
Chapter 11

Higher-Order Functions

11.1 Functions as Values
Values of function type are first-class, which means that they have the same
rights and privileges as values of any other type. In particular, functions
may be passed as arguments and returned as results of other functions,
and functions may be stored in and retrieved from data structures such
as lists and trees. We will see that first-class functions are an important
source of expressive power in ML.

Functions which take functions as arguments or yield functions as re-
sults are known as higher-order functions (or, less often, as functionals or
operators). Higher-order functions arise frequently in mathematics. For
example, the differential operator is the higher-order function that, when
given a (differentiable) function on the real line, yields its first derivative
as a function on the real line. We also encounter functionals mapping func-
tions to real numbers, and real numbers to functions. An example of the
former is provided by the definite integral viewed as a function of its in-
tegrand, and an example of the latter is the definite integral of a given
function on the interval [a, x], viewed as a function of a, that yields the
area under the curve from a to x as a function of x.

Higher-order functions are less familiar tools for many programmers
since the best-known programming languages have only rudimentary mech-
anisms to support their use. In contrast higher-order functions play a
prominent role in ML, with a variety of interesting applications. Their
use may be classified into two broad categories:

92



11.2 Binding and Scope 93

1. Abstracting patterns of control. Higher-order functions are design pat-
terns that “abstract out” the details of a computation to lay bare the
skeleton of the solution. The skeleton may be fleshed out to form a
solution of a problem by applying the general pattern to arguments
that isolate the specific problem instance.

2. Staging computation. It arises frequently that computation may be
staged by expending additional effort “early” to simplify the compu-
tation of “later” results. Staging can be used both to improve effi-
ciency and, as we will see later, to control sharing of computational
resources.

11.2 Binding and Scope
Before discussing these programming techniques, we will review the criti-
cally important concept of scope as it applies to function definitions. Recall
that Standard ML is a statically scoped language, meaning that identifiers
are resolved according to the static structure of the program. A use of the
variable var is considered to be a reference to the nearest lexically enclosing
declaration of var. We say “nearest” because of the possibility of shadow-
ing; if we re-declare a variable var, then subsequent uses of var refer to the
“most recent” (lexically!) declaration of it; any “previous” declarations are
temporarily shadowed by the latest one.

This principle is easy to apply when considering sequences of declara-
tions. For example, it should be clear by now that the variable y is bound
to 32 after processing the following sequence of declarations:

val x = 2 (* x=2 *)
val y = x*x (* y=4 *)
val x = y*x (* x=8 *)
val y = x*y (* y=32 *)

In the presence of function definitions the situation is the same, but it can
be a bit tricky to understand at first.

Here’s an example to test your grasp of the lexical scoping principle:

AUGUST 25, 2006 WORKING DRAFT



11.2 Binding and Scope 94

val x = 2
fun f y = x+y
val x = 3
val z = f 4

After processing these declarations the variable z is bound to 6, not to 7!
The reason is that the occurrence of x in the body of f refers to the first
declaration of x since it is the nearest lexically enclosing declaration of the
occurence, even though it has been subsequently re-declared.

This example illustrates three important points:

1. Binding is not assignment! If we were to view the second binding of
x as an assignment statement, then the value of z would be 7, not 6.

2. Scope resolution is lexical, not temporal. We sometimes refer to the
“most recent” declaration of a variable, which has a temporal flavor,
but we always mean “nearest lexically enclosing at the point of oc-
currence”.

3. ”Shadowed” bindings are not lost. The “old” binding for x is still
available (through calls to f), even though a more recent binding has
shadowed it.

One way to understand what’s going on here is through the concept
of a closure, a technique for implementing higher-order functions. When
a function expression is evaluated, a copy of the environment is attached
to the function. Subsequently, all free variables of the function (i.e., those
variables not occurring as parameters) are resolved with respect to the en-
vironment attached to the function; the function is therefore said to be
“closed” with respect to the attached environment. This is achieved at
function application time by “swapping” the attached environment of the
function for the environment active at the point of the call. The swapped
environment is restored after the call is complete. Returning to the ex-
ample above, the environment associated with the function f contains the
declaration val x = 2 to record the fact that at the time the function was
evaluated, the variable x was bound to the value 2. The variable x is sub-
sequently re-bound to 3, but when f is applied, we temporarily reinstate
the binding of x to 2, add a binding of y to 4, then evaluate the body of the
function, yielding 6. We then restore the binding of x and drop the binding
of y before yielding the result.

AUGUST 25, 2006 WORKING DRAFT



11.3 Returning Functions 95

11.3 Returning Functions
While seemingly very simple, the principle of lexical scope is the source of
considerable expressive power. We’ll demonstrate this through a series of
examples.

To warm up let’s consider some simple examples of passing functions
as arguments and yielding functions as results. The standard example of
passing a function as argument is the map’ function, which applies a given
function to every element of a list. It is defined as follows:

fun map’ (f, nil) = nil
| map’ (f, h::t) = (f h) :: map’ (f, t)

For example, the application

map’ (fn x => x+1, [1,2,3,4])

evaluates to the list [2,3,4,5].
Functions may also yield functions as results. What is surprising is that

we can create new functions during execution, not just return functions
that have been previously defined. The most basic (and deceptively sim-
ple) example is the function constantly that creates constant functions:
given a value k, the application constantly k yields a function that yields
k whenever it is applied. Here’s a definition of constantly:

val constantly = fn k => (fn a => k)

The function constantly has type ’a -> (’b -> ’a). We used the fn nota-
tion for clarity, but the declaration of the function constantly may also be
written using fun notation as follows:

fun constantly k a = k

Note well that a white space separates the two successive arguments to
constantly! The meaning of this declaration is precisely the same as the
earlier definition using fn notation.

The value of the application constantly 3 is the function that is con-
stantly 3; i.e., it always yields 3 when applied. Yet nowhere have we de-
fined the function that always yields 3. The resulting function is “created”
by the application of constantly to the argument 3, rather than merely

AUGUST 25, 2006 WORKING DRAFT



11.3 Returning Functions 96

“retrieved” off the shelf of previously-defined functions. In implementa-
tion terms the result of the application constantly 3 is a closure consisting
of the function fn a => k with the environment val k = 3 attached to it.
The closure is a data structure (a pair) that is created by each application of
constantly to an argument; the closure is the representation of the “new”
function yielded by the application. Notice, however, that the only differ-
ence between any two results of applying the function constantly lies in
the attached environment; the underlying function is always fn a => k. If
we think of the lambda as the “executable code” of the function, then this
amounts to the observation that no new code is created at run-time, just
new instances of existing code.

This also points out why functions in ML are not the same as code
pointers in C. You may be familiar with the idea of passing a pointer to
a C function to another C function as a means of passing functions as ar-
guments or yielding functions as results. This may be considered to be a
form of “higher-order” function in C, but it must be emphasized that code
pointers are significantly less powerful than closures because in C there
are only statically many possibilities for a code pointer (it must point to one
of the functions defined in your code), whereas in ML we may generate dy-
namically many different instances of a function, differing in the bindings
of the variables in its environment. The non-varying part of the closure,
the code, is directly analogous to a function pointer in C, but there is no
counterpart in C of the varying part of the closure, the dynamic environ-
ment.

The definition of the function map’ given above takes a function and list
as arguments, yielding a new list as result. Often it occurs that we wish to
map the same function across several different lists. It is inconvenient (and
a tad inefficient) to keep passing the same function to map’, with the list
argument varying each time. Instead we would prefer to create a instance
of map specialized to the given function that can then be applied to many
different lists. This leads to the following definition of the function map:

fun map f nil = nil
| map f (h::t) = (f h) :: (map f t)

The function map so defined has type (’a->’b) -> ’a list -> ’b list.
It takes a function of type ’a -> ’b as argument, and yields another func-
tion of type ’a list -> ’b list as result.

AUGUST 25, 2006 WORKING DRAFT



11.4 Patterns of Control 97

The passage from map’ to map is called currying. We have changed a
two-argument function (more properly, a function taking a pair as argu-
ment) into a function that takes two arguments in succession, yielding af-
ter the first a function that takes the second as its sole argument. This
passage can be codified as follows:

fun curry f x y = f (x, y)

The type of curry is

(’a*’b->’c) -> (’a -> (’b -> ’c)).

Given a two-argument function, curry returns another function that, when
applied to the first argument, yields a function that, when applied to the
second, applies the original two-argument function to the first and second
arguments, given separately.

Observe that map may be alternately defined by the binding

fun map f l = curry map’ f l

Applications are implicitly left-associated, so that this definition is equiv-
alent to the more verbose declaration

fun map f l = ((curry map’) f) l

11.4 Patterns of Control
We turn now to the idea of abstracting patterns of control. There is an
obvious similarity between the following two functions, one to add up the
numbers in a list, the other to multiply them.

fun add up nil = 0
| add up (h::t) = h + add up t

fun mul up nil = 1
| mul up (h::t) = h * mul up t

What precisely is the similarity? We will look at it from two points of view.
One view is that in each case we have a binary operation and a unit

element for it. The result on the empty list is the unit element, and the
result on a non-empty list is the operation applied to the head of the list
and the result on the tail. This pattern can be abstracted as the function
reduce defined as follows:

AUGUST 25, 2006 WORKING DRAFT



11.4 Patterns of Control 98

fun reduce (unit, opn, nil) =
unit

| reduce (unit, opn, h::t) =
opn (h, reduce (unit, opn, t))

Here is the type of reduce:

val reduce : ’b * (’a*’b->’b) * ’a list -> ’b

The first argument is the unit element, the second is the operation, and the
third is the list of values. Notice that the type of the operation admits the
possibility of the first argument having a different type from the second
argument and result.

Using reduce, we may re-define add up and mul up as follows:

fun add up l = reduce (0, op +, l)
fun mul up l = reduce (1, op *, l)

To further check your understanding, consider the following declaration:

fun mystery l = reduce (nil, op ::, l)

(Recall that “op ::” is the function of type ’a * ’a list -> ’a list that
adds a given value to the front of a list.) What function does mystery
compute?

Another view of the commonality between add up and mul up is that
they are both defined by induction on the structure of the list argument,
with a base case for nil, and an inductive case for h::t, defined in terms of
its behavior on t. But this is really just another way of saying that they are
defined in terms of a unit element and a binary operation! The difference
is one of perspective: whether we focus on the pattern part of the clauses
(the inductive decomposition) or the result part of the clauses (the unit
and operation). The recursive structure of add up and mul up is abstracted
by the reduce functional, which is then specialized to yield add up and
mul up. Said another way, the function reduce abstracts the pattern of defining
a function by induction on the structure of a list.

The definition of reduce leaves something to be desired. One thing to
notice is that the arguments unit and opn are carried unchanged through
the recursion; only the list parameter changes on recursive calls. While
this might seem like a minor overhead, it’s important to remember that

AUGUST 25, 2006 WORKING DRAFT



11.5 Staging 99

multi-argument functions are really single-argument functions that take
a tuple as argument. This means that each time around the loop we are
constructing a new tuple whose first and second components remain fixed,
but whose third component varies. Is there a better way? Here’s another
definition that isolates the “inner loop” as an auxiliary function:

fun better reduce (unit, opn, l) =
let

fun red nil = unit
| red (h::t) = opn (h, red t)

in
red l

end

Notice that each call to better reduce creates a new function red that uses
the parameters unit and opn of the call to better reduce. This means that
red is bound to a closure consisting of the code for the function together
with the environment active at the point of definition, which will provide
bindings for unit and opn arising from the application of better reduce
to its arguments. Furthermore, the recursive calls to red no longer carry
bindings for unit and opn, saving the overhead of creating tuples on each
iteration of the loop.

11.5 Staging
An interesting variation on reduce may be obtained by staging the compu-
tation. The motivation is that unit and opn often remain fixed for many
different lists (e.g., we may wish to sum the elements of many different
lists). In this case unit and opn are said to be “early” arguments and the
list is said to be a “late” argument. The idea of staging is to perform as
much computation as possible on the basis of the early arguments, yield-
ing a function of the late arguments alone.

In the case of the function reduce this amounts to building red on the
basis of unit and opn, yielding it as a function that may be later applied to
many different lists. Here’s the code:

AUGUST 25, 2006 WORKING DRAFT



11.5 Staging 100

fun staged reduce (unit, opn) =
let

fun red nil = unit
| red (h::t) = opn (h, red t)

in
red

end

The definition of staged reduce bears a close resemblance to the definition
of better reduce; the only difference is that the creation of the closure
bound to red occurs as soon as unit and opn are known, rather than each
time the list argument is supplied. Thus the overhead of closure creation
is “factored out” of multiple applications of the resulting function to list
arguments.

We could just as well have replaced the body of the let expression with
the function

fn l => red l

but a moment’s thought reveals that the meaning is the same.
Note well that we would not obtain the effect of staging were we to use

the following definition:

fun curried reduce (unit, opn) nil = unit
| curried reduce (unit, opn) (h::t) =
opn (h, curried reduce (unit, opn) t)

If we unravel the fun notation, we see that while we are taking two ar-
guments in succession, we are not doing any useful work in between the
arrival of the first argument (a pair) and the second (a list). A curried func-
tion does not take significant advantage of staging. Since staged reduce
and curried reduce have the same iterated function type, namely

(’b * (’a * ’b -> ’b)) -> ’a list -> ’b

the contrast between these two examples may be summarized by saying
not every function of iterated function type is curried. Some are, and some
aren’t. The “interesting” examples (such as staged reduce) are the ones
that aren’t curried. (This directly contradicts established terminology, but
it is necessary to deviate from standard practice to avoid a serious misap-
prehension.)

AUGUST 25, 2006 WORKING DRAFT



11.5 Staging 101

The time saved by staging the computation in the definition of staged reduce
is admittedly minor. But consider the following definition of an append
function for lists that takes both arguments at once:

fun append (nil, l) = l
| append (h::t, l) = h :: append(t,l)

Suppose that we will have occasion to append many lists to the end of a
given list. What we’d like is to build a specialized appender for the first
list that, when applied to a second list, appends the second to the end of
the first. Here’s a naive solution that merely curries append:

fun curried append nil l = l
| curried append (h::t) l = h :: append t l

Unfortunately this solution doesn’t exploit the fact that the first argument
is fixed for many second arguments. In particular, each application of the
result of applying curried append to a list results in the first list being
traversed so that the second can be appended to it.

We can improve on this by staging the computation as follows:

fun staged append nil = fn l => l
| staged append (h::t) =
let

val tail appender = staged append t
in

fn l => h :: tail appender l
end

Notice that the first list is traversed once for all applications to a second ar-
gument. When applied to a list [v1,...,vn], the function staged append
yields a function that is equivalent to, but not quite as efficient as, the
function

fn l => v1 :: v2 :: ... :: vn :: l.

This still takes time proportional to n, but a substantial savings accrues
from avoiding the pattern matching required to destructure the original
list argument on each call.

AUGUST 25, 2006 WORKING DRAFT



11.6 Sample Code 102

11.6 Sample Code
Here is the code for this chapter.

AUGUST 25, 2006 WORKING DRAFT


