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Advertisement!

• Twelf Tutorial.

• July 5, 2004.

• IJCAR.

• Cork, Ireland.
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What are Logical Frameworks?

We can look at the current field of
problem solving by computer as a
series of ideas about how to repre-
sent a problem. If a problem can
be cast into one of these represen-
tations in a natural way, then it is
possible to manipulate it and stand
some chance of solving it.

Allen Newell
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What are Logical Frameworks?

Meta-languages.

• Representation of problem domains.

• Elegance.

• Expressive.

• Beautiful.

Sound philosophical foundation.

Logically motivated.
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Programming Languages

• Proof Carrying Code. [Necula, Lee]

• Typed assembly language. [Crary, et al.]
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Running Example

Programmers: Think combinators!
Logicians: Think Hilbert calculus!

• Formulas: A ::= P | A ⊃ B

• Judgment: ` A

K
` A ⊃ B ⊃ A

` A ⊃ B ` A
MP

` B

S
` (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ (A ⊃ C)
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Other examples

Safety languages and safety proofs.

• First-order/higher-order logics.

• Temporal, modal, linear logics.

Domain specific languages.

• High-level, low-level.

• Operational, static, reduction, small-step,
big-step semantics.

• Typed intermediate languages, compilers.
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Sample Logical Frameworks

• Hereditary Harrop formulas.
Isabelle, λProlog

• λΠ (LF). Automath, LF, Elf, Twelf

• Substructural logical frameworks.
Forum, LLF, OLF

• Equational logic, rewriting. Maude, ELAN

• Constructive type theories.
ALF, Agda, Coq, LEGO, Nuprl
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What can go wrong?

1. Logics may be inconsistent!

2. Logics may be incompatible!

3. Type systems may be unsound!

4. Loss of representational abstraction in
implementations!

5. Maintenance of inference rules!

We need to tools to engineer, experiment,
reason, and program with our encodings!
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Meta-logical frameworks

• Reasoning about deductive systems.

• Experimenting with deductive systems.

• Programming with deductive systems.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.10/60



Meta-logical frameworks

1. If A ` B then ` A ⊃ B.

2. If Γ `
1
e : τ then [Γ] `

2
[e] : [τ ].

3. If e =⇒ e1 and e =⇒ e2 then there exists a e′,
such that e1 =⇒ e′ and e2 =⇒ e′.

4. Write a theorem prover

prove : ∀A : o.�(` A)

5. Write a cut-elimination procedure.
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Sample Meta-Logical Frameworks

• Finitary inductive definitions. FS0

• Definitional reflection. FOL∆IN

• Higher-level judgments, regular worlds. Twelf

• Other systems used as meta-logical
frameworks.
- Constructive type theories

Agda, Coq, LEGO, Nuprl
- Higher-order logic HOL, Isabelle/HOL
- Rewriting logic Maude
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Outline of this talk

• The logical framework LF.

• Logic programming in Elf.

• Meta theory of deductive systems in Twelf.

• Functional programming in Delphin.

• Conclusion.
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The Logical Framework LF
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The Logical Framework LF

• λΠ [Harper, Honsell, Plotkin]

• Edinburgh Logical Framework.

K ::= type | Πx : A.K | A→ K

A ::= a | A M | Πx : A1. A2 | A1 → A2

M ::= c | λx : A.M |M1 M2

• Dependently-typed λ-calculus.

• Signature: declares c : A and a : K.
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The Logical Framework LF

Representation paradigm.

• Judgments-as-types.

p` Aq : type = hil pAq

• Derivations-as-objects.

p

H1

` A ⊃ B

H2

` A
MP

` B

q

: hil pBq

= MP pAq pBq pH1q pH2q
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Deduction theorem

The Hilbert calculus in LF/Twelf.

o : type.

imp : o → o → o.

hil : o → type.

K : hil (imp A (imp B A)).

S : hil (imp (imp A (imp B C))

(imp (imp A B) (imp A C))).
MP : hil (imp A B) → hil A → hil B.
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The Logical Framework LF (cont’d)

Hypothetical judgments.

p u
` A

H

` B

q

: hil pAq→ hil pBq

= λu : hil pAq. pHq

LF function types encode

• inference rules,

• hypothetical judgments.
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The Logical Framework LF (cont’d)

Definitional equality.

• LF terms are alive.

• (λx : A.M)N ≡ [N/x]M (β)

• (λx : A.Mx) ≡M (η)

• Canonical forms: β-normal, η-long form.

• Object language contexts/environments
disappear.

Theorem: Every well-typed object in LF reduces

to a unique canonical form.
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The Logical Framework LF (cont’d)

Theorem: [Adequacy] There exists a bijection
between H :: A1 . . . An ` A and
u1 : pA1q, . . . , un : pAnq ` pHq ⇑ pAq.
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The Logical Framework LF (cont’d)

Parametric Function Space.

• Example: ded A→ ded B

λx : ded A. x

λx : ded A. K

λx : ded A. S

λx : ded A. MP (H1 x) (H2 x)

• Parametric functions are good for
representation but not programming.
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The Logical Framework LF (cont’d)

Summary.

• Adequate higher-order encodings.

• Encodings necessarily non-inductive.

• Rapid prototyping of deductive systems.

Computational weakness
≈

Representational strength
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Elf: Logic programming in LF
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Elf: Logic programming in LF

[Pfenning 89]

• Overcoming the computational weakness.

• Strict separation data and programs ...
... using the same syntax.

• Idea: Don’t just use β for computation.

• Instead: Search for canonical forms.
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Elf: Logic programming in LF

K
` A ⊃ B ⊃ A

` (A ⊃ B) ` A
MP

` B

S
` (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ (A ⊃ C)

Challenge: Give a derivation of the identity.

` A ⊃ A
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Elf: Logic programming in LF

By S with A/C and (A ⊃ B) ⊃ A/B.

` (A ⊃ ((A ⊃ B) ⊃ A) ⊃ A) ⊃ (A ⊃ (A ⊃ B) ⊃ A)

⊃ (A ⊃ A)

By K with (A ⊃ B) ⊃ A/B and (A ⊃ B)/B .

` A ⊃ ((A ⊃ B) ⊃ A) ⊃ A

` A ⊃ (A ⊃ B) ⊃ A

By two applications of MP : ` A ⊃ A. �
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Elf: Logic programming in LF

Search for canonical forms.

? : ded (A ⊃ A)

MP ? ?

MP (MP ? ?) K

MP (MP S K) K

• Model of computation: search.

• Signature: logic program.

• Here: search space infinite.
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Elf: Logic programming in LF

Programmers: Think bracket abstraction!

Logicians: Think deduction theorem!

Programming Exercise: [Gentzen]
Convert a “hypothetical combinator” of type

u
` A

...
` B

into a combinator of type ` A ⊃ B.
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Elf: Logic programming in LF

Representation in LF/Twelf

ded : (hil A → hil B) → hil (A imp B) → type.

ded_id : ded (λu:hil A. u) (MP (MP S K) K).

ded_K : ded (λu:hil A. K) (MP K K).

ded_S : ded (λu:hil A. S) (MP K S).

ded_MP: ded (λu:hil A. MP (H1 u) (H2 u))

(MP (MP S H ′

1
) H ′

2
)

← ded (λu:hil A. H1 u) H ′

1

← ded (λu:hil A. H2 u) H ′

2
.
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Elf: Logic programming in LF

The two function spaces.

c : A→ B is for representation.

c(x) = M (Reduction to βη-canonical form).

f : A⇒ B is for programming.

f(x) = M if and only if ∃D : f x M .
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Elf: Logic programming in LF

Operational interpretation. [Pfenning]

G ::= P | Πx : A.G | D → G

D ::= P | Πx : A.D | G→ D

P ::= a | P M

• “→” triggers search, “Π” does not. [Pym]

• x : A existential variable.

• x : A parameter.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.31/60



Elf: Logic programming in LF

• Existential variables.

• Back-tracking.

• Embedded implications.

+ Works with higher-order encodings.

+ Same syntax as LF signatures.

− No user control on search.

∗ No extra logical constants.
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Elf: Logic programming in LF

Applications.

• Programming language design.
Type systems.
Operational semantics.
Compilation.

• Logics.
Transformations. [Logosphere]
Cut-elimination. [Pfenning]
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Meta theory of deductive systems
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Meta Theory

Programmers: Think λ-calculus!
Logicians: Think natural deductions!

Γ, A `̀ B
lam

Γ `̀ A ⊃ B

Γ `̀ A ⊃ B Γ `̀ A app
Γ `̀ B

nd : o → type.
lam : (nd A → nd B) → nd (A imp B).
app : nd (A imp B) → nd A → nd B.
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Meta Theory

Theorem: [Natural Deduction - Hilbert]

For all
D

Γ `̀ A there exists a derivation
H

Γ ` A .

• Realizability interpretation.

ndhil : ΠA:o. nd A → hil A → type

• Total logic programs encode meta proofs.
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Meta Theory

Lemma [Deduction]

If
H

Γ, A ` B then
H′

Γ ` A ⊃ B .

Proof: by structural induction on H.
Cases K, S, MP same as above.
Case: B ∈ Γ

H1 :: Γ ` B ⊃ A ⊃ B by K
H′ :: Γ ` A ⊃ B by MP
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Meta Theory

Proof (of ndhil): by structural induction on D.

Case: D =

D1

Γ, A `̀ B
lam

Γ `̀ A ⊃ B

H1 :: Γ, A ` B by induction hypothesis
H :: Γ ` (A ⊃ B) by deduction lemma.

Case app straightforward.
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Meta Theory

caselam: ndhil (lam (λu:nd A. D1 u)) H
← (Πu:nd A. Πh:hil A.

ndhil u h →
(ΠB:o. ded (λz:hil B. h)

(MP K h))
→ ndhil (D1 u) (H1 h))

← ded (λh:hil A. H1 h) H.
caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2.
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What makes a proof a proof?

Option 1: Propositions-as-types.

∀A.∀D.∀Γ.isctx(Γ)∧wff(A)∧nd(D, Γ, A) ⊃ ∃H.hil(H, Γ, A)

• Logical derivations.

• Inductive types.

• Predominantly used technique. [Coq, . . . ]

• Incompatible with higher-order encodings.

• Explicit notion of equality.

• Disprove impossible cases.
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What makes a proof a proof?

Option 2: Jugments-as-types.

• Total logic programs are proofs.

• Induction on canonical form derivations.

• Non-standard induction principles exist.

• Impossible cases omitted.

• Adequacy replaces validity propositions.

• But: Need to decide totality!
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Meta Theory

1. Mode criterion.
(Fixed input/output behavior of arguments)

2. World criterion.
(Form of the local context is regular)

3. Termination criterion.
(Does not run on forever)

4. Coverage criterion.
(Covers all cases)

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.42/60



Meta Theory

Definition: [Mode criterion] During execution,
ground inputs are being mapped onto output
ground outputs.

[Rohwedder, Pfenning]

%mode (ded +H −H ′).
%mode (ndhil +D −H).
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Meta Theory (Mode Criterion)

caselam: ndhil (lam (λu:nd A. D1 u)) H

← (Πu:nd A. Πh:hil A.
ndhil u h →

(ΠB:o. ded (λz:hil B. h)
(MP K h))

→ ndhil (D1 u) (H1 h))

← ded (λh:hil A. H1 h) H .

caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2 .
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Meta Theory

Definition: [World criterion] During execution the
local context is always regular formed.

[Schürmann]

%world dyn [A:o]
{u:nd A,
h:hil A,
p:(ΠB:o. ded (λz:hil B. h) (MP K h))
d:ndhil u v,

}
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Meta Theory (World criterion)

caselam: ndhil (lam (λu:nd A. D1 u)) H

← (Πu:nd A. Πh:hil A.

ndhil u h →

(ΠB:o. ded (λz:hil B. h)

(MP K h))
→ ndhil (D1 u) (H1 h))

← ded (λh:hil A. H1 h) H.
caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2.
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Meta Theory

Definition: [Termination criterion] The execution
will eventually terminate.

[Rohwedder, Pfenning, Pientka]

• In general undecidable.

• Well-founded subterm ordering.

• Lexicographic and simultaneous extensions.

%terminates H (ded +H −H ′).
%terminates D (ndhil +D −H).
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Meta Theory (Termination criterion)

caselam: ndhil (lam (λu:nd A. D1 u)) H

← (Πu:nd A. Πh:hil A.
ndhil u h →
(ΠB:o. ded (λz:hil B. h)

(MP K h))
→ ndhil (D1 u) (H1 h))

← ded (λh:hil A. H1 h) H.
caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2.
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Meta Theory

Definition: [Coverage criterion] The execution
will always make progress.

[Schürmann, Pfenning]

• In general undecidable. [Coquand]

• Very difficult but extremely important.
- Non-local assumptions.
- Input coverage.
- Output coverage.

• Open for 10 years.
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Meta Theory (Coverage Criterion)

caselam: ndhil (lam (λu:nd A. D1 u)) H

← (Πu:nd A. Πh:hil A.
ndhil u h →
(ΠB:o. ded (λz:hil B. h)

(MP K h))
→ ndhil (D1 u) (H1 h) )

← ded (λh:hil A. H1 h) H.
caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2 .
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Functional Programming
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Functional programming in LF

Delphin

• �A embeds LF types in Delphin.

• box M embeds LF objects in Delphin.

• λ-calculus with recursion and case.

• Strict separation of LF and meta level.

• Parametric function space.

• Primitive recursive function space.

• Automated theorem prover.
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Functional programming in LF

Advantages.
• No existential variables.
• Back-tracking.
• Higher-order encodings.
• Computation under λ-binders.
• Local let statements.

Applications.
• Coverage checking (order ≥ 3).
• Compilation of mode-correct programs.
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Functional programming in LF

The two function spaces.

c : A→ B is for representation.

c(x) = M (Reduction to βη-canonical form)

f : �A⇒ �B is for programming.

f(x) = M (Function definition by cases).
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Functional programming in LF

Basic idea: Use worlds to describe datatypes.

%world static
{imp : o → o → o,

K : hil (imp A (imp B A)),
S : hil (imp (imp A (imp B C)) (imp (imp A B) (imp A C))),
MP : hil (imp A B) → hil A → hil B}

%world dynamic [A:o]
{y : hil A }
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Functional programming in LF

µf. (∇s :static.∇d :dynamic.∃A : o.box (λu : hil A.d.y)

7→ box (s.MP s.K d.y))

| (∇s :static.∃A :o.box (λu : hil A.u)

7→ box (s.MP (s.MP s.S s.K) s.K))

| (∇s :static.∃A :o.∃B :o.∃C :o.∃H2 :hil A→ hil B.

∃H1 :hil A→ hil (B → C).

box (λu : hil A.s.MP (H1 u) (H2 u))

7→ (box (s.MP))[·](box (s.MP)

[·](box (s.S))[·](f (box (λu : hil A.H1 u))))

[·](f (box (λu : hil A.H2 u))))
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Functional programming in LF

Meta(-meta) Theory.

Type soundness. Operational semantics is type
preserving.

Conversion lemma. Let a : A→ B → type,
mode correct. Then there exists a Delphin
function fa : �A⇒ �B, such that

If ∃D : a M N then fa(box M) = box N.
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Implementation
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Implementation

Twelf. www.twelf.org
• Type reconstruction.
• Logic programming.
• Mode, world, termination, coverage.

Delphin.
www.cs.yale.edu/~carsten/delphin

• Prototype exists.
• Functional programming.
• Converter from Elf logic programs.
• Factoring. [Poswolsky]
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Conclusion

Meta-logical framework Twelf and Delphin.

• Lots of applications.

• Automated deduction.

• Great rapid prototyping tool.

• Programming with variable binders.

• Supports representational strength.

• Provides computational power.
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