
Chapter 2

Types, Values, and Effects

2.1 Evaluation and Execution
Most familiar programming languages, such as C or Java, are based on an
imperative model of computation. Programs are thought of as specifying
a sequence of commands that modify the memory of the computer. Each
step of execution examines the current contents of memory, performs a
simple computation, modifies the memory, and continues with the next
instruction. The individual commands are executed for their effect on the
memory (which we may take to include both the internal memory and
registers and the external input/output devices). The progress of the com-
putation is controlled by evaluation of expressions, such as boolean tests
or arithmetic operations, that are executed for their value. Conditional
commands branch according to the value of some expression. Many lan-
guages maintain a distinction between expressions and commands, but
often (in C, for example) expressions may also modify the memory, so that
even expression evaluation has an effect.

Computation in ML is of a somewhat different nature. The emphasis
in ML is on computation by evaluation of expressions, rather than execution
of commands. The idea of computation is as a generalization of your expe-
rience from high school algebra in which you are given a polynomial in a
variable x and are asked to calculate its value at a given value of x. We pro-
ceed by “plugging in” the given value for x, and then, using the rules of
arithmetic, determine the value of the polynomial. The evaluation model
of computation used in ML is based on the same idea, but rather than re-

15



2.2 The ML Computation Model 16

strict ourselves to arithmetic operations on the reals, we admit a richer
variety of values and a richer variety of primitive operations on them.

The evaluation model of computation enjoys several advantages over
the more familiar imperative model. Because of its close relationship to
mathematics, it is much easier to develop mathematical techniques for
reasoning about the behavior of programs. These techniques are impor-
tant tools for helping us to ensure that programs work properly without
having to resort to tedious testing and debugging that can only show the
presence of errors, never their absence. Moreover, they provide important
tools for documenting the reasoning that went into the formulation of a
program, making the code easier to understand and maintain.

What is more, the evaluation model subsumes the imperative model
as a special case. Execution of commands for the effect on memory can be
seen as a special case of evaluation of expressions by introducing primi-
tive operations for allocating, accessing, and modifying memory. Rather
than forcing all aspects of computation into the framework of memory
modification, we instead take expression evaluation as the primary no-
tion. Doing so allows us to support imperative programming without de-
stroying the mathematical elegance of the evaluation model for programs
that don’t use memory. As we will see, it is quite remarkable how seldom
memory modification is required. Nevertheless, the language provides for
storage-based computation for those few times that it is actually necessary.

2.2 The ML Computation Model
Computation in ML consists of evaluation of expressions. Each expression
has three important characteristics:

• It may or may not have a type.

• It may or may not have a value.

• It may or may not engender an effect.

These characteristics are all that you need to know to compute with an
expression.

The type of an expression is a description of the value it yields, should
it yield a value at all. For example, for an expression to have type int is to

AUGUST 25, 2006 WORKING DRAFT



2.2 The ML Computation Model 17

say that its value (should it have one) is a number, and for an expression
to have type real is to say that its value (if any) is a floating point number.
In general we can think of the type of an expression as a “prediction” of
the form of the value that it has, should it have one. Every expression is
required to have at least one type; those that do are said to be well-typed.
Those without a type are said to be ill-typed; they are considered ineligible
for evaluation. The type checker determines whether or not an expression
is well-typed, rejecting with an error those that are not.

A well-typed expression is evaluated to determine its value, if indeed
it has one. An expression can fail to have a value because its evaluation
never terminates or because it raises an exception, either because of a run-
time fault such as division by zero or because some programmer-defined
condition is signalled during its evaluation. If an expression has a value,
the form of that value is predicted by its type. For example, if an expres-
sion evaluates to a value v and its type is bool, then v must be either true
or false; it cannot be, say, 17 or 3.14. The soundness of the type system
ensures the accuracy of the predictions made by the type checker.

Evaluation of an expression might also engender an effect. Effects in-
clude such phenomena as raising an exception, modifying memory, per-
forming input or output, or sending a message on the network. It is impor-
tant to note that the type of an expression says nothing about its possible
effects! An expression of type int might well display a message on the
screen before returning an integer value. This possibility is not accounted
for in the type of the expression, which classifies only its value. For this
reason effects are sometimes called side effects, to stress that they happen
“off to the side” during evaluation, and are not part of the value of the
expression. We will ignore effects until chapter 13. For the time being we
will assume that all expressions are effect-free, or pure.

2.2.1 Type Checking
What is a type? What types are there? Generally speaking, a type is de-
fined by specifying three things:

• a name for the type,

• the values of the type, and

• the operations that may be performed on values of the type.

AUGUST 25, 2006 WORKING DRAFT



2.2 The ML Computation Model 18

Often the division of labor into values and operations is not completely
clear-cut, but it nevertheless serves as a very useful guideline for describ-
ing types.

Let’s consider first the type of integers. Its name is int. The values
of type int are the numerals 0, 1, ˜1, 2, ˜2, and so on. (Note that neg-
ative numbers are written with a prefix tilde, rather than a minus sign!)
Operations on integers include addition, +, subtraction, -, multiplication,
*, quotient, div, and remainder, mod. Arithmetic expressions are formed
in the familiar manner, for example, 3*2+6, governed by the usual rules
of precedence. Parentheses may be used to override the precedence con-
ventions, just as in ordinary mathematical practice. Thus the preceding
expression may be equivalently written as (3*2)+6, but we may also write
3*(2+6) to override the default precedences.

The formation of expressions is governed by a set of typing rules that
define the types of expressions in terms of the types of their constituent ex-
pressions (if any). The typing rules are generally quite intuitive since they
are consistent with our experience in mathematics and in other program-
ming languages. In their full generality the rules are somewhat involved,
but we will sneak up on them by first considering only a small fragment
of the language, building up additional machinery as we go along.

Here are some simple arithmetic expressions, written using infix no-
tation for the operations (meaning that the operator comes between the
arguments, as is customary in mathematics):

3
3 + 4
4 div 3
4 mod 3

Each of these expressions is well-formed; in fact, they each have type
int. This is indicated by a typing assertion of the form exp : typ, which
states that the expression exp has the type typ. A typing assertion is said to
be valid iff the expression exp does indeed have the type typ. The following
are all valid typing assertions:

3 : int
3 + 4 : int
4 div 3 : int
4 mod 3 : int

AUGUST 25, 2006 WORKING DRAFT



2.2 The ML Computation Model 19

Why are these typing assertions valid? In the case of the value 3, it
is an axiom that integer numerals have integer type. What about the ex-
pression 3+4? The addition operation takes two arguments, each of which
must have type int. Since both arguments in fact have type int, it fol-
lows that the entire expression is of type int. For more complex cases we
reason analogously, for example, deducing that (3+4) div (2+3): int by
observing that (3+4): int and (2+3): int.

The reasoning involved in demonstrating the validity of a typing as-
sertion may be summarized by a typing derivation consisting of a nested
sequence of typing assertions, each justified either by an axiom, or a typ-
ing rule for an operation. For example, the validity of the typing assertion
(3+7) div 5 : int is justified by the following derivation:

1. (3+7): int, because

(a) 3 : int because it is an axiom

(b) 7 : int because it is an axiom

(c) the arguments of + must be integers, and the result of + is an
integer

2. 5 : int because it is an axiom

3. the arguments of div must be integers, and the result is an integer

The outermost steps justify the assertion (3+4) div 5 : int by demon-
strating that the arguments each have type int. Recursively, the inner
steps justify that (3+4): int.

2.2.2 Evaluation
Evaluation of expressions is defined by a set of evaluation rules that deter-
mine how the value of a compound expression is determined as a function
of the values of its constituent expressions (if any). Since the value of an
operator is determined by the values of its arguments, ML is sometimes
said to be a call-by-value language. While this may seem like the only sen-
sible way to define evaluation, we will see in chapter 15 that this need not
be the case — some operations may yield a value without evaluating their
arguments. Such operations are sometimes said to be lazy, to distinguish

AUGUST 25, 2006 WORKING DRAFT



2.2 The ML Computation Model 20

them from eager operations that require their arguments to be evaluated
before the operation is performed.

An evaluation assertion has the form exp⇓val. This assertion states that
the expression exp has value val. It should be intuitively clear that the
following evaluation assertions are valid.

5 ⇓ 5
2+3 ⇓ 5
(2+3) div (1+4) ⇓ 1

An evaluation assertion may be justified by an evaluation derivation,
which is similar to a typing derivation. For example, we may justify the
assertion (3+7) div 5 ⇓ 2 by the derivation

1. (3+7) ⇓ 10 because

(a) 3 ⇓ 3 because it is an axiom

(b) 7 ⇓ 7 because it is an axiom

(c) Adding 3 to 7 yields 10.

2. 5 ⇓ 5 because it is an axiom

3. Dividing 10 by 5 yields 2.

Note that is an axiom that a numeral evaluates to itself; numerals are fully-
evaluated expressions, or values. Second, the rules of arithmetic are used
to determine that adding 3 and 7 yields 10.

Not every expression has a value. A simple example is the expression
5 div 0, which is undefined. If you attempt to evaluate this expression
it will incur a run-time error, reflecting the erroneous attempt to find the
number n that, when multiplied by 0, yields 5. The error is expressed
in ML by raising an exception; we will have more to say about exceptions
in chapter 12. Another reason that a well-typed expression might not have
a value is that the attempt to evaluate it leads to an infinite loop. We don’t
yet have the machinery in place to define such expressions, but we will
soon see that it is possible for an expression to diverge, or run forever, when
evaluated.

AUGUST 25, 2006 WORKING DRAFT



2.3 Types, Types, Types 21

2.3 Types, Types, Types
What types are there besides the integers? Here are a few useful base types
of ML:

• Type name: real

– Values: 3.14, 2.17, 0.1E6, . . .

– Operations: +, -, *, /, =, <, . . .

• Type name: char

– Values: #"a", #"b", . . .

– Operations: ord,chr,=, <, . . .

• Type name: string

– Values: "abc", "1234", . . .

– Operations: ˆ , size, =, <, . . .

• Type name: bool

– Values: true, false

– Operations: if exp then exp1 else exp2

There are many, many (in fact, infinitely many!) others, but these are
enough to get us started. (See V for a complete description of the primitive
types of ML, including the ones given above.)

Notice that some of the arithmetic operations for real numbers are writ-
ten the same way as for the corresponding operation on integers. For ex-
ample, we may write 3.1+2.7 to perform a floating point addition of two
floating point numbers. This is called overloading; the addition operation
is said to be overloaded at the types int and real. In an expression in-
volving addition the type checker tries to resolve which form of addition
(fixed point or floating point) you mean. If the arguments are int’s, then
fixed point addition is used; if the arguments are real’s, then floating ad-
dition is used; otherwise an error is reported.1 Note that ML does not per-
form any implicit conversions between types! For example, the expression

1If the type of the arguments cannot be determined, the type defaults to int.

AUGUST 25, 2006 WORKING DRAFT



2.3 Types, Types, Types 22

3+3.14 is rejected as ill-formed! If you intend floating point addition, you
must write instead real(3)+3.14, which converts the integer 3 to its float-
ing point representation before performing the addition. If, on the other
hand, you intend integer addition, you must write 3+round(3.14), which
converts 3.14 to an integer by rounding before performing the addition.

Finally, note that floating point division is a different operation from
integer quotient! Thus we write 3.1/2.7 for the result of dividing 3.1 by
2.7, which results in a floating point number. We reserve the operator div
for integers, and use / for floating point division.

The conditional expression

if exp then exp1 else exp2

is used to discriminate on a Boolean value. It has type typ if exp has type
bool and both exp1 and exp2 have type typ. Notice that both “arms” of the
conditional must have the same type! It is evaluated by first evaluating
exp, then proceeding to evaluate either exp1 or exp2, according to whether
the value of exp is true or false. For example,

if 1<2 then "less" else "greater"

evaluates to "less" since the value of the expression 1<2 is true.
Note that the expression

if 1<2 then 0 else (1 div 0)

evaluates to 0, even though 1 div 0 incurs a run-time error. This is be-
cause evaluation of the conditional proceeds either to the then clause or to
the else clause, depending on the outcome of the boolean test. Whichever
clause is evaluated, the other is simply discarded without further consid-
eration.

Although we may, in fact, test equality of two boolean expressions, it
is rarely useful to do so. Beginners often writen conditionals of the form

if exp = true then exp1 else exp2.

But this is equivalent to the simpler expression

if exp then exp1 else exp2.

Similarly, rather than write

AUGUST 25, 2006 WORKING DRAFT



2.4 Type Errors 23

if exp = false then exp1 else exp2,

it is better to write

if not exp then exp1 else exp2

or, better yet, just

if exp then exp2 else exp1.

2.4 Type Errors
Now that we have more than one type, we have enough rope to hang
ourselves by forming ill-typed expressions. For example, the following ex-
pressions are not well-typed:

size 45
#"1" + 1
#"2" ˆ "1"
3.14 + 2

In each case we are “misusing” an operator with arguments of the wrong
type.

This raises a natural question: is the following expression well-typed
or not?

if 1<2 then 0 else ("abc"+4)

Since the boolean test will come out true, the else clause will never be
executed, and hence need not be constrained to be well-typed. While this
reasoning is sensible for such a simple example, in general it is impossible
for the type checker to determine the outcome of the boolean test during
type checking. To be safe the type checker “assumes the worst” and insists
that both clauses of the conditional be well-typed, and in fact have the same
type, to ensure that the conditional expression can be given a type, namely
that of both of its clauses.

2.5 Sample Code
Here is the complete code for this chapter.

AUGUST 25, 2006 WORKING DRAFT



Chapter 3

Declarations

3.1 Variables
Just as in any other programming language, values may be assigned to
variables, which may then be used in expressions to stand for that value.
However, in sharp contrast to most familiar languages, variables in ML do
not vary! A value may be bound to a variable using a construct called a
value binding. Once a variable is bound to a value, it is bound to it for
life; there is no possibility of changing the binding of a variable once it has
been bound. In this respect variables in ML are more akin to variables in
mathematics than to variables in languages such as C.

A type may also be bound to a type constructor using a type binding.
A bound type constructor stands for the type bound to it, and can never
stand for any other type. For this reason a type binding is sometimes called
a type abbreviation — the type constructor stands for the type to which it is
bound.1

A value or type binding introduces a “new” variable or type construc-
tor, distinct from all others of that class, for use within its range of signif-
icance, or scope. Scoping in ML is static, or lexical, meaning that the range
of significance of a variable or type constructor is determined by the pro-
gram text, not by the order of evaluation of its constituent expressions.
(Languages with dynamic scope adopt the opposite convention.) For the
time being variables and type constructors have global scope, meaning that

1By the same token a value binding might also be called a value abbreviation, but for
some reason it never is.

24



3.2 Basic Bindings 25

the range of significance of the variable or type constructor is the “rest”
of the program — the part that lexically follows the binding. However,
we will soon introduce mechanisms for limiting the scopes of variables or
type constructors to a given expression.

3.2 Basic Bindings

3.2.1 Type Bindings
Any type may be given a name using a type binding. At this stage we have
so few types that it is hard to justify binding type names to identifiers, but
we’ll do it anyway because we’ll need it later. Here are some examples of
type bindings:

type float = real
type count = int and average = real

The first type binding introduces the type constructor float, which sub-
sequently is synonymous with real. The second introduces two type con-
structors, count and average, which stand for int and real, respectively.

In general a type binding introduces one or more new type construc-
tors simultaneously in the sense that the definitions of the type constructors
may not involve any of the type constructors being defined. Thus a bind-
ing such as

type float = real and average = float

is nonsensical (in isolation) since the type constructors float and average
are introduced simultaneously, and hence cannot refer to one another.

The syntax for type bindings is

type tycon1 = typ1
and ...
and tyconn = typn

where each tyconi is a type constructor and each typi is a type expression.

AUGUST 25, 2006 WORKING DRAFT



3.2 Basic Bindings 26

3.2.2 Value Bindings
A value may be given a name using a value binding. Here are some exam-
ples:

val m : int = 3+2
val pi : real = 3.14 and e : real = 2.17

The first binding introduces the variable m, specifying its type to be int
and its value to be 5. The second introduces two variables, pi and e, si-
multaneously, both having type real, and with pi having value 3.14 and
e having value 2.17. Notice that a value binding specifies both the type
and the value of a variable.

The syntax of value bindings is

val var1 : typ1 = exp1
and ...
and varn : typn = expn,

where each vari is a variable, each typi is a type expression, and each expi
is an expression.

A value binding of the form

val var : typ = exp

is type-checked by ensuring that the expression exp has type typ. If not,
the binding is rejected as ill-formed. If so, the binding is evaluated using
the bind-by-value rule: first exp is evaluated to obtain its value val, then val
is bound to var. If exp does not have a value, then the declaration does not
bind anything to the variable var.

The purpose of a binding is to make a variable available for use within
its scope. In the case of a type binding we may use the type variable intro-
duced by that binding in type expressions occurring within its scope. For
example, in the presence of the type bindings above, we may write

val pi : float = 3.14

since the type constructor float is bound to the type real, the type of the
expression 3.14. Similarly, we may make use of the variable introduced
by a value binding in value expressions occurring within its scope.

Continuing from the preceding binding, we may use the expression

AUGUST 25, 2006 WORKING DRAFT



3.3 Compound Declarations 27

sin pi

to stand for 0.0 (approximately), and we may bind this value to a variable
by writing

val x : float = sin pi

As these examples illustrate, type checking and evaluation are context
dependent in the presence of type and value bindings since we must refer
to these bindings to determine the types and values of expressions. For
example, to determine that the above binding for x is well-formed, we
must consult the binding for pi to determine that it has type float, consult
the binding for float to determine that it is synonymous with real, which
is necessary for the binding of x to have type float.

The rough-and-ready rule for both type-checking and evaluation is that
a bound variable or type constructor is implicitly replaced by its binding
prior to type checking and evaluation. This is sometimes called the substi-
tution principle for bindings. For example, to evaluate the expression cos
x in the scope of the above declarations, we first replace the occurrence
of x by its value (approximately 0.0), then compute as before, yielding
(approximately) 1.0. Later on we will have to refine this simple principle
to take account of more sophisticated language features, but it is useful
nonetheless to keep this simple idea in mind.

3.3 Compound Declarations
Bindings may be combined to form declarations. A binding is an atomic
declaration, even though it may introduce many variables simultaneously.
Two declarations may be combined by sequential composition by simply
writing them one after the other, optionally separated by a semicolon.
Thus we may write the declaration

val m : int = 3+2
val n : int = m*m

which binds m to 5 and n to 25. Subsequently, we may evaluate m+n to ob-
tain the value 30. In general a sequential composition of declarations has
the form dec1 . . . decn, where n is at least 2. The scopes of these declarations

AUGUST 25, 2006 WORKING DRAFT



3.4 Limiting Scope 28

are nested within one another: the scope of dec1 includes dec2, . . . , decn, the
scope of dec2 includes dec3, . . . , decn, and so on.

One thing to keep in mind is that binding is not assignment. The binding
of a variable never changes; once bound to a value, it is always bound to
that value (within the scope of the binding). However, we may shadow a
binding by introducing a second binding for a variable within the scope
of the first binding. Continuing the above example, we may write

val n : real = 2.17

to introduce a new variable n with both a different type and a different
value than the earlier binding. The new binding eclipses the old one,
which may then be discarded since it is no longer accessible. (Later on, we
will see that in the presence of higher-order functions shadowed bindings
are not always discarded, but are preserved as private data in a closure.
One might say that old bindings never die, they just fade away.)

3.4 Limiting Scope
The scope of a variable or type constructor may be delimited by using let
expressions and local declarations. A let expression has the form

let dec in exp end

where dec is any declaration and exp is any expression. The scope of the
declaration dec is limited to the expression exp. The bindings introduced
by dec are discarded upon completion of evaluation of exp.

Similarly, we may limit the scope of one declaration to another decla-
ration by writing

local dec in dec′ end

The scope of the bindings in dec is limited to the declaration dec′. After
processing dec′, the bindings in dec may be discarded.

The value of a let expression is determined by evaluating the decla-
ration part, then evaluating the expression relative to the bindings intro-
duced by the declaration, yielding this value as the overall value of the
let expression. An example will help clarify the idea:

AUGUST 25, 2006 WORKING DRAFT



3.5 Typing and Evaluation 29

let
val m : int = 3
val n : int = m*m

in
m*n

end

This expression has type int and value 27, as you can readily verify by
first calculating the bindings for m and n, then computing the value of m*n
relative to these bindings. The bindings for m and n are local to the expres-
sion m*n, and are not accessible from outside the expression.

If the declaration part of a let expression eclipses earlier bindings, the
ambient bindings are restored upon completion of evaluation of the let
expression. Thus the following expression evaluates to 54:

val m : int = 2
val r : int =

let
val m : int = 3
val n : int = m*m

in
m*n

end * m

The binding of m is temporarily overridden during the evaluation of the
let expression, then restored upon completion of this evaluation.

3.5 Typing and Evaluation
To complete this chapter, let’s consider in more detail the context-sensitivity
of type checking and evaluation in the presence of bindings. The key ideas
are:

• Type checking must take account of the declared type of a variable.

• Evaluation must take account of the declared value of a variable.

This is achieved by maintaining environments for type checking and
evaluation. The type environment records the types of variables; the value

AUGUST 25, 2006 WORKING DRAFT



3.5 Typing and Evaluation 30

environment records their values. For example, after processing the com-
pound declaration

val m : int = 0
val x : real = Math.sqrt(2.0)
val c : char = #"a"

the type environment contains the information

val m : int
val x : real
val c : char

and the value environment contains the information

val m = 0
val x = 1.414
val c = #"a"

In a sense the value declarations have been divided in “half”, separating
the type from the value information.

Thus we see that value bindings have significance for both type check-
ing and evaluation. In contrast type bindings have significance only for
type checking, and hence contribute only to the type environment. A type
binding such as

type float = real

is recorded in its entirety in the type environment, and no change is made
to the value environment. Subsequently, whenever we encounter the type
constructor float in a type expression, it is replaced by real in accordance
with the type binding above.

In chapter 2 we said that a typing assertion has the form exp : typ, and
that an evaluation assertion has the form exp ⇓ val. While two-place typing
and evaluation assertions are sufficient for closed expressions (those with-
out variables), we must extend these relations to account for open expres-
sions (those with variables). Each must be equipped with an environment
recording information about type constructors and variables introduced
by declarations.

Typing assertions are generalized to have the form

AUGUST 25, 2006 WORKING DRAFT



3.5 Typing and Evaluation 31

typenv # exp : typ

where typenv is a type environment that records the bindings of type con-
structors and the types of variables that may occur in exp.2 We may think
of typenv as a sequence of specifications of one of the following two forms:

1. type typvar = typ

2. val var : typ

Note that the second form does not include the binding for var, only its
type!

Evaluation assertions are generalized to have the form

valenv # exp ⇓ val

where valenv is a value environment that records the bindings of the vari-
ables that may occur in exp. We may think of valenv as a sequence of spec-
ifications of the form

val var = val

that bind the value val to the variable var.
Finally, we also need a new assertion, called type equivalence, that de-

termines when two types are equivalent, relative to a type environment.
This is written

typenv # typ1 ≡ typ2

Two types are equivalent iff they are the same when the type constructors
defined in typenv are replaced by their bindings.

The primary use of a type environment is to record the types of the
value variables that are available for use in a given expression. This is
expressed by the following axiom:

. . .val var : typ . . .# var : typ
2The turnstile symbol, “#”, is simply a punctuation mark separating the type environ-

ment from the expression and its type.

AUGUST 25, 2006 WORKING DRAFT



3.6 Sample Code 32

In words, if the specification val var : typ occurs in the type environment,
then we may conclude that the variable var has type typ. This rule glosses
over an important point. In order to account for shadowing we require
that the rightmost specification govern the type of a variable. That way
re-binding of variables with the same name but different types behaves as
expected.

Similarly, the evaluation relation must take account of the value envi-
ronment. Evaluation of variables is governed by the following axiom:

. . .val var = val . . .# var ⇓ val

Here again we assume that the val specification is the rightmost one gov-
erning the variable var to ensure that the scoping rules are respected.

The role of the type equivalence assertion is to ensure that type con-
structors always stand for their bindings. This is expressed by the follow-
ing axiom:

. . .type typvar = typ . . .# typvar ≡ typ

Once again, the rightmost specification for typvar governs the assertion.

3.6 Sample Code
Here is the complete code for this chapter.

AUGUST 25, 2006 WORKING DRAFT


