEs
are removed, and end tag names are shortened to </>; and

(8) all qualified names are expanded to the form { URI }localname.

This normalization allows us to disregard the many equivalent forms that
XML documents may have. (Attribute order is handled using the unordered
production mechanism since we allow non-constant attribute names.) As an
example, the following XML document is equivalent to the one shown earlier
and is also parsed by the student example grammar:

<stu:students xmlns:stu="http://studentsRus.org/">
<!-- this is not normalized -->
<stu:student 8i1d=’19701234" >
<stu:name>John Doe</stu:name>
<stu:email>john_doe&#64;notmail.org</stu:email>
</stu:student>
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<stu:student sid=’19785678’>
<stu:name>Jane Dow</stu:name>
<stu:email>dow@bmail.org</stu:email>
</stu:student>
</stu:students>

Focusing on just the first student element and its contents, normalization will
rewrite it as follows (without the line breaks):

<{http://studentsRus.org/}student sid="19701234">
<{http://studentsRus.org/Iname>John Doe</>
<{http://studentsRus.org/}email>john_doe@notmail.org</></>

Unparsing

Given a UST u and an XSugar specification & where u has been generated
from either S, or Sg, we construct an ordinary parse tree ¢ as a concretization
of u relative to S; as follows, starting at the root of w.

e A terminal node in u becomes a parse tree leaf node labeled with the same
string.

e A nonterminal node with index & becomes a parse tree node labeled with the
same nonterminal and index. For each component in the production with
index k£ in S; in order, a corresponding subtree is constructed depending on
the component kind:

— for a named item, the subtree is constructed recursively from the child
UST node with that name;

— for an unnamed regular expression item, the subtree is a leaf node labeled
with an arbitrary string matching the regular expression (for example, a
shortest one);

— for an unnamed nonterminal item, the subtree is chosen as an arbitrary
parse tree derivable from the corresponding nonterminal in S;; and

— for a literal, the subtree is a leaf node labeled with the literal string.

Notice that unnamed items are handled by generating arbitrary representa-
tives. This makes sense since such items describe information that only occurs
in one of the two syntaxes. To add more control to the unparsing process,
XSugar also allows unnamed items of the form [X "s"], where s is a string
that belongs to the language defined by X. The unparser will then simply
select s as a representative for X. Continuing the student example, the UST
from Figure 3 is unparsed into the XML parse tree show in Figure 5.

Once we have the parse tree ¢, the resulting text x is simply the concatenation
of the text in the leaves. A few technical issues remain: We escape or unescape
(depending on the direction of translation) special XML characters to ensure
that, for example, the character < in non-XML corresponds to &1t; in XML.
Also, tag names are inserted in the end tags.
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<student> (persons)? </student>

<student sid=" "> </student>

19701234
<email>john_doe@notmail.org</email>
<name>John Doe </name>

<student sid="/ "> </student>

19785678

<name>Jane Dow </name>

<email>dow@bmail.org</email>

Fig. 5. XML parse tree for the student information document.

3 Reversibility

A desirable property of an XSugar specification is that it is reversible, meaning
that no information is lost when transforming data in either direction. Below,
we formally define a notion of reversibility and describe a static analysis for
conservatively checking this property on XSugar specifications.

One way to define reversibility is that performing a roundtrip from one syntax
to the other and back should always yield the exact same document. Using
the names of the individual transformation steps shown in Figure 2, define

Tw_)g:UgOCﬁOAaOPa
TaHg:UaOCaOAgOPg

Reversibility then means that both T, .3 0 To.g and T 0 T,..3 are iden-
tity transformations (on non-XML data and XML data, respectively). This
condition is equivalent to T,, .3 being a bijection. Verifying this property is
equivalent to ensuring that the four individual steps P, (parsing), A, (ab-
straction), Cz (concretization), and U (unparsing) are all bijections.

However, as explained in Section 2.2, USTs explicitly discard three kinds of
information from the input documents:

(1) information removed by normalization of XML documents;

(2) information that corresponds to unnamed items; and

(3) information represented by the order of constituents described by un-
ordered productions.

For this reason we need to loosen the previous definition of reversibility as
follows: Performing a roundtrip from one syntax to the other and back should
always yield the exact same document, modulo loss of the above information.
Define that two input documents, x; and x5, (both XML or both non-XML)

12



are equivalent if their USTs are identical, that is A;0 P;(x1) = A;0 Py(x3). Also,
define two parse trees, t; and t,, to be equivalent if their USTs are identical,
that is A;(t1) = Ai(t2). Reversibility now corresponds to the four individual
steps P,, A,, Cs, and Us being bijections on the induced equivalence classes,
which can be checked as follows:

Checking bijectivity of A; and C;: Since all UST tree nodes are explicitly
annotated with production indices and all edges to subtrees are labeled with
item names, we simply have to check that, for each production, all item
names are used exactly once on the other side (ignoring unnamed items).

Checking bijectivity of P, and U;: This corresponds to checking that the
context-free grammar S; unambiguous: P; is by definition injective (a parse
tree retains all information from the input, except for XML normalization),
and U; is injective if and only if S; is unambiguous (since there exists a
string with two nonequivalent parse trees exactly when unparsing is not
injective).

The ambiguity decision problem for context-free grammars is undecidable [17].
We rely on a static analysis to conservatively approximate the problem, as
explained in Section 3.1. Aside from the reversibility issue, static detection
of ambiguity is useful by itself since ambiguity in XSugar grammars is rarely
intended.

An interesting consequence of performing a roundtrip transformation is that
it results in a canonical representative for the equivalence class of the input
document, as defined by the concretization and unparsing steps.

Note that if the reversibility condition does not hold, the XSugar transforma-
tion still runs but with the following consequences: if the abstraction step is
not bijective, then information may be lost in the translation; if the parsing
step is not bijective, then the parser will just pick one of the possible parse
trees.

3.1  Ambiguity Analysis

As explained above, the only remaining challenge in checking reversibility is to
devise a useful approximation technique for deciding unambiguity of a given
context-free grammar. We prefer an approximation that is conservative in the
sense that when it reports a grammar unambiguous, then it is truly so.

A classical algorithm is the LR(k) check [22]. However, to obtain a simple
and expressive language definition, XSugar employs scannerless parsing where
grammars are expressed on individual characters rather than tokens. In this
situation, LR(k) and its variants are inadequate since they rely on a fixed
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lookahead and hence cannot distinguish between, for example, two productions
that both begin with an identifier. Additionally, the unordered productions
and production priority mechanisms in XSugar are not easily incorporated
into the LR(k) method.

For these reasons, we use an alternative approach, described in the paper [6]
and briefly summarized in the following. Ambiguity of context-free grammars
may be fully characterized by two (also undecidable) predicates: vertical un-
ambiguity and horizontal unambiguity. Vertical unambiguity means that no
two productions of any nonterminal can derive the same string. Horizontal
unambiguity means that no production right-hand-side p may be split in two
nonempty parts prpr = p such that there exists a string xay, where a is
nonempty, that may be ambiguously parsed by having either p; derive xa and
pr derive y or by having p;, derive x and pr derive ay. This gives a linguistic
characterization of ambiguity in the sense that we can now consider the ambi-
guity problem in terms of relationships between languages at various points in
the grammar. In particular, it allows the use of approximations of context-free
grammars [26], which sacrifices completeness but gives decidability.

The complications we mentioned earlier that precluded usage of the LR(k)
algorithm are all easily dealt with in this approach. First, it works smoothly
with scannerless parsing. Second, for the unordered productions we simply test
horizontal ambiguity locally for all combinations for the production. Third,
the production priority feature is easily handled by simply omitting the cor-
responding vertical ambiguity checks.

3.2 Eramples

Running the reversibility analysis on our student example from Section 2
produces the following encouraging output:

Transformation is guaranteed to be reversible!

As an illustration of the error messages that our approach is able to give, we
make some erroneous variations of the student example.

First, if we remove the sid=[Id id] attribute in the student element, the
abstraction step will become non-bijective. This causes the following error
message to appear:

**x*x Reversibility error

Source: students.xsg line 14 column 52

Error: information loss from non-XML to XML:
item named id missing in XML grammar

14



Next, let us introduce grammar ambiguity by adding another production for
the file nonterminal having a dot describe the “empty student record” and
forgetting that the persons nonterminal already featured an empty case:

file : [persons p] = <students> [persons p] </>
o = <students> </>

Running the analysis on the XML grammar yields the following ambiguity
report:

***x Reversibility error
Source: students.xsg line 8 column 1 and
students.xsg line 9 column 1 and
Error: vertical ambiguity in XML grammar:
XML string <{http://studentsRus.org/}students></>
corresponds to non-XML strings "" and "."

The XML string being shown clearly has two parses corresponding to the two
different file productions which, in turn, means that the syntactic alternative
is non-reversible.

Additionally, we might introduce another error by using the following defini-
tion of a student record where the alternative syntax is condensed by omitting
parentheses and forgetting whitespace:

person : [Name name] [Email email] [Id id] =
<student sid=[Id id]>
<name> [Name name] </>
<email> [Email email] </>
</>

Running the analysis now yields this report:

**%*x Reversibility error

Source: students.xsg line 14 column 22

Error: horizontal ambiguity in non-XML grammar:
non-XML string "AAAGA.A00000000"

corresponds to XML strings
<{http://studentsRus.org/}student sid="00000000">
<{http://studentsRus.org/}name>A</>
<{http://studentsRus.org/}email>AAGA.A</></>

and

<{http://studentsRus.org/}student sid="00000000">
<{http://studentsRus.org/}name>AA</>
<{http://studentsRus.org/}email>AQA.A</></>

The example string describes either a person A with email AAGA.A or a per-
son AA with email A@A.A. Clearly, such messages are useful for detecting and
eliminating errors in the translations.
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We have run the ambiguity analysis on our other examples where it uncov-
ered an interesting error in our description of the alternative syntax for RE-
LAX NG:

*x*x Reversibility error

Source: relax.xsg line 103 column 1 and
relax.xsg line 104 column 1

Error: vertical ambiguity in non-XML grammar:
non-XML string "A"

corresponds to XML strings
<{http://relaxng.org/ns/structure/1.0}Iname>A</>
and
<{http://relaxng.org/ns/structure/1.0}Iname>A</>

By inspecting the mentioned lines in relax.xsg, this error message tells us
that the (non-XML) string A could be interpreted either as an Identifier
or as an NCNAME (although they, in this case, happen to have the same XML
syntax). This ambiguity was then fixed by introducing priority for one of the
productions.

Since the ambiguity check is approximate, false positives are possible. We have
encountered this in the RELAX NG example where the analysis reports 11 po-
tential ambiguity problems even though the grammar is in fact unambiguous.
The approach presented in [6] allows precision to be improved by manually
specifying grammar unfolding transformations, which for the RELAX NG ex-
ample cause all false positives to disappear.

4 Static Validation

Assume that an XML language, described by some schema formalism, has been
given an alternative non-XML syntax using XSugar. An obvious wvalidation
requirement is that the translations of non-XML documents must always result
in valid XML data, relative to the schema. The XSugar tool can perform this
check by analyzing the XML syntax. The analysis is exact: it reports success
if and only if syntactically correct non-XML input (according to S,) always
results in valid XML output (according to the XML schema).

Our static analysis is based on previous results [7,10,20,19,28] where the con-
cept of XML graphs (also called summary graphs when used in program anal-
ysis) is used to model sets of XML documents. Intuitively, an XML graph is
reminiscent of an XML tree but may contain loops and choices. Also, element
and attribute names, attribute values, and character data are described by
regular string languages. We have an algorithm [21] that is able to check that
every document described by an XML graph is valid according to a schema
written in DTD or XML Schema. (An earlier version was based on DSD2
schemas instead [27].)
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More precisely, an XML graph consists of nodes of various kinds:

element: roughly corresponds to Element nodes in XML DOM [3], labeled
with a regular string language describing the element name and having a
child node describing attributes and contents;

attribute: resembles Attribute nodes in XML DOM, but, as for element nodes,
attribute names are described with regular string languages;

sequence: describes an ordered sequence of nodes;

text: as Text nodes in XML DOM, but labeled with a regular string language
rather than a single string;

interleave: as sequence but for unordered sequences;

choice: describes a union of the sets of XML documents being described by
the children.

(The actual definition also contains some other node kinds and information
that we do not need here; for details, see [28].)

From an XSugar specification (see Figure 1), it is simple to extract an XML
graph that precisely represents all XML documents that can be generated by
the Sg grammar:

e cach nonterminal becomes a choice node with a child for each of its produc-
tions;

e a production becomes a sequence node if ordered and an interleave node if
unordered, and a child node is made for each item;

e for a nonterminal item [X ...], the node is the one corresponding to the
nonterminal X;

e for a regular expression item [X ...], the node is a text node labeled with
the regular expression of X, and quoted literal items and whitespace items
are treated as regular expression items;

e for an element item, the node is an element node with a corresponding name
and with a sequence child node describing the attributes and contents, and
attributes similarly become attribute nodes.

With this translation, the language of the resulting XML graph (as defined
in [28]) is equal to the language of Sg. As a simple optimization, we may omit
choice nodes and sequence nodes that have exactly one child. For the student
information example from Section 2.1, the grammar S for the XML syntax
is

file : <students> [persons pl] </>

persons : [person p] [persons more]
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person : <student sid=[Id id]>
<name> [Name name] </>
<email> [Email email] </>
</>

and the resulting XML graph looks as shown in Figure 6.

Static validation is performed by checking the XML graph against the given
XML schema, which may be written in XML Schema (rather than using the
less precise DTD version shown in Section 2.1):

<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://studentsRus.org/"
xmlns:s="http://studentsRus.org/"
elementFormDefault="qualified">

<element name="students">
<complexType>
<sequence min0ccurs="0" maxOccurs="unbounded">
<element ref="s:student"/>
</sequence>
</complexType>
</element>

<element name="student">
<complexType>
<sequence>
<element name="name" type="s:Name"/>
<element name="email" type="s:Email"/>
</sequence>
<attribute name="sid" type="s:Id"/>
</complexType>
</element>

5
1

Fig. 6. XML graph for the student information example.
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<simpleType name="Id">
<restriction base="string">
<pattern value="[0-9]{8}"/>
</restriction>
</simpleType>

<simpleType name="Name">
<restriction base="string">
<pattern value="[a-zA-Z]+( [a-zA-Z]+)x"/>
</restriction>
</simpleType>

<simpleType name="Email">
<restriction base="string">
<pattern value="[a-zA-Z._]l+@[a-zA-Z._]+"/>
</restriction>
</simpleType>
</schema>

On this example, the validator produces this result:
XML output is guaranteed to be valid!

If we had made some mistakes, for example changed the definition of Id to
[0-91{5,8} and swapped the order of the name and email elements in the
XSugar specification, the output would instead be like this:

*x* Validation error

Source: element {http://studentsRus.org/}student at
students.xsg line 15 column 10

Schema: students.xsd line 20 column 7

Error: invalid attribute value: sid="00000"

**x* Validation error

Source: element {http://studentsRus.org/}student at
students.xsg line 15 column 10

Schema: students.rng line 16 column 7

Error: invalid contents:
<{http://studentsRus.org/}email/><{http://studentsRus.org/}name/>

Clearly, such error messages are useful for locating and correcting the errors.
Another example of validation is discussed in Section 5.3.

The dual validation check—that output in the XML to non-XML direction
is always syntactically correct—only makes sense if the alternative syntax is
already described by a different context-free grammar. As shown in Section 5.2,
this is the case for RELAX NG, where the original grammar must be rewritten
slightly to allow the XSugar translation. However, the inclusion test between
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context-free grammars is undecidable [17], and we are not aware of useful
approximation algorithms.

We may also consider coverage checks, which for the XML to non-XML direc-
tion means that every XML document described by the external schema can
be parsed by the XSugar grammar. However, this generally requires checking
inclusion of a regular language in a context-free language, which is also un-
decidable [17]. The dual coverage check is just the opposite inclusion check
between the two context-free grammars. Note that in many situations the al-
ternative syntax is defined by the XSugar specification, in which case both
non-XML to XML coverage and XML to non-XML validation come for free.

5 Evaluation

We have implemented a fully functional prototype of the XSugar tool. It is
available for download—along with all the examples presented in this paper—
at the XSugar Web site:

http://www.brics.dk/xsugar/

The underlying parser [31] is a variation of Earley’s algorithm [14] that builds
a UST directly without the intermediate ordinary parse tree, has explicit sup-
port for regular expression items, unordered productions, and production pri-
orities. The tool also performs the static validation described in Section 4 by
means of the validation system developed for the XACT system [21,19], and it
checks grammar ambiguity using the technique described in the paper [6].

In the following sections, we present a range of examples showing how XSugar
may be used for concrete XML languages. Each example highlights certain
features of the XSugar tool. The complete XSugar specifications are available
at the URL mentioned above, along with examples of input documents and
schemas.

5.1 XFlat

The XFlat system [34] allows translations between flat file formats and XML,
specified by a single XFlat schema. As an example, the translation between
these two formats

123456789, "Doe, John",100000.00
444556666, "Average, Joe",53000.00
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<employees>
<employee>
<ssn>123456789</ssn>
<name>Doe, John</name>
<salary>100000.00</salary>
</employee>
<employee>
<ssn>444556666</ssn>
<name>Average, Joe</name>
<salary>53000.00</salary>
</employee>
</employees>

is specified by the following XFlat schema:

<XFlat Name="employees_schema" Description="Schema for CSV flat file">
<SequenceDef Name="employees" Description="employees flat file">
<RecordDef Name="employee" FieldSep="," RecSep="\N" MaxOccur="0">
<FieldDef Name="ssn" NullAllowed="No"
MinFieldLength="9" MaxFieldLength="11"
DataType="Integer" MinValue="0" QuotedValue="Yes"/>
<FieldDef Name="name" NullAllowed="No" QuotedValue="Yes"/>
<FieldDef Name="salary" NullAllowed="No"
DataType="Float" MinValue="0" QuotedValue="Yes"/>
</RecordDef>
</SequenceDef>
</XFlat>

Each such schema may systematically be translated into an equivalent XSugar
description, which for the above example looks as follows:

SSN = [0-9]1{9,11}

Namel = ["",]x

Name2 = [""]x

Salary = [0-9]+("."[0-9]+)7

file : [employees es] = <employees> [employees es] </>

employees : [employee e] [employees es] =
[employee e] [employees es]

employee : [SSN x] "," [name y] "," [Salary z] "\n" =
<employee>
<ssn> [SSN x] </>
<name> [name y] </>
<salary> [Salary z] </>
</>
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name : [Namel y] = [Namel y]
> n\nn [Name2 y] n\nn = [Na.meQ Y:I

The XSugar version differs from the XFlat version in one respect. The XFlat
translation from XML to flat file format is ambiguous, since quotes around
fields are optional, unless the field value contains a comma. In our version,
quotes are only added when they are necessary, thanks to the specification of
priorities between the two name productions.

In other respects, the XSugar tool is more general than XFlat. First, it may
handle context-free syntax. Second, even in the niche of flat files, it may per-
form more general translations. For example, an XSugar translator could parse
up the first and last names and swap their order within the field, which is not
possible using XFlat.

5.2 RELAX NG

As mentioned in the introduction, the RELAX NG schema language has an al-
ternative syntax [11], which may be expressed by an XSugar specification. The
a-grammar is relatively close to the one given in the RELAX NG specifica-
tion, but some massaging was required to accommodate the local translations
that XSugar supports. For example, the official EBNF for the compact syntax
contains the following productions:

pattern ::=
pattern ("," pattern)+
pattern ("&" pattern)+
pattern ("|" pattern)+

I
I
I
| pattern "7"

| pattern "x"

| pattern "+"

In the translation, maximal nonempty sequences of patterns separated by ,
must be enclosed by <group> tags, those separated by & by <interleave>
tags, and those separated by | by <choice> tags. Furthermore, the three
operators must satisfy an operator precedence hierarchy. This translation is
only possible in XSugar if the grammar is made more explicit in the following
manner:

pattern ::= cpattern

cpattern ::= gpattern "|" crestpattern
| gpattern

crestpattern ::= gpattern "|" crestpattern
| gpattern

gpattern ::= ipattern "," grestpattern
| ipattern
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grestpattern ::= ipattern "," grestpattern
| ipattern

ipattern ::= upattern "&" irestpattern
| upattern

irestpattern ::= upattern "&" irestpattern
| upattern

upattern ::= bpattern
| bpattern "7"
| bpattern "x"
| bpattern "+"

bpattern ::=

Here, the operator precedences and associativities are expressed in the usual
manner by introducing extra nonterminals, and the grammar is further un-
folded to allow us to distinguish between the first and the rest of maximal
sequences. Operator precedences may in simple cases be captured by produc-
tion priorities, but general expression languages will typically require some
grammar unfolding. This particular example requires by far the most complex
unfoldings that we have yet encountered.

On the RELAX NG site, a translation from compact to ordinary syntax is
defined by an XSLT stylesheet of 894 lines. The inverse translation is defined
by a Python script of 1,478 lines. In all, that implementation stacks up to
2,372 lines of code, while the XSugar description is only 123 lines (a factor of
1:19). On top of this succinctness, the XSugar solution is easier to maintain
and delivers all the safety guarantees discussed in Sections 3 and 4.

5.3 BibTeXML

The BibTeXML project [16] provides an XML-syntax for the popular BibTeX
bibliography format. The XML format is quite complex and is described in
400 lines of DTD notation. This dual syntax is also a larger example of an
XSugar specification, totaling 750 lines.

The example is noticeable in two respects. First, it involves some fairly intri-
cate parsing and translation. For example, a list of authors may be separated
by the word and, and first and last names may be written either directly or in
reverse order separated by commas. Each component of a name is built from
several individual parts, each of which is a string that does not contain spe-
cial BibTeX characters or is equal to the word and. A part may optionally be
enclosed in brackets, and the special character ~ is used to denote an explicit
space character. In the translation to XML, each author must be enclosed by a
separate author element and the names must be normalized. This is obtained
by the following dual syntax:
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AND = [Aa] [Nn] [Dd]
PART = ([~",{}&<>~ \n\t]+)& <AND>

authors : [name n] = <bibxml:author> [name n] </>
[name n] [AND] [authors as] =
<bibxml:author> [name n] </> [authors as]

name : [parts ps] = [parts ps]
: [parts last] _ "," _ [parts first] =
[parts first]

[parts last]

parts : [PART p] = [PART p]
: "{" [PART p] "}" = [PART pl
"N o= "g#160;"
. n \nll = N n
[PART p] [parts ps] = [PART p] [parts ps]

Second, a BibTeX file allows an arbitrary mix of fields, whereas the XML
version requires (for some reason) a specific order. This is a situation where
the unordered productions are useful:

ARTICLE = [Aa] [Rr] [Tt] [Ii] [Cc] [L1] [Ee]
ID = [~ \n\t]+

article : "@" [ARTICLE] _ "{" _ [ID id4] _ ","
_ [articlefields fs] _ "}" =
<bibxml:entry id=[ID id]>
<bibxml:article>
[articlefields fs]
</>
</>

articlefields :& [author author] [title title] [journal journall
[year year] [volume volume] ... =
lauthor author] [title title] [journal journall
[year year] [volume volume]

Note that only the non-XML production is unordered in this case.

In both these situations, the BibTeX format is more liberal than the Bib-
TeXML format. Thus, the translation from BibTeXML to BibTeX will auto-
matically choose a canonicalized representation.

Static validation of the generated XML documents is for this substantial ex-
ample performed in a few seconds on a standard PC. The analysis discovered
four true errors in the definition of the BibTeX translation (despite our best
efforts at defining it correctly), which were subsequently corrected.
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5.4 Wiki

The Wiki notation [23] is an alternative syntax for Web pages that is used to
simplify online collaborative editing. An example is the following description
of XSugar (where we have used the Wikipedia dialect):

== XSugar ==
The [http://www.brics.dk/xsugar XSugar] project has developed a
notation for specifying a ’’dual syntax’’ for an [[XML|XML]] language.

An XSugar specification gives rise to the following tools:
* a translation from XML to non-XML syntax

* a translation from non-XML to XML syntax

* a check that these translations are reversible

* static validation of the generated XML documents

Part of the functionality of a Wiki tool is to translate such notation into
XHTML which is then published:

<html>
<head><title>Wiki</title></head>
<body>
<h1>XSugar</h1>
The <a href="http://www.brics.dk/xsugar">XSugar</a> project has
developed a notation for specifying a <i>dual syntax</i> for an
<a href="XML">XML</a> language.<p/>
An XSugar specification gives rise to the following tools:
<ul>
<li>a translation from XML to non-XML syntax</1li>
<li>a translation from non-XML to XML syntax</1i>
<li>a check that these translations are reversible</li>
<li>static validation of the generated XML documents</1i>
</ul>
</body>
</html>

The essence of such a Wiki tool can be expressed through an XSugar specifi-
cation; however, certain specialized features must be handled separately, such
as the interpretation of user preferences and the conversion of XTEX fragments
into inlined images.

The Wiki notation has an intricate syntax in which newlines and whitespace
are significant. To handle these aspects in an unambiguous grammar, it has
proved invaluable to use the production priority mechanism. For example, part
of the XSugar specification for Wiki looks as follows:
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flat >: "?222°" _ [words ws] _ "’’72’" = <b> <i> [words ws] </> </>

>: "onm [yords ws] _ "’?°" = <b> [words ws] </>
>: "o [words ws] _ "’’" = <i> [words ws] </>
>: "<tt>" _ [words ws] _ "</tt>" = <tt> [words ws] </>
>: "<sup>" _ [words ws] _ "</sup>" = <sup> [words ws] </>
>: "<sub>" _ [words ws] _ "</sub>" = <sub> [words ws] </>
>: "<big>" _ [words ws] _ "</big>" = <big> [words ws] </>
>: "<br>" = <br/>
>: [SPACE] = __
>: "[" [URL ul] __ [words ws] "]I" =
<a href=[URL ul]> [words ws] </>
>: "[[Image:" [WORD w] "|" [words ws] "]]" =
<img src=[WORD w] alt=[words ws]/>
>: "[[" [WORD w] "|" [words ws] "11" =

<a href=[WORD w]> [words ws] </>
>: [WORD w] = [WORD w]

Several of these right-hand sides overlap or are even included in each other,
but the grammar is easy to construct since our notion of production priorities
coincides with our intuitions as grammar authors.

As mentioned, the translation from Wiki notation to XHTML does not pro-
vide the full functionality of a Wiki tool, but an implementation could be built
around the XSugar specification. However, in this case the reverse translation
from XHTML to Wiki notation is actually more interesting, since it has the
effect of performing a maximal wikification. This means that XHTML doc-
uments are translated into Wiki notation as far as possible, which could be
useful when importing external documents into a Wiki context. Again, the
priority mechanism is crucial in ensuring that the relevant XHTML tags are
not just carried through to the text version.

6 UST Transformations

Our experiences with XSugar suggest that non-local UST transformations
may extend its expressive power. Concretely, we have looked at functions 6 on
USTs that satisfy the following restrictions:

Vi 0(An(Pa(t))) = 0%(An(Pa(t))) (non-XML idempotency)
Va1 0(AsPs(x))) = 0*(As(Ps(2))) (XML idempotency)

Such a function induces an equivalence relation of USTs and may thus be
incorporated into the reversibility framework in Section 3. Clearly, the # must
also stay within the subset of general USTs that are relevant for the given
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XSugar specification; otherwise, we will lose soundness of our static validation
algorithm and the runtime behavior of unparsing will be undefined.

An example of a useful UST transformation is a function on the employee
records from Section 5.1 that sorts the employees according to their SSNs.
Also, rounding the salaries into the nearest whole dollar amount is an idem-
potent transformation.

The concrete design of a syntax for UST transformations is left as future work,
but inspiration is available in [18] and [15].

7 Conclusion

We have presented the XSugar system, which allows specification of languages
with dual syntax—one of which is XML-based—and provides translations in
both directions. Moreover, we have presented techniques for statically check-
ing reversibility of an XSugar specification and validity of the output in the
direction that generates XML. Finally, we have conducted a number of ex-
periments by applying the system to various existing languages with dual
syntax. Of course, XSugar does not support all imaginable transformations;
nonetheless, all dual syntaxes that we have encountered fit into our model.
We conclude that XSugar provides sufficient expressiveness and useful static
guarantees, and at the same time allows concise specifications making it a
practically useful system.
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