
Chapter 4

Functions

4.1 Functions as Templates
So far we just have the means to calculate the values of expressions, and to
bind these values to variables for future reference. In this chapter we will
introduce the ability to abstract the data from a calculation, leaving behind
the bare pattern of the calculation. This pattern may then be instantiated
as often as you like so that the calculation may be repeated with specified
data values plugged in.

For example, consider the expression 2*(3+4). The data might be taken
to be the values 2, 3, and 4, leaving behind the pattern ! * (! + !),
with “holes” where the data used to be. We might equally well take the
data to just be 2 and 3, and leave behind the pattern ! * (! + 4). Or
we might even regard * and + as the data, leaving 2 ! (3 ! 4) as the
pattern! What is important is that a complete expression can be recovered
by filling in the holes with chosen data.

Since a pattern can contain many different holes that can be indepen-
dently instantiated, it is necessary to give names to the holes so that instan-
tiation consists of plugging in a given value for all occurrences of a name
in an expression. These names are, of course, just variables, and instan-
tiation is just the process of substituting a value for all occurrences of a
variable in a given expression. A pattern may therefore be viewed as a
function of the variables that occur within it; the pattern is instantiated by
applying the function to argument values.

This view of functions is similar to our experience from high school

33

4.2 Functions and Application 34

algebra. In algebra we manipulate polynomials such as x2 + 2x + 1 as
a form of expression denoting a real number, with the variable x repre-
senting a fixed, but unknown, quantity. (Indeed, variables in algebra are
sometimes called unknowns, or indeterminates.) It is also possible to think
of a polynomial as a function on the real line: given a real number x, a
polynomial determines a real number y computed by the given combi-
nation of arithmetic operations. Indeed, we sometimes write equations
such as f (x) = x2 + 2x + 1, to stand for the function f determined by
the polynomial. In the univariate case we can get away with just writing
the polynomial for the function, but in the multivariate case we must be
more careful: we may regard the polynomial x2 + 2xy + y2 to be a func-
tion of x, a function of y, or a function of both x and y. In these cases
we write f (x) = x2 + 2xy + y2 when x varies and y is held fixed, and
g(y) = x2 + 2xy + y2 when y varies for fixed x, and h(x, y) = x2 + 2xy + y2,
when both vary jointly.

In algebra it is usually left implicit that the variables x and y range
over the real numbers, and that f , g, and h are functions on the real line.
However, to be fully explicit, we sometimes write something like

f : R → R : x ∈ R #→ x2 + 2x + 1

to indicate that f is a function on the reals sending x ∈ R to x2 + 2x + 1 ∈
R. This notation has the virtue of separating the name of the function, f ,
from the function itself, the mapping that sends x ∈ R to x2 + 2x + 1.
It also emphasizes that functions are a kind of “value” in mathematics
(namely, a certain set of ordered pairs), and that the variable f is bound to
that value (i.e., that set) by the declaration. This viewpoint is especially im-
portant once we consider operators, such as the differential operator, that
map functions to functions. For example, if f is a differentiable function
on the real line, the function D f is its first derivative, another function on
the real line. In the case of the function f defined above the function D f
sends x ∈ R to 2x + 2.

4.2 Functions and Application
The treatment of functions in ML is very similar, except that we stress
the algorithmic aspects of functions (how they determine values from ar-
guments), as well as the extensional aspects (what they compute). As in

AUGUST 25, 2006 WORKING DRAFT

4.2 Functions and Application 35

mathematics, a function in ML is a kind of value, namely a value of func-
tion type of the form typ -> typ′. The type typ is the domain type (the type of
arguments) of the function, and typ′ is its range type (the type of its results).
We compute with a function by applying it to an argument value of its do-
main type and calculating the result, a value of its range type. Function
application is indicated by juxtaposition: we simply write the argument
next to the function.

The values of function type consist of primitive functions, such as addi-
tion and square root, and function expressions, which are also called lambda
expressions,1 of the form

fn var : typ => exp

The variable var is called the parameter, and the expression exp is called
the body. It has type typ->typ′ provided that exp has type typ′ under the
assumption that the parameter var has the type typ.

To apply such a function expression to an argument value val, we add
the binding

val var = val

to the value environment, and evaluate exp, obtaining a value val′. Then
the value binding for the parameter is removed, and the result value, val′,
is returned as the value of the application.

For example, Math.sqrt is a primitive function of type real->real that
may be applied to a real number to obtain its square root. For example, the
expression Math.sqrt 2.0 evaluates to 1.414 (approximately). We can,
if we wish, parenthesize the argument, writing Math.sqrt (2.0) for the
sake of clarity; this is especially useful for expressions such as Math.sqrt
(Math.sqrt 2.0). The square root function is built in. We may write the
fourth root function as the following function expression:

fn x : real => Math.sqrt (Math.sqrt x)

It may be applied to an argument by writing an expression such as

(fn x : real => Math.sqrt (Math.sqrt x)) (16.0),

1For purely historical reasons.

AUGUST 25, 2006 WORKING DRAFT

4.2 Functions and Application 36

which calculates the fourth root of 16.0. The calculation proceeds by bind-
ing the variable x to the argument 16.0, then evaluating the expression
Math.sqrt (Math.sqrt x) in the presence of this binding. When evalua-
tion completes, we drop the binding of x from the environment, since it is
no longer needed.

Notice that we did not give the fourth root function a name; it is an
“anonymous” function. We may give it a name using the declaration
forms introduced in chapter 3. For example, we may bind the fourth root
function to the variable fourthroot using the following declaration:

val fourthroot : real -> real =
fn x : real => Math.sqrt (Math.sqrt x)

We may then write fourthroot 16.0 to compute the fourth root of 16.0.
This notation for defining functions quickly becomes tiresome, so ML

provides a special syntax for function bindings that is more concise and
natural. Instead of using the val binding above to define fourthroot, we
may instead write

fun fourthroot (x:real):real = Math.sqrt (Math.sqrt x)

This declaration has the same meaning as the earlier val binding, namely
it binds fn x:real => Math.sqrt(Math.sqrt x) to the variable fourthroot.

It is important to note that function applications in ML are evaluated
according to the call-by-value rule: the arguments to a function are evalu-
ated before the function is called. Put in other terms, functions are defined
to act on values, rather than on unevaluated expressions. Thus, to evaluate
an expression such as fourthroot (2.0+2.0), we proceed as follows:

1. Evaluate fourthroot to the function value fn x : real => Math.sqrt
(Math.sqrt x).

2. Evaluate the argument 2.0+2.0 to its value 4.0

3. Bind x to the value 4.0.

4. Evaluate Math.sqrt (Math.sqrt x) to 1.414 (approximately).

(a) Evaluate Math.sqrt to a function value (the primitive square
root function).

AUGUST 25, 2006 WORKING DRAFT

4.3 Binding and Scope, Revisited 37

(b) Evaluate the argument expression Math.sqrt x to its value, ap-
proximately 2.0.

i. Evaluate Math.sqrt to a function value (the primitive square
root function).

ii. Evaluate x to its value, 4.0.
iii. Compute the square root of 4.0, yielding 2.0.

(c) Compute the square root of 2.0, yielding 1.414.

5. Drop the binding for the variable x.

Notice that we evaluate both the function and argument positions of an
application expression — both the function and argument are expressions
yielding values of the appropriate type. The value of the function position
must be a value of function type, either a primitive function or a lambda
expression, and the value of the argument position must be a value of the
domain type of the function. In this case the result value (if any) will be of
the range type of the function. Functions in ML are first-class, meaning that
they may be computed as the value of an expression. We are not limited to
applying only named functions, but rather may compute “new” functions
on the fly and apply these to arguments. This is a source of considerable
expressive power, as we shall see in the sequel.

Using similar techniques we may define functions with arbitrary do-
main and range. For example, the following are all valid function declara-
tions:

fun srev (s:string):string = implode (rev (explode s))
fun pal (s:string):string = s ˆ (srev s)
fun double (n:int):int = n + n
fun square (n:int):int = n * n
fun halve (n:int):int = n div 2
fun is even (n:int):bool = (n mod 2 = 0)

Thus pal "ot" evaluates to the string "otto", and is even 4 evaluates to
true.

4.3 Binding and Scope, Revisited
A function expression of the form

AUGUST 25, 2006 WORKING DRAFT

4.3 Binding and Scope, Revisited 38

fn var:typ => exp

binds the variable var within the body exp of the function. Unlike val
bindings, function expressions bind a variable without giving it a specific
value. The value of the parameter is only determined when the function
is applied, and then only temporarily, for the duration of the evaluation of
its body.

It is worth reviewing the rules for binding and scope of variables that
we introduced in chapter 3 in the presence of function expressions. As be-
fore we adhere to the principle of static scope, according to which variables
are taken to refer to the nearest enclosing binding of that variable, whether
by a val binding or by a fn expression.

Thus, in the following example, the occurrences of x in the body of the
function f refer to the parameter of f, whereas the occurrences of x in the
body of g refer to the preceding val binding.

val x:real = 2.0
fun f(x:real):real = x+x
fun g(y:real):real = x+y

Local val bindings may shadow parameters, as well as other val bindings.
For example, consider the following function declaration:

fun h(x:real):real =
let val x:real = 2.0 in x+x end * x

The inner binding of x by the val declaration shadows the parameter x of
h, but only within the body of the let expression. Thus the last occurrence
of x refers to the parameter of h, whereas the preceding two occurrences
refer to the inner binding of x to 2.0.

The phrases “inner” and “outer” binding refer to the logical structure,
or abstract syntax of an expression. In the preceding example, the body
of h lies “within” the scope of the parameter x, and the expression x+x
lies within the scope of the val binding for x. Since the occurrences of x
within the body of the let lie within the scope of the inner val binding,
they are taken to refer to that binding, rather than to the parameter. On
the other hand the last occurrence of x does not lie within the scope of the
val binding, and hence refers to the parameter of h.

In general the names of parameters do not matter; we can rename them
at will without affecting the meaning of the program, provided that we

AUGUST 25, 2006 WORKING DRAFT

4.4 Sample Code 39

simultaneously (and consistently) rename the binding occurrence and all
uses of that variable. Thus the functions f and g below are completely
equivalent to each other:

fun f(x:int):int = x*x
fun g(y:int):int = y*y

A parameter is just a placeholder; its name is not important.
Our ability to rename parameters is constrained by the static scoping

rule. We may rename a parameter to whatever we’d like, provided that
we don’t change the way in which uses of a variable are resolved. For
example, consider the following situation:

val x:real = 2.0
fun h(y:real):real = x+y

The parameter y to h may be renamed to z without affecting its meaning.
However, we may not rename it to x, for doing so changes its meaning!
That is, the function

fun h’(x:real):real = x+x

does not have the same meaning as h, because now both occurrences of x
in the body of h’ refer to the parameter, whereas in h the variable x refers
to the outer val binding, whereas the variable y refers to the parameter.

While this may seem like a minor technical issue, it is essential that you
master these concepts now, for they play a central, and rather subtle, role
later on.

4.4 Sample Code
Here is the complete code for this chapter.

AUGUST 25, 2006 WORKING DRAFT

Chapter 5

Products and Records

5.1 Product Types
A distinguishing feature of ML is that aggregate data structures, such as
tuples, lists, arrays, or trees, may be created and manipulated with ease.
In contrast to most familiar languages it is not necessary in ML to be con-
cerned with allocation and deallocation of data structures, nor with any
particular representation strategy involving, say, pointers or address arith-
metic. Instead we may think of data structures as first-class values, on a
par with every other value in the language. Just as it is unnecessary to
think about “allocating” integers to evaluate an arithmetic expression, it is
unnecessary to think about allocating more complex data structures such
as tuples or lists.

5.1.1 Tuples
This chapter is concerned with the simplest form of aggregate data struc-
ture, the n-tuple. An n-tuple is a finite ordered sequence of values of the
form

(val1,...,valn),

where each vali is a value. A 2-tuple is usually called a pair, a 3-tuple a
triple, and so on.

An n-tuple is a value of a product type of the form

typ1*... *typn.

40

5.1 Product Types 41

Values of this type are n-tuples of the form

(val1,...,valn),

where vali is a value of type typi (for each 1 ≤ i ≤ n).
Thus the following are well-formed bindings:

val pair : int * int = (2, 3)
val triple : int * real * string = (2, 2.0, "2")
val quadruple

: int * int * real * real
= (2,3,2.0,3.0)

val pair of pairs
: (int * int) * (real * real)
= ((2,3),(2.0,3.0))

The nesting of parentheses matters! A pair of pairs is not the same as
a quadruple, so the last two bindings are of distinct values with distinct
types.

There are two limiting cases, n = 0 and n = 1, that deserve special
attention. A 0-tuple, which is also known as a null tuple, is the empty
sequence of values, (). It is a value of type unit, which may be thought of
as the 0-tuple type.1 The null tuple type is surprisingly useful, especially
when programming with effects. On the other hand there seems to be no
particular use for 1-tuples, and so they are absent from the language.

As a convenience, ML also provides a general tuple expression of the
form

(exp1,...,expn),

where each expi is an arbitrary expression, not necessarily a value. Tuple
expressions are evaluated from left to right, so that the above tuple expres-
sion evaluates to the tuple value yielding the tuple value

(val1,...,valn),

provided that exp1 evaluates to val1, exp2 evaluates to val2, and so on. For
example, the binding

1In Java (and other languages) the type unit is misleadingly written void, which sug-
gests that the type has no members, but in fact it has exactly one!

AUGUST 25, 2006 WORKING DRAFT

5.1 Product Types 42

val pair : int * int = (1+1, 5-2)

binds the value (2, 3) to the variable pair.
Strictly speaking, it is not essential to have tuple expressions as a prim-

itive notion in the language. Rather than write

(exp1,...,expn),

with the (implicit) understanding that the expi’s are evaluated from left to
right, we may instead write

let val x1 = exp1
val x2 = exp2
...
val xn = expn

in (x1,...,xn) end

which makes the evaluation order explicit.

5.1.2 Tuple Patterns
One of the most powerful, and distinctive, features of ML is the use of
pattern matching to access components of aggregate data structures. For
example, suppose that val is a value of type

(int * string) * (real * char)

and we wish to retrieve the first component of the second component of
val, a value of type real. Rather than explicitly “navigate” to this position
to retrieve it, we may simply use a generalized form of value binding in
which we select that component using a pattern:

val ((,), (r:real,)) = val

The left-hand side of the val binding is a tuple pattern that describes a
pair of pairs, binding the first component of the second component to the
variable r. The underscores indicate “don’t care” positions in the pattern
— their values are not bound to any variable. If we wish to give names to
all of the components, we may use the following value binding:

val ((i:int, s:string), (r:real, c:char)) = val

AUGUST 25, 2006 WORKING DRAFT

5.1 Product Types 43

If we’d like we can even give names to the first and second components of
the pair, without decomposing them into constituent parts:

val (is:int*string,rc:real*char) = val

The general form of a value binding is

val pat = exp,

where pat is a pattern and exp is an expression. A pattern is one of three
forms:

1. A variable pattern of the form var:typ.

2. A tuple pattern of the form (pat1,...,patn), where each pati is a pat-
tern. This includes as a special case the null-tuple pattern, ().

3. A wildcard pattern of the form .

The type of a pattern is determined by an inductive analysis of the form
of the pattern:

1. A variable pattern var:typ is of type typ.

2. A tuple pattern (pat1,...,patn) has type typ1*· · · *typn, where each
pati is a pattern of type typi. The null-tuple pattern () has type unit.

3. The wildcard pattern has any type whatsoever.

A value binding of the form

val pat = exp

is well-typed iff pat and exp have the same type; otherwise the binding is
ill-typed and is rejected.

For example, the following bindings are well-typed:

val (m:int, n:int) = (7+1,4 div 2)
val (m:int, r:real, s:string) = (7, 7.0, "7")
val ((m:int,n:int), (r:real, s:real)) = ((4,5),(3.1,2.7))
val (m:int, n:int, r:real, s:real) = (4,5,3.1,2.7)

In contrast, the following are ill-typed:

AUGUST 25, 2006 WORKING DRAFT

5.1 Product Types 44

val (m:int,n:int,r:real,s:real) = ((4,5),(3.1,2.7))
val (m:int, r:real) = (7+1,4 div 2)
val (m:int, r:real) = (7, 7.0, "7")

Value bindings are evaluated using the bind-by-value principle discussed
earlier, except that the binding process is now more complex than before.
First, we evaluate the right-hand side of the binding to a value (if indeed
it has one). This happens regardless of the form of the pattern — the right-
hand side is always evaluated. Second, we perform pattern matching to
determine the bindings for the variables in the pattern.

The process of matching a value against a pattern is defined by a set
of rules for reducing bindings with complex patterns to a set of bindings
with simpler patterns, stopping once we reach a binding with a variable
pattern. The rules are as follows:

1. The variable binding val var = val is irreducible.

2. The wildcard binding val = val is discarded.

3. The tuple binding

val (pat1,...,patn) =
(val1,...,valn)

is reduced to the set of n bindings

val pat1 = val1
...

val patn = valn

In the case that n = 0 the tuple binding is simply discarded.

These simplifications are repeated until all bindings are irreducible, which
leaves us with a set of variable bindings that constitute the result of pattern
matching.

For example, evaluation of the binding

val ((m:int,n:int), (r:real, s:real)) = ((2,3),(2.0,3.0))

proceeds as follows. First, we compose this binding into the following two
bindings:

AUGUST 25, 2006 WORKING DRAFT

5.2 Record Types 45

val (m:int, n:int) = (2,3)
and (r:real, s:real) = (2.0,3.0).

Then we decompose each of these bindings in turn, resulting in the fol-
lowing set of four atomic bindings:

val m:int = 2
and n:int = 3
and r:real = 2.0
and s:real = 3.0

At this point the pattern-matching process is complete.

5.2 Record Types
Tuples are most useful when the number of positions is small. When the
number of components grows beyond a small number, it becomes difficult
to remember which position plays which role. In that case it is more natu-
ral to attach a label to each component of the tuple that mediates access to
it. This is the notion of a record type.

A record type has the form

{lab1:typ1,...,labn:typn},

where n ≥ 0, and all of the labels labi are distinct. A record value has the
form

{lab1=val1,...,labn=valn},

where vali has type typi. A record pattern has the form

{lab1=pat1,...,labn=patn}

which has type

{lab1:typ1,...,labn:typn}

provided that each pati has type typi.
A record value binding of the form

AUGUST 25, 2006 WORKING DRAFT

5.2 Record Types 46

val
{lab1=pat1,...,labn=patn} =
{lab1=val1,...,labn=valn}

is decomposed into the following set of bindings

val pat1 = val1
and ...
and patn = valn.

Since the components of a record are identified by name, not position,
the order in which they occur in a record value or record pattern is not
important. However, in a record expression (in which the components may
not be fully evaluated), the fields are evaluated from left to right in the
order written, just as for tuple expressions.

Here are some examples to help clarify the use of record types. First,
let us define the record type hyperlink as follows:

type hyperlink =
{ protocol : string,

address : string,
display : string }

The record binding

val mailto rwh : hyperlink =
{ protocol="mailto",

address="rwh@cs.cmu.edu",
display="Robert Harper" }

defines a variable of type hyperlink. The record binding

val { protocol=prot, display=disp, address=addr } = mailto rwh

decomposes into the three variable bindings

val prot = "mailto"
val addr = "rwh@cs.cmu.edu"
val disp = "Robert Harper"

which extract the values of the fields of mailto rwh.
Using wild cards we can extract selected fields from a record. For ex-

ample, we may write

AUGUST 25, 2006 WORKING DRAFT

5.2 Record Types 47

val {protocol=prot, address= , display= } = mailto rwh

to bind the variable prot to the protocol field of the record value mailto rwh.
It is quite common to encounter record types with tens of fields. In

such cases even the wild card notation doesn’t help much when it comes
to selecting one or two fields from such a record. For this we often use
ellipsis patterns in records, as illustrated by the following example.

val {protocol=prot,...} = intro home

The pattern {protocol=prot,...} stands for the expanded pattern

{protocol=prot, address= , display= }

in which the elided fields are implicitly bound to wildcard patterns.
In general the ellipsis is replaced by as many wildcard bindings as are

necessary to fill out the pattern to be consistent with its type. In order for
this to occur the compiler must be able to determine unambiguously the type of
the record pattern. Here the right-hand side of the value binding determines
the type of the pattern, which then determines which additional fields to
fill in. In some situations the context does not disambiguate, in which case
you must supply additional type information, or avoid the use of ellipsis
notation.

Finally, ML provides a convenient abbreviated form of record pattern

{lab1,...,labn}

which stands for the pattern

{lab1=var1,...,labn=varn}

where the variables vari are variables with the same name as the corre-
sponding label labi. For example, the binding

val { protocol, address, display } = mailto rwh

decomposes into the sequence of atomic bindings

val protocol = "mailto"
val address = "rwh@cs.cmu.edu"
val display = "Robert Harper"

This avoids the need to think up a variable name for each field; we can just
make the label do “double duty” as a variable.

AUGUST 25, 2006 WORKING DRAFT

5.3 Multiple Arguments and Multiple Results 48

5.3 Multiple Arguments and Multiple Results
A function may bind more than one argument by using a pattern, rather
than a variable, in the argument position. Function expressions are gener-
alized to have the form

fn pat => exp

where pat is a pattern and exp is an expression. Application of such a func-
tion proceeds much as before, except that the argument value is matched
against the parameter pattern to determine the bindings of zero or more
variables, which are then used during the evaluation of the body of the
function.

For example, we may make the following definition of the Euclidean
distance function:

val dist
: real * real -> real
= fn (x:real, y:real) => sqrt (x*x + y*y)

This function may then be applied to a pair (a two-tuple!) of arguments to
yield the distance between them. For example, dist (2.0,3.0) evaluates
to (approximately) 4.0.

Using fun notation, the distance function may be defined more con-
cisely as follows:

fun dist (x:real, y:real):real = sqrt (x*x + y*y)

The meaning is the same as the more verbose val binding given earlier.
Keyword parameter passing is supported through the use of record pat-

terns. For example, we may define the distance function using keyword
parameters as follows:

fun dist’ {x=x:real, y=y:real} = sqrt (x*x + y*y)

The expression dist’ {x=2.0,y=3.0} invokes this function with the indi-
cated x and y values.

Functions with multiple results may be thought of as functions yield-
ing tuples (or records). For example, we might compute two different no-
tions of distance between two points at once as follows:

AUGUST 25, 2006 WORKING DRAFT

5.3 Multiple Arguments and Multiple Results 49

fun dist2 (x:real, y:real):real*real
= (sqrt (x*x+y*y), abs(x-y))

Notice that the result type is a pair, which may be thought of as two results.
These examples illustrate a pleasing regularity in the design of ML.

Rather than introduce ad hoc notions such as multiple arguments, multiple
results, or keyword parameters, we make use of the general mechanisms
of tuples, records, and pattern matching.

It is sometimes useful to have a function to select a particular compo-
nent from a tuple or record (e.g., the third component or the component
with a given label). Such functions may be easily defined using pattern
matching. But since they arise so frequently, they are pre-defined in ML
using sharp notation. For any tuple type

typ1*· · ·*typn,

and each 1 ≤ i ≤ n, there is a function #i of type

typ1*· · ·*typn->typi

defined as follows:

fun #i (, ..., , x, , ...,) = x

where x occurs in the ith position of the tuple (and there are underscores
in the other n− 1 positions).

Thus we may refer to the second field of a three-tuple val by writing
#2(val). It is bad style, however, to over-use the sharp notation; code is
generally clearer and easier to maintain if you use patterns wherever pos-
sible. Compare, for example, the following definition of the Euclidean
distance function written using sharp notation with the original.

fun dist (p:real*real):real
= sqrt((#1 p)*(#1 p)+(#2 p)*(#2 p))

You can easily see that this gets out of hand very quickly, leading to un-
readable code. Use of the sharp notation is strongly discouraged!

A similar notation is provided for record field selection. The following
function #lab selects the component of a record with label lab.

fun #lab {lab=x,...} = x

Notice the use of ellipsis! Bear in mind the disambiguation requirement:
any use of #lab must be in a context sufficient to determine the full record
type of its argument.

AUGUST 25, 2006 WORKING DRAFT

5.4 Sample Code 50

5.4 Sample Code
Here is the complete code for this chapter.

AUGUST 25, 2006 WORKING DRAFT

