Chapter 6

Case Analysis

6.1 Homogeneous and Heterogeneous Types

Tuple types have the property that all values of that type have the same
form (n-tuples, for some n determined by the type); they are said to be
homogeneous. For example, all values of type int*real are pairs whose
tirst component is an integer and whose second component is a real. Any
type-correct pattern will match any value of that type; there is no pos-
sibility of failure of pattern matching. The pattern (x:int,y:real) is of
type int*real and hence will match any value of that type. On the other
hand the pattern (x:int,y:real,z:string) is of type int*real*string
and cannot be used to match against values of type int*real; attempting
to do so fails at compile time.

Other types have values of more than one form; they are said to be het-
erogeneous types. For example, a value of type int mightbe 0, 1, 71, ...or
a value of type char might be #"a" or #"z". (Other examples of hetero-
geneous types will arise later on.) Corresponding to each of the values of
these types is a pattern that matches only that value. Attempting to match
any other value against that pattern fails at execution time with an error
condition called a bind failure.

Here are some examples of pattern-matching against values of a het-
erogeneous type:

val 0 = 1-1
val (0,x) = (1-1, 34)
val (0, #"0") = (2-1, #"0")

51



6.2 Clausal Function Expressions 52

The first two bindings succeed, the third fails. In the case of the second,
the variable x is bound to 34 after the match. No variables are bound in
the first or third examples.

6.2 Clausal Function Expressions

The importance of constant patterns becomes clearer once we consider
how to define functions over heterogeneous types. This is achieved in
ML using a clausal function expression whose general form is

fn pat; => exp;
|

| pat, => expy

Each pat; is a pattern and each exp; is an expression involving the variables
of the pattern pat;. Each component pat=>exp is called a clause, or a rule.
The entire assembly of rules is called a match.

The typing rules for matches ensure consistency of the clauses. Specif-
ically, there must exist types typ; and typ, such that

1. Each pattern pat; has type typ;.

2. Each expression exp; has type typ,, given the types of the variables in
pattern pat;.

If these requirements are satisfied, the function has the type typ;->typ,.

Application of a clausal function to a value val proceeds by considering
the clauses in the order written. At stage i, where 1 < i < n, the argument
value val is matched against the pattern pat;; if the pattern match succeeds,
evaluation continues with the evaluation of expression exp;, with the vari-
ables of pat; replaced by their values as determined by pattern matching.
Otherwise we proceed to stage i + 1. If no pattern matches (i.e., we reach
stage n + 1), then the application fails with an execution error called a
match failure.

Here’s an example. Consider the following clausal function:

val recip : int -> int =
fn 0 => 0 | n:int => 1 div n

AUGUST 25, 2006 WORKING DRAFT



6.3 Booleans and Conditionals, Revisited 53

This defines an integer-valued reciprocal function on the integers, where
the reciprocal of 0 is arbitrarily defined to be 0. The function has two
clauses, one for the argument 0, the other for non-zero arguments n. (Note
that n is guaranteed to be non-zero because the patterns are considered in
order: we reach the pattern n:int only if the argument fails to match the
pattern 0.)

The fun notation is also generalized so that we may define recip using
the following more concise syntax:

fun recip 0 = 0
| recip (n:int) = 1 div n

One annoying thing to watch out for is that the fun form uses an equal
sign to separate the pattern from the expression in a clause, whereas the
fn form uses a double arrow.

Case analysis on the values of a heterogeneous type is performed by
application of a clausally-defined function. The notation

case exp
of pat; => exp;
I
| pat, => expy

is short for the application

(fn pat; => expq

| ...
| pat, => expy)
exp.

Evaluation proceeds by first evaluating exp, then matching its value suc-
cessively against the patterns in the match until one succeeds, and contin-
uing with evaluation of the corresponding expression. The case expres-
sion fails if no pattern succeeds to match the value.

6.3 Booleans and Conditionals, Revisited

The type bool of booleans is perhaps the most basic example of a hetero-
geneous type. Its values are true and false. Functions may be defined

AUGUST 25, 2006 WORKING DRAFT



6.4 Exhaustiveness and Redundancy 54

on booleans using clausal definitions that match against the patterns true
and false.

For example, the negation function may be defined clausally as fol-
lows:

fun not true = false
| not false = true

The conditional expression
if exp then exp; else exp;
is short-hand for the case analysis

case exp
of true => exp;
| false => exp;

which is itself short-hand for the application
(fn true => exp; | false => expy) exp.

The “short-circuit” conjunction and disjunction operations are defined
as follows. The expression exp; andalso exp; is short for

if exp; then exp, else false
and the expression exp; orelse exp; is short for
if exp; then true else exp;.

You should expand these into case expressions and check that they behave
as expected. Pay particular attention to the evaluation order, and observe
that the call-by-value principle is not violated by these expressions.

6.4 Exhaustiveness and Redundancy

Matches are subject to two forms of “sanity check” as an aid to the ML
programmer. The first, called exhaustiveness checking, ensures that a well-
formed match covers its domain type in the sense that every value of the

AUGUST 25, 2006 WORKING DRAFT



6.4 Exhaustiveness and Redundancy 55

domain must match one of its clauses. The second, called redundancy check-
ing, ensures that no clause of a match is subsumed by the clauses that pre-
cede it. This means that the set of values covered by a clause in a match
must not be contained entirely within the set of values covered by the pre-
ceding clauses of that match.

Redundant clauses are always a mistake — such a clause can never be
executed. Redundant rules often arise accidentally. For example, the sec-
ond rule of the following clausal function definition is redundant:

fun not True = false
| not False = true

By capitalizing True we have turned it into a variable, rather than a con-
stant pattern. Consequently, every value matches the first clause, rendering
the second redundant.

Since the clauses of a match are considered in the order they are writ-
ten, redundancy checking is correspondingly order-sensitive. In particu-
lar, changing the order of clauses in a well-formed, irredundant match can
make it redundant, as in the following example:

fun recip (n:int) = 1 div n
| recip 0 =0

The second clause is redundant because the first matches any integer value,
including 0.

Inexhaustive matches may or may not be in error, depending on whether
the match might ever be applied to a value that is not covered by any
clause. Here is an example of a function with an inexhaustive match that
is plausibly in error:

fun is_numeric #"0" = true
| is_numeric #"1" = true
| is_numeric #"2" = true
| is_numeric #"3" = true
| is_numeric #"4" = true
| is_numeric #"5" = true
| is_numeric #"6" = true
| is_numeric #"7" = true
| is_numeric #"8" = true
| is_numeric #"9" = true

AUGUST 25, 2006 WORKING DRAFT



6.5 Sample Code 56

When applied to, say, #"a", this function fails. Indeed, the function never
returns false for any argument!

Perhaps what was intended here is to include a catch-all clause at the
end:

fun is_numeric #"0" = true
| is_numeric #"1" = true
| is_numeric #"2" = true
| is_numeric #"3" = true
| is_numeric #"4" = true
| is_numeric #"5" = true
| is_numeric #"6" = true
| is_numeric #"7" = true
| is_numeric #"8" = true
| is_numeric #"9" = true
| is_numeric _ = false

The addition of a final catch-all clause renders the match exhaustive, be-
cause any value not matched by the first ten clauses will surely be matched
by the eleventh.

Having said that, it is a very bad idea to simply add a catch-all clause
to the end of every match to suppress inexhaustiveness warnings from the
compiler. The exhaustiveness checker is your friend! Each such warning is
a suggestion to double-check that match to be sure that you've not made
a silly error of omission, but rather have intentionally left out cases that
are ruled out by the invariants of the program. In chapter 10 we will see
that the exhaustiveness checker is an extremely valuable tool for managing
code evolution.

6.5 Sample Code

Here is the complete code for this chapter.

AUGUST 25, 2006 WORKING DRAFT



Chapter 7

Recursive Functions

So far we’ve only considered very simple functions (such as the reciprocal
function) whose value is computed by a simple composition of primitive
functions. In this chapter we introduce recursive functions, the principal
means of iterative computation in ML. Informally, a recursive function is
one that computes the result of a call by possibly making further calls to
itself. Obviously, to avoid infinite regress, some calls must return their
results without making any recursive calls. Those that do must ensure
that the arguments are, in some sense, “smaller” so that the process will
eventually terminate.

This informal description obscures a central point, namely the means
by which we may convince ourselves that a function computes the result
that we intend. In general we must prove that for all inputs of the do-
main type, the body of the function computes the “correct” value of result
type. Usually the argument imposes some additional assumptions on the
inputs, called the pre-conditions. The correctness requirement for the re-
sult is called a post-condition. Our burden is to prove that for every input
satisfying the pre-conditions, the body evaluates to a result satisfying the
post-condition. In fact we may carry out such an analysis for many differ-
ent pre- and post-condition pairs, according to our interest. For example,
the ML type checker proves that the body of a function yields a value of
the range type (if it terminates) whenever it is given an argument of the
domain type. Here the domain type is the pre-condition, and the range
type is the post-condition. In most cases we are interested in deeper prop-
erties, examples of which we shall consider below.

To prove the correctness of a recursive function (with respect to given

57



7.1 Self-Reference and Recursion 58

pre- and post-conditions) it is typically necessary to use some form of in-
ductive reasoning. The base cases of the induction correspond to those
cases that make no recursive calls; the inductive step corresponds to those
that do. The beauty of inductive reasoning is that we may assume that the
recursive calls work correctly when showing that a case involving recur-
sive calls is correct. We must separately show that the base cases satisfy
the given pre- and post-conditions. Taken together, these two steps are
sufficient to establish the correctness of the function itself, by appeal to an
induction principle that justifies the particular pattern of recursion.

No doubt this all sounds fairly theoretical. The point of this chapter is
to show that it is also profoundly practical.

7.1 Self-Reference and Recursion

In order for a function to “call itself”, it must have a name by which it can
refer to itself. This is achieved by using a recursive value binding, which are
ordinary value bindings qualified by the keyword rec. The simplest form
of a recursive value binding is as follows:

val rec var:typ = val.

As in the non-recursive case, the left-hand is a pattern, but here the right-
hand side must be a value. In fact the right-hand side must be a function
expression, since only functions may be defined recursively in ML. The
function may refer to itself by using the variable var.

Here’s an example of a recursive value binding:

val rec factorial : int->int =
fn 0 => 1 | n:int => n * factorial (n-1)

Using fun notation we may write the definition of factorial much more
clearly and concisely as follows:

fun factorial 0 =1
| factorial (n:int) = n * factorial (n-1)

There is obviously a close correspondence between this formulation of
factorial and the usual textbook definition of the factorial function in

AUGUST 25, 2006 WORKING DRAFT



7.1 Self-Reference and Recursion 59

terms of recursion equations:

o =1
n' = nxn-1) (n>0)

Recursive value bindings are type-checked in a manner that may, at
tirst glance, seem paradoxical. To check that the binding

val rec var : typ = val

is well-formed, we ensure that the value val has type typ, assuming that
var has type typ. Since var refers to the value val itself, we are in effect
assuming what we intend to prove while proving it!

(Incidentally, since val is required to be a function expression, the type
typ will always be a function type.)

Let’s look at an example. To check that the binding for factorial
given above is well-formed, we assume that the variable factorial has
type int->int, then check that its definition, the function

fn 0 => 1 | n:int => n * factorial (n-1),

has type int->int. To do so we must check that each clause has type
int->int by checking for each clause that its pattern has type int and
that its expression has type int. This is clearly true for the first clause of
the definition. For the second, we assume that n has type int, then check
thatn * factorial (n-1) has type int. This is so because of the rules for
the primitive arithmetic operations and because of our assumption that
factorial has type int->int.

How are applications of recursive functions evaluated? The rules are
almost the same as before, with one modification. We must arrange that
all occurrences of the variable standing for the function are replaced by
the function itself before we evaluate the body. That way all references
to the variable standing for the function itself are indeed references to the
function itself!

Suppose that we have the following recursive function binding

val rec var : typ =
fn pat; => exp;
|

| pat, => expy

AUGUST 25, 2006 WORKING DRAFT



7.1 Self-Reference and Recursion 60

and we wish to apply var to the value val of type typ. As before, we con-
sider each clause in turn, until we find the first pattern pat; matching val.
We proceed, as before, by evaluating exp;, replacing the variables in pat; by
the bindings determined by pattern matching, but, in addition, we replace
all occurrences of the var by its binding in exp; before continuing evalua-
tion.

For example, to evaluate factorial 3, we proceed by retrieving the
binding of factorial and evaluating

(fn 0=>1 | n:int => nxfactorial(n-1))(3).

Considering each clause in turn, we find that the first doesn’t match, but
the second does. We therefore continue by evaluating its right-hand side,
the expressionn * factorial(n-1), after replacing n by 3 and factorial
by its definition. We are left with the sub-problem of evaluating the ex-
pression

3% (fn 0 => 1 | n:int => nxfactorial(n-1))(2)

Proceeding as before, we reduce this to the sub-problem of evaluating
3% (2 x (fn 0=>1 | n:int => nxfactorial(n-1))(1)),

which reduces to the sub-problem of evaluating

3% (2 %x (1 * (fn 0=>1 | n:int => nx*factorial(n-1))(0))),
which reduces to

3% (2% (1% 1)),

which then evaluates to 6, as desired.

Observe that the repeated substitution of factorial by its definition
ensures that the recursive calls really do refer to the factorial function itself.
Also observe that the size of the sub-problems grows until there are no
more recursive calls, at which point the computation can complete. In
broad outline, the computation proceeds as follows:

1. factorial 3

2. 3 * factorial 2

AUGUST 25, 2006 WORKING DRAFT



7.2 Iteration 61

3 * 2 x factorial 1
3 % 2 x 1 % factorial O
3% 2*x 1 %1

3 x 2 x 1

N S g ok ®»

3 *x 2
8. 6

Notice that the size of the expression first grows (in direct proportion to
the argument), then shrinks as the pending multiplications are completed.
This growth in expression size corresponds directly to a growth in run-
time storage required to record the state of the pending computation.

7.2 Iteration

The definition of factorial given above should be contrasted with the
following two-part definition:

fun helper (0,r:int) =r
| helper (n:int,r:int) = helper (n-1,n*r)

fun factorial (n:int) = helper (n, 1)

First we define a “helper” function that takes two parameters, an integer
argument and an accumulator that records the running partial result of the
computation. The idea is that the accumulator re-associates the pending
multiplications in the evaluation trace given above so that they can be per-
formed prior to the recursive call, rather than after it completes. This re-
duces the space required to keep track of those pending steps. Second, we
define factorial by calling helper with argument n and initial accumu-
lator value 1, corresponding to the product of zero terms (empty prefix).

As a matter of programming style, it is usual to conceal the definitions
of helper functions using a local declaration. In practice we would make
the following definition of the iterative version of factorial:

AUGUST 25, 2006 WORKING DRAFT



7.3 Inductive Reasoning 62

local
fun helper (0,r:int) =r
| helper (n:int,r:int) = helper (n-1,n*r)
in
fun factorial (n:int) = helper (n,1)
end

This way the helper function is not visible, only the function of interest is
“exported” by the declaration.

The important thing to observe about helper is that it is iterative, or tail
recursive, meaning that the recursive call is the last step of evaluation of an
application of it to an argument. This means that the evaluation trace of a
call to helper with arguments (3,1) has the following general form:

1. helper (3, 1)
2. helper (2, 3)
3. helper (1, 6)
4. helper (0, 6)
5. 6

Notice that there is no growth in the size of the expression because there
are no pending computations to be resumed upon completion of the re-
cursive call. Consequently, there is no growth in the space required for an
application, in contrast to the first definition given above. Tail recursive
definitions are analogous to loops in imperative languages: they merely
iterate a computation, without requiring auxiliary storage.

7.3 Inductive Reasoning

Time and space usage are important, but what is more important is that
the function compute the intended result. The key to the correctness of
a recursive function is an inductive argument establishing its correctness.
The critical ingredients are these:

1. Aninput-output specification of the intended behavior stating pre-conditions
on the arguments and a post-condition on the result.

AUGUST 25, 2006 WORKING DRAFT



7.3 Inductive Reasoning 63

2. A proof that the specification holds for each clause of the function,
assuming that it holds for any recursive calls.

3. An induction principle that justifies the correctness of the function as
a whole, given the correctness of its clauses.

We'll illustrate the use of inductive reasoning by a graduated series
of examples. First consider the simple, non-tail recursive definition of
factorial given in section 7.1. One reasonable specification for factorial
is as follows:

1. Pre-condition: n > 0.
2. Post-condition: factorial n evaluates to n!.
We are to establish the following statement of correctness of factorial:
if n > 0, then factorial n evaluates to n!.

That is, we show that the pre-conditions imply the post-condition holds
of the result of any application. This is called a total correctness assertion
because it states not only that the post-condition holds of any result of
application, but, moreover, that every application in fact yields a result
(subject to the pre-condition on the argument).

In contrast, a partial correctness assertion does not insist on termination,
only that the post-condition holds whenever the application terminates.
This may be stated as the assertion

if n > 0 and factorial n evaluates to p, then p = n!.

Notice that this statement is true of a function that diverges whenever it is
applied! In this sense a partial correctness assertion is weaker than a total
correctness assertion.

Let us establish the total correctness of factorial using the pre- and
post-conditions stated above. To do so, we apply the principle of math-
ematical induction on the argument n. Recall that this means we are to
establish the specification for the case n = 0, and, assuming it to hold for
n >= 0, show that it holds for n + 1. The base case, n = 0, is trivial:
by definition factorial n evaluates to 1, which is 0!. Now suppose that
n = m+ 1 for some m >= 0. By the inductive hypothesis we have that

AUGUST 25, 2006 WORKING DRAFT



7.3 Inductive Reasoning 64

factorial m evaluates to m! (since m > 0), and so by definition factorial

n evaluates to
nxm! = (m+1)xm!

= (m+1)!
= nl,

as required. This completes the proof.

That was easy. What about the iterative definition of factorial? We
focus on the behavior of helper. A suitable specification is given as fol-
lows:

1. Pre-condition: n > 0.
2. Post-condition: helper (n, r) evaluates to n! x r.

To show the total correctness of helper with respect to this specification,
we once again proceed by mathematical induction on n. We leave it as an
exercise to give the details of the proof.

With this in hand it is easy to prove the correctness of factorial — if
n > 0 then factorial n evaluates to the result of helper (n, 1), which
evaluates to n! x 1 = n!. This completes the proof.

Helper functions correspond to lemmas, main functions correspond to
theorems. Just as we use lemmas to help us prove theorems, we use helper
functions to help us define main functions. The foregoing argument shows
that this is more than an analogy, but lies at the heart of good program-
ming style.

Here’s an example of a function defined by complete induction (or strong
induction), the Fibonacci function, defined on integers n >= 0:

(* for n>=0, fib n yields the nth Fibonacci number *)
fun fib 0 =1

| fib 1 =1

| fib (n:int) = fib (n-1) + fib (n-2)

The recursive calls are made not only on n-1, but also n-2, which is why
we must appeal to complete induction to justify the definition. This defi-
nition of fib is very inefficient because it performs many redundant com-
putations: to compute fib n requires that we compute fib (n-1) and fib
(n-2). To compute £ib (n-1) requires that we compute fib (n-2) a sec-
ond time, and fib (n-3). Computing fib (n-2) requires computing fib

AUGUST 25, 2006 WORKING DRAFT



7.4 Mutual Recursion 65

(n-3) again, and fib (n-4). As you can see, there is considerable redun-
dancy here. It can be shown that the running time fib of is exponential in
its argument, which is quite awful.

Here’s a better solution: for each n >= 0 compute not only the nth
Fibonacci number, but also the (17 — 1)st as well. (For n = 0 we define the
“—1st” Fibonacci number to be zero). That way we can avoid redundant
recomputation, resulting in a linear-time algorithm. Here’s the code:

(x for n>=0, fib’ n evaluates to (a, b), where
a is the nth Fibonacci number, and
b is the (n-1)st *)
fun fib’ 0 = (1, 0)
| fib> 1 = (1, 1)
| fib’ (n:int) =

let

val (a:int, b:int) = fib’ (n-1)
in

(a+b, a)
end

You might feel satistied with this solution since it runs in time linear in
n. It turns out (see Graham, Knuth, and Patashnik, Concrete Mathematics
(Addison-Wesley 1989) for a derivation) that the recurrence

=1
F =1
Fn - Fn—l‘i‘anZ

has a closed-form solution over the real numbers. This means that the
nth Fibonacci number can be calculated directly, without recursion, by us-
ing floating point arithmetic. However, this is an unusual case. In most
instances recursively-defined functions have no known closed-form solu-
tion, so that some form of iteration is inevitable.

7.4 Mutual Recursion

It is often useful to define two functions simultaneously, each of which
calls the other (and possibly itself) to compute its result. Such functions

AUGUST 25, 2006 WORKING DRAFT



7.5 Sample Code 66

are said to be mutually recursive. Here’s a simple example to illustrate the
point, namely testing whether a natural number is odd or even. The most
obvious approach is to test whether the number is congruent to 0 mod
2, and indeed this is what one would do in practice. But to illustrate the
idea of mutual recursion we instead use the following inductive charac-
terization: 0 is even, and not odd; n > Oiseveniff n —1isodd; n > 0 is
odd iff n — 1 is even. This may be coded up using two mutually-recursive
procedures as follows:

fun even 0 = true

| even n = odd (n-1)
and odd 0 = false

| odd n = even (n-1)

Notice that even calls odd and odd calls even, so they are not definable
separately from one another. We join their definitions using the keyword
and to indicate that they are defined simultaneously by mutual recursion.

7.5 Sample Code

Here is the complete code for this chapter.

AUGUST 25, 2006 WORKING DRAFT



