Twelf and Delphin

Logic and Functional Programming in a Meta-Logical Framework

Carsten Schürmann

Yale University

Advertisement!

2nd International Joint Conference on Automated Reasoning IJCAR-2004

4-8 July 2004 mperial Hotel, Cork, Ireland 4c.ucc.ie/ijcar/

 Programme Chairs:
 David Basin Michaël Rusinowitch

 Workshop Chair:
 Peter Baumgartner
 Conference Chair: Toby Walsh Local Chair: Barry O'Sullivan Tutorial Chair: William Farmer

 System Competition:
 Geoff Sutcliffe
 Important dat

 Christian Suttner
 16 Nov 2003
 10 Nov 2003

 Publicity Chair:
 Maria Paola Bonacina
 08 Dec 2003

 Poster:
 Georgia Walsh
 Sponsors:
 Sponsors:

Important dates: 16 Nov 2003 Workshop proposals 08 Dec 2003 Paper submissions Sponsors: SFI, CologNet, CADE Inc.

- Twelf Tutorial.
- July 5, 2004.
- IJCAR.
- Cork, Ireland.

What are Logical Frameworks?

We can look at the current field of problem solving by computer as a series of ideas about how to represent a problem. If a problem can be cast into one of these representations in a natural way, then it is possible to manipulate it and stand some chance of solving it.

Allen Newell

What are Logical Frameworks?

Meta-languages.

- Representation of problem domains.
- Elegance.
- Expressive.
- Beautiful.

Sound philosophical foundation. Logically motivated.

Programming Languages

• Proof Carrying Code.

[Necula, Lee] [Crary, et al.]

Typed assembly language.

Running Example

Programmers: Think combinators! Logicians: Think Hilbert calculus!

- Formulas: $A ::= P \mid A \supset B$
- Judgment: $\vdash A$

$$\frac{\vdash A \supset B \vdash A}{\vdash B} \mathsf{MP}$$

$$\vdash (A \supset B \supset C) \supset (A \supset B) \supset (A \supset C)$$

Other examples

Safety languages and safety proofs.

- First-order/higher-order logics.
- Temporal, modal, linear logics.

Domain specific languages.

- High-level, low-level.
- Operational, static, reduction, small-step, big-step semantics.
- Typed intermediate languages, compilers.

Sample Logical Frameworks

- Hereditary Harrop formulas.
- Isabelle, λ Prolog
- λ^{Π} (LF). Automath, LF, Elf, Twelf
- Substructural logical frameworks.
 - Forum, LLF, OLF
- Equational logic, rewriting.
 Maude, ELAN
- Constructive type theories.
 ALF, Agda, Coq, LEGO, Nuprl

What can go wrong?

- 1. Logics may be inconsistent!
- 2. Logics may be incompatible!
- 3. Type systems may be unsound!
- 4. Loss of representational abstraction in implementations!
- 5. Maintenance of inference rules!

We need to tools to engineer, experiment, reason, and program with our encodings!

Meta-logical frameworks

- Reasoning *about* deductive systems.
- Experimenting *with* deductive systems.
- Programming *with* deductive systems.

Meta-logical frameworks

- **1.** If $A \vdash B$ then $\vdash A \supset B$.
- **2.** If $\Gamma \vdash_1 e : \tau$ then $[\Gamma] \vdash_2 [e] : [\tau]$.
- 3. If $e \Longrightarrow e_1$ and $e \Longrightarrow e_2$ then there exists a e', such that $e_1 \Longrightarrow e'$ and $e_2 \Longrightarrow e'$.
- 4. Write a theorem prover

 $prove: \forall A: o. \Box(\vdash A)$

5. Write a cut-elimination procedure.

Sample Meta-Logical Frameworks

- Finitary inductive definitions.
- Definitional reflection. $FOL^{\Delta IN}$
- Higher-level judgments, regular worlds. Twelf
- Other systems used as meta-logical frameworks.
 - Constructive type theories
 - Agda, Coq, LEGO, Nuprl
 - Higher-order logic HOL, Isabelle/HOL
 - Rewriting logic

Maude

Outline of this talk

- The logical framework LF.
- Logic programming in Elf.
- Meta theory of deductive systems in Twelf.
- Functional programming in Delphin.
- Conclusion.

The Logical Framework LF

The Logical Framework LF

λ^Π [Harper, Honsell, Plotkin]
Edinburgh Logical Framework.

$$K ::= type \mid \Pi x : A. K \mid A \to K$$
$$A ::= a \mid A M \mid \Pi x : A_1. A_2 \mid A_1 \to A_2$$
$$M ::= c \mid \lambda x : A. M \mid M_1 M_2$$

- Dependently-typed λ -calculus.
- Signature: declares c : A and a : K.

The Logical Framework LF

Representation paradigm.

• Judgments-as-types.

 $\ulcorner \vdash A \urcorner$: type = hil $\ulcorner A \urcorner$

• Derivations-as-objects.

Deduction theorem

The Hilbert calculus in LF/Twelf.

imp : $o \rightarrow o \rightarrow o$.

- hil : $o \rightarrow type$.
- K : hil (imp A (imp B A)).
- S : hil (imp (imp A (imp B C)) (imp (imp A B) (imp A C))).

MP : hil (imp A B) \rightarrow hil $A \rightarrow$ hil B.

Hypothetical judgments.

Г

$$\begin{array}{c} \overline{} & \overline{} \\ \overline{} & \overline{} \\ \mathcal{H} \\ \overline{} & \mathcal{H} \\ \overline{} & B \end{array} \end{array} \stackrel{\mathbf{a}}{=} \begin{array}{c} \operatorname{hil} \ \overline{} A^{\neg} \to \operatorname{hil} \ \overline{} B^{\neg} \\ \overline{} & \overline{} \\ \overline{} & \overline{} \end{array}$$

LF function types encode

- inference rules,
- hypothetical judgments.

Definitional equality.

- LF terms are alive.
- $(\lambda x : A. M)N \equiv [N/x]M$

•
$$(\lambda x : A. Mx) \equiv M$$
 (η)

- Canonical forms: β -normal, η -long form.
- Object language contexts/environments disappear.

Theorem: Every well-typed object in LF reduces to a unique canonical form.

(B)

Theorem: [Adequacy] There exists a bijection between $\mathcal{H} :: A_1 \dots A_n \vdash A$ and $u_1 : \lceil A_1 \rceil, \dots, u_n : \lceil A_n \rceil \vdash \lceil \mathcal{H} \rceil \Uparrow \lceil A \rceil$.

Parametric Function Space.

• Example: ded $A \rightarrow \text{ded } B$

 $\begin{array}{l} \lambda x: \operatorname{ded} A. x\\ \lambda x: \operatorname{ded} A. \mathsf{K}\\ \lambda x: \operatorname{ded} A. \mathsf{S}\\ \lambda x: \operatorname{ded} A. \mathsf{MP} \left(H_1 \; x\right) \left(H_2 \; x\right)\end{array}$

 Parametric functions are good for representation but not programming.

Summary.

- Adequate higher-order encodings.
- Encodings necessarily non-inductive.
- Rapid prototyping of deductive systems.

Computational weakness \approx Representational strength

[Pfenning 89]

- Overcoming the computational weakness.
- Strict separation data and programs using the same syntax.
- Idea: Don't just use β for computation.
- Instead: Search for canonical forms.

$$+ A \supset B \supset A \overset{\mathsf{K}}{\overset{\mathsf{\vdash}}{}} \frac{(A \supset B) \quad \vdash A}{\vdash B} \mathsf{MP}$$

$$\vdash (A \supset B \supset C) \supset (A \supset B) \supset (A \supset C)$$
^S

Challenge: Give a derivation of the identity.

 $\vdash A \supset A$

By S with A/C and $(A \supset B) \supset A/B$.

 $\vdash (A \supset ((A \supset B) \supset A) \supset A) \supset (A \supset (A \supset B) \supset A)$ $\supset (A \supset A)$

By K with $(A \supset B) \supset A/B$ and $(A \supset B)/B$.

$$\vdash A \supset ((A \supset B) \supset A) \supset A$$
$$\vdash A \supset (A \supset B) \supset A$$

By two applications of $MP: \vdash A \supset A$.

Search for canonical forms.

? : ded $(A \supset A)$ MP???? MP (MP??) K MP (MPSK) K

- Model of computation: search.
- Signature: logic program.
- Here: search space infinite.

Programmers: Think bracket abstraction! Logicians: Think deduction theorem!

Programming Exercise: [Gentzen] Convert a "hypothetical combinator" of type

into a combinator of type $\vdash A \supset B$.

Representation in LF/Twelf

ded : (hil $A \rightarrow$ hil B) \rightarrow hil (A imp B) \rightarrow type.

ded_id : ded (λu :hil A. u) (MP (MP S K) K).

ded_K : ded (λu :hil A. K) (MP K K).

ded_S : ded (λu :hil A. S) (MP K S).

ded_MP: ded (λu :hil A. MP (H_1 u) (H_2 u))

 $(\mathsf{MP} (\mathsf{MP} \mathsf{S} H_1') H_2') \\ \leftarrow \mathsf{ded} (\lambda u : \mathsf{hil} A \cdot H_1 u) H_1' \\ \leftarrow \mathsf{ded} (\lambda u : \mathsf{hil} A \cdot H_2 u) H_2'.$

The two function spaces.

 $c: A \rightarrow B$ is for *representation*.

c(x) = M (Reduction to $\beta\eta$ -canonical form).

 $f: A \Rightarrow B$ is for *programming*. f(x) = M if and only if $\exists D : f \ x \ M$.

Operational interpretation.

[Pfenning]

- $G ::= P \mid \Pi x : A. G \mid D \to G$ $D ::= P \mid \Pi x : A. D \mid G \to D$ $P ::= a \mid P M$
- " \rightarrow " triggers search, " Π " does not.

[Pym]

- x : A existential variable.
- x: A parameter.

- Existential variables.
- Back-tracking.
- Embedded implications.
- + Works with higher-order encodings.
- + Same syntax as LF signatures.
- No user control on search.
- * No extra logical constants.

Applications.

- Programming language design.
 Type systems.
 Operational semantics.
 Compilation.
- Logics.
 Transformations.
 Cut-elimination.

[Logosphere] [Pfenning]

Meta theory of deductive systems

Programmers: Think λ -calculus! Logicians: Think natural deductions!

$$\frac{\Gamma, A \Vdash B}{\Gamma \Vdash A \supset B} \operatorname{Iam} \quad \frac{\Gamma \Vdash A \supset B \quad \Gamma \Vdash A}{\Gamma \Vdash B} \operatorname{app}$$

Theorem: [Natural Deduction - Hilbert] \mathcal{D} \mathcal{H} For all $\Gamma \Vdash A$ there exists a derivation $\Gamma \vdash A$.

• Realizability interpretation.

ndhil : $\Pi A: o.$ nd $A \rightarrow hil A \rightarrow type$

• Total logic programs encode meta proofs.

Lemma [Deduction] \mathcal{H}' \mathcal{H} If $\Gamma, A \vdash B$ then $\Gamma \vdash A \supset B$. Proof: by structural induction on \mathcal{H} . Cases K, S, MP same as above. Case: $B \in \Gamma$ $\mathcal{H}_1 :: \Gamma \vdash B \supset A \supset B$ by K $\mathcal{H}' :: \Gamma \vdash A \supset B$ by MP

Proof (of ndhil): by structural induction on \mathcal{D} .

$$\begin{array}{l} \mathcal{D}_1 \\ \textbf{Case:} \ \mathcal{D} = \frac{\Gamma, A \Vdash B}{\Gamma \Vdash A \supset B} \text{ lam} \\ \mathcal{H}_1 :: \Gamma, A \vdash B \\ \mathcal{H} :: \Gamma \vdash (A \supset B) \end{array} \begin{array}{l} \text{by induction hypothesis} \\ \textbf{by deduction lemma.} \end{array}$$

Case app straightforward.

caselam: ndhil (lam (λu :nd A. D_1 u)) H \leftarrow (Πu :nd A. Πh :hil A. ndhil $u h \rightarrow$ $(\Pi B: o. ded (\lambda z: hil B. h))$ $(\mathbf{MP} \mathbf{K} h))$ \rightarrow ndhil (D_1 u) (H_1 h)) \leftarrow ded (λh : hil A. H_1 h) H. caseapp: ndhil (app D_1 D_2) (MP H_1 H_2) \leftarrow ndhil D_1 H_1 \leftarrow ndhil D_2 H_2 .

What makes a proof a proof?

Option 1: Propositions-as-types.

 $\forall A. \forall D. \forall \Gamma. \mathsf{isctx}(\Gamma) \land \mathsf{wff}(A) \land \mathsf{nd}(D, \Gamma, A) \supset \exists H. \mathsf{hil}(H, \Gamma, A)$

- Logical derivations.
- Inductive types.
- Predominantly used technique. [Coq, ...]
- Incompatible with higher-order encodings.
- Explicit notion of equality.
- Disprove impossible cases.

What makes a proof a proof?

Option 2: Jugments-as-types.

- Total logic programs *are* proofs.
- Induction on canonical form derivations.
- Non-standard induction principles exist.
- Impossible cases omitted.
- Adequacy replaces validity propositions.
- But: Need to decide totality!

1. Mode criterion.

(Fixed input/output behavior of arguments)

2. World criterion.

(Form of the local context is regular)

3. Termination criterion.

(Does not run on forever)

4. Coverage criterion.

(Covers all cases)

Definition: [*Mode criterion*] During execution, ground inputs are being mapped onto output ground outputs.

[Rohwedder, Pfenning]

%mode (ded +H -H'). %mode (ndhil +D -H).

Meta Theory (Mode Criterion)

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.44/60

Definition: [*World criterion*] During execution the local context is always regular formed. [Schürmann]

```
%world dyn [A:o]
{u:nd A,
h:hil A,
p:(\Pi B:o. ded (\lambda z:hil B. h) (MP K h))
d:ndhil u v,
}
```

Meta Theory (World criterion)

Definition: [*Termination criterion*] The execution will eventually terminate. [Rohwedder, Pfenning, Pientka]

- In general undecidable.
- Well-founded subterm ordering.
- Lexicographic and simultaneous extensions.

% terminates H (ded +H -H'). % terminates D (ndhil +D -H).

Meta Theory (Termination criterion)

Definition: [*Coverage criterion*] The execution will always make progress.

[Schürmann, Pfenning]

• In general undecidable.

[Coquand]

- Very difficult but extremely important.
 - Non-local assumptions.
 - Input coverage.
 - Output coverage.
- Open for 10 years.

Meta Theory (Coverage Criterion)

Functional Programming

Delphin

- $\Box A$ embeds LF types in Delphin.
- box M embeds LF objects in Delphin.
- λ -calculus with recursion and case.
- Strict separation of LF and meta level.
- Parametric function space.
- Primitive recursive function space.
- Automated theorem prover.

Advantages.

- No existential variables.
- Back-tracking.
- Higher-order encodings.
- Computation under λ -binders.
- Local let statements.

Applications.

- Coverage checking (order ≥ 3).
- Compilation of mode-correct programs.

The two function spaces.

 $c: A \rightarrow B$ is for *representation*.

c(x) = M (Reduction to $\beta\eta$ -canonical form)

 $f: \Box A \Rightarrow \Box B$ is for *programming*. f(x) = M (Function definition by cases).

Basic idea: Use worlds to describe datatypes. %world static {imp : $o \rightarrow o \rightarrow o$, K : hil (imp A (imp B A)), S : hil (imp (imp A (imp B C))) MP : hil (imp A B) \rightarrow hil A \rightarrow hil B}

%world dynamic [A:o]
{y : hil A }

 $\mu f.$ (∇s :static. ∇d :dynamic. $\exists A$:o.box (λu : hil A.d.y) \mapsto box (s.MP s.K d.y)) $(\nabla s:$ static. $\exists A:$ o.box $(\lambda u:$ hil A.u) \mapsto box (s.MP (s.MP s.S s.K) s.K)) $(\nabla s : \text{static.} \exists A : \text{o.} \exists B : \text{o.} \exists C : \text{o.} \exists H_2 : \text{hil } A \to \text{hil } B.$ $\exists H_1 : \text{hil } A \to \text{hil } (B \to C).$ box $(\lambda u : hil A.s. MP (H_1 u) (H_2 u))$ \mapsto (box (s.MP))[·](box (s.MP)) $[\cdot](\mathsf{box}\ (s.\mathbf{S}))[\cdot](f\ (\mathsf{box}\ (\lambda u:\mathsf{hil}\ A.H_1\ u))))$ $[\cdot](f (\text{box} (\lambda u : \text{hil } A.H_2 u))))$

Meta(-meta) Theory.

- Type soundness. Operational semantics is type preserving.
- Conversion lemma. Let $a : A \to B \to type$, mode correct. Then there exists a Delphin function $f_a : \Box A \Rightarrow \Box B$, such that

If $\exists D : a \ M \ N$ then $f_a(box \ M) = box \ N$.

Implementation

Implementation

Twelf. www.twelf.org

- Type reconstruction.
- Logic programming.
- Mode, world, termination, coverage.

Delphin.

www.cs.yale.edu/~carsten/delphin

- Prototype exists.
- Functional programming.
- Converter from Elf logic programs.
- Factoring.

Conclusion

Meta-logical framework Twelf and Delphin.

- Lots of applications.
- Automated deduction.
- Great rapid prototyping tool.
- Programming with variable binders.
- Supports representational strength.
- Provides computational power.