
Twelf and Delphin

Logic and Functional
Programming in a Meta-Logical

Framework
Carsten Schürmann

Yale University

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.1/60

Advertisement!

• Twelf Tutorial.

• July 5, 2004.

• IJCAR.

• Cork, Ireland.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.2/60

What are Logical Frameworks?

We can look at the current field of
problem solving by computer as a
series of ideas about how to repre-
sent a problem. If a problem can
be cast into one of these represen-
tations in a natural way, then it is
possible to manipulate it and stand
some chance of solving it.

Allen Newell
Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.3/60

What are Logical Frameworks?

Meta-languages.

• Representation of problem domains.

• Elegance.

• Expressive.

• Beautiful.

Sound philosophical foundation.

Logically motivated.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.4/60

Programming Languages

• Proof Carrying Code. [Necula, Lee]

• Typed assembly language. [Crary, et al.]

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.5/60

Running Example

Programmers: Think combinators!
Logicians: Think Hilbert calculus!

• Formulas: A ::= P | A ⊃ B

• Judgment: ` A

K
` A ⊃ B ⊃ A

` A ⊃ B ` A
MP

` B

S
` (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ (A ⊃ C)

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.6/60

Other examples

Safety languages and safety proofs.

• First-order/higher-order logics.

• Temporal, modal, linear logics.

Domain specific languages.

• High-level, low-level.

• Operational, static, reduction, small-step,
big-step semantics.

• Typed intermediate languages, compilers.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.7/60

Sample Logical Frameworks

• Hereditary Harrop formulas.
Isabelle, λProlog

• λΠ (LF). Automath, LF, Elf, Twelf

• Substructural logical frameworks.
Forum, LLF, OLF

• Equational logic, rewriting. Maude, ELAN

• Constructive type theories.
ALF, Agda, Coq, LEGO, Nuprl

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.8/60

What can go wrong?

1. Logics may be inconsistent!

2. Logics may be incompatible!

3. Type systems may be unsound!

4. Loss of representational abstraction in
implementations!

5. Maintenance of inference rules!

We need to tools to engineer, experiment,
reason, and program with our encodings!

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.9/60

Meta-logical frameworks

• Reasoning about deductive systems.

• Experimenting with deductive systems.

• Programming with deductive systems.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.10/60

Meta-logical frameworks

1. If A ` B then ` A ⊃ B.

2. If Γ `
1
e : τ then [Γ] `

2
[e] : [τ].

3. If e =⇒ e1 and e =⇒ e2 then there exists a e′,
such that e1 =⇒ e′ and e2 =⇒ e′.

4. Write a theorem prover

prove : ∀A : o.�(` A)

5. Write a cut-elimination procedure.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.11/60

Sample Meta-Logical Frameworks

• Finitary inductive definitions. FS0

• Definitional reflection. FOL∆IN

• Higher-level judgments, regular worlds. Twelf

• Other systems used as meta-logical
frameworks.
- Constructive type theories

Agda, Coq, LEGO, Nuprl
- Higher-order logic HOL, Isabelle/HOL
- Rewriting logic Maude

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.12/60

Outline of this talk

• The logical framework LF.

• Logic programming in Elf.

• Meta theory of deductive systems in Twelf.

• Functional programming in Delphin.

• Conclusion.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.13/60

The Logical Framework LF

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.14/60

The Logical Framework LF

• λΠ [Harper, Honsell, Plotkin]

• Edinburgh Logical Framework.

K ::= type | Πx : A.K | A→ K

A ::= a | A M | Πx : A1. A2 | A1 → A2

M ::= c | λx : A.M |M1 M2

• Dependently-typed λ-calculus.

• Signature: declares c : A and a : K.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.15/60

The Logical Framework LF

Representation paradigm.

• Judgments-as-types.

p` Aq : type = hil pAq

• Derivations-as-objects.

p

H1

` A ⊃ B

H2

` A
MP

` B

q

: hil pBq

= MP pAq pBq pH1q pH2q

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.16/60

Deduction theorem

The Hilbert calculus in LF/Twelf.

o : type.

imp : o → o → o.

hil : o → type.

K : hil (imp A (imp B A)).

S : hil (imp (imp A (imp B C))

(imp (imp A B) (imp A C))).
MP : hil (imp A B) → hil A → hil B.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.17/60

The Logical Framework LF (cont’d)

Hypothetical judgments.

p u
` A

H

` B

q

: hil pAq→ hil pBq

= λu : hil pAq. pHq

LF function types encode

• inference rules,

• hypothetical judgments.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.18/60

The Logical Framework LF (cont’d)

Definitional equality.

• LF terms are alive.

• (λx : A.M)N ≡ [N/x]M (β)

• (λx : A.Mx) ≡M (η)

• Canonical forms: β-normal, η-long form.

• Object language contexts/environments
disappear.

Theorem: Every well-typed object in LF reduces

to a unique canonical form.
Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.19/60

The Logical Framework LF (cont’d)

Theorem: [Adequacy] There exists a bijection
between H :: A1 . . . An ` A and
u1 : pA1q, . . . , un : pAnq ` pHq ⇑ pAq.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.20/60

The Logical Framework LF (cont’d)

Parametric Function Space.

• Example: ded A→ ded B

λx : ded A. x

λx : ded A. K

λx : ded A. S

λx : ded A. MP (H1 x) (H2 x)

• Parametric functions are good for
representation but not programming.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.21/60

The Logical Framework LF (cont’d)

Summary.

• Adequate higher-order encodings.

• Encodings necessarily non-inductive.

• Rapid prototyping of deductive systems.

Computational weakness
≈

Representational strength

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.22/60

Elf: Logic programming in LF

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.23/60

Elf: Logic programming in LF

[Pfenning 89]

• Overcoming the computational weakness.

• Strict separation data and programs ...
... using the same syntax.

• Idea: Don’t just use β for computation.

• Instead: Search for canonical forms.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.24/60

Elf: Logic programming in LF

K
` A ⊃ B ⊃ A

` (A ⊃ B) ` A
MP

` B

S
` (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ (A ⊃ C)

Challenge: Give a derivation of the identity.

` A ⊃ A

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.25/60

Elf: Logic programming in LF

By S with A/C and (A ⊃ B) ⊃ A/B.

` (A ⊃ ((A ⊃ B) ⊃ A) ⊃ A) ⊃ (A ⊃ (A ⊃ B) ⊃ A)

⊃ (A ⊃ A)

By K with (A ⊃ B) ⊃ A/B and (A ⊃ B)/B .

` A ⊃ ((A ⊃ B) ⊃ A) ⊃ A

` A ⊃ (A ⊃ B) ⊃ A

By two applications of MP : ` A ⊃ A. �

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.26/60

Elf: Logic programming in LF

Search for canonical forms.

? : ded (A ⊃ A)

MP ? ?

MP (MP ? ?) K

MP (MP S K) K

• Model of computation: search.

• Signature: logic program.

• Here: search space infinite.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.27/60

Elf: Logic programming in LF

Programmers: Think bracket abstraction!

Logicians: Think deduction theorem!

Programming Exercise: [Gentzen]
Convert a “hypothetical combinator” of type

u
` A

...
` B

into a combinator of type ` A ⊃ B.
Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.28/60

Elf: Logic programming in LF

Representation in LF/Twelf

ded : (hil A → hil B) → hil (A imp B) → type.

ded_id : ded (λu:hil A. u) (MP (MP S K) K).

ded_K : ded (λu:hil A. K) (MP K K).

ded_S : ded (λu:hil A. S) (MP K S).

ded_MP: ded (λu:hil A. MP (H1 u) (H2 u))

(MP (MP S H ′

1
) H ′

2
)

← ded (λu:hil A. H1 u) H ′

1

← ded (λu:hil A. H2 u) H ′

2
.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.29/60

Elf: Logic programming in LF

The two function spaces.

c : A→ B is for representation.

c(x) = M (Reduction to βη-canonical form).

f : A⇒ B is for programming.

f(x) = M if and only if ∃D : f x M .

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.30/60

Elf: Logic programming in LF

Operational interpretation. [Pfenning]

G ::= P | Πx : A.G | D → G

D ::= P | Πx : A.D | G→ D

P ::= a | P M

• “→” triggers search, “Π” does not. [Pym]

• x : A existential variable.

• x : A parameter.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.31/60

Elf: Logic programming in LF

• Existential variables.

• Back-tracking.

• Embedded implications.

+ Works with higher-order encodings.

+ Same syntax as LF signatures.

− No user control on search.

∗ No extra logical constants.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.32/60

Elf: Logic programming in LF

Applications.

• Programming language design.
Type systems.
Operational semantics.
Compilation.

• Logics.
Transformations. [Logosphere]
Cut-elimination. [Pfenning]

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.33/60

Meta theory of deductive systems

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.34/60

Meta Theory

Programmers: Think λ-calculus!
Logicians: Think natural deductions!

Γ, A `̀ B
lam

Γ `̀ A ⊃ B

Γ `̀ A ⊃ B Γ `̀ A app
Γ `̀ B

nd : o → type.
lam : (nd A → nd B) → nd (A imp B).
app : nd (A imp B) → nd A → nd B.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.35/60

Meta Theory

Theorem: [Natural Deduction - Hilbert]

For all
D

Γ `̀ A there exists a derivation
H

Γ ` A .

• Realizability interpretation.

ndhil : ΠA:o. nd A → hil A → type

• Total logic programs encode meta proofs.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.36/60

Meta Theory

Lemma [Deduction]

If
H

Γ, A ` B then
H′

Γ ` A ⊃ B .

Proof: by structural induction on H.
Cases K, S, MP same as above.
Case: B ∈ Γ

H1 :: Γ ` B ⊃ A ⊃ B by K
H′ :: Γ ` A ⊃ B by MP

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.37/60

Meta Theory

Proof (of ndhil): by structural induction on D.

Case: D =

D1

Γ, A `̀ B
lam

Γ `̀ A ⊃ B

H1 :: Γ, A ` B by induction hypothesis
H :: Γ ` (A ⊃ B) by deduction lemma.

Case app straightforward.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.38/60

Meta Theory

caselam: ndhil (lam (λu:nd A. D1 u)) H
← (Πu:nd A. Πh:hil A.

ndhil u h →
(ΠB:o. ded (λz:hil B. h)

(MP K h))
→ ndhil (D1 u) (H1 h))

← ded (λh:hil A. H1 h) H.
caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.39/60

What makes a proof a proof?

Option 1: Propositions-as-types.

∀A.∀D.∀Γ.isctx(Γ)∧wff(A)∧nd(D, Γ, A) ⊃ ∃H.hil(H, Γ, A)

• Logical derivations.

• Inductive types.

• Predominantly used technique. [Coq, . . .]

• Incompatible with higher-order encodings.

• Explicit notion of equality.

• Disprove impossible cases.
Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.40/60

What makes a proof a proof?

Option 2: Jugments-as-types.

• Total logic programs are proofs.

• Induction on canonical form derivations.

• Non-standard induction principles exist.

• Impossible cases omitted.

• Adequacy replaces validity propositions.

• But: Need to decide totality!

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.41/60

Meta Theory

1. Mode criterion.
(Fixed input/output behavior of arguments)

2. World criterion.
(Form of the local context is regular)

3. Termination criterion.
(Does not run on forever)

4. Coverage criterion.
(Covers all cases)

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.42/60

Meta Theory

Definition: [Mode criterion] During execution,
ground inputs are being mapped onto output
ground outputs.

[Rohwedder, Pfenning]

%mode (ded +H −H ′).
%mode (ndhil +D −H).

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.43/60

Meta Theory (Mode Criterion)

caselam: ndhil (lam (λu:nd A. D1 u)) H

← (Πu:nd A. Πh:hil A.
ndhil u h →

(ΠB:o. ded (λz:hil B. h)
(MP K h))

→ ndhil (D1 u) (H1 h))

← ded (λh:hil A. H1 h) H .

caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2 .
Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.44/60

Meta Theory

Definition: [World criterion] During execution the
local context is always regular formed.

[Schürmann]

%world dyn [A:o]
{u:nd A,
h:hil A,
p:(ΠB:o. ded (λz:hil B. h) (MP K h))
d:ndhil u v,

}

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.45/60

Meta Theory (World criterion)

caselam: ndhil (lam (λu:nd A. D1 u)) H

← (Πu:nd A. Πh:hil A.

ndhil u h →

(ΠB:o. ded (λz:hil B. h)

(MP K h))
→ ndhil (D1 u) (H1 h))

← ded (λh:hil A. H1 h) H.
caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.46/60

Meta Theory

Definition: [Termination criterion] The execution
will eventually terminate.

[Rohwedder, Pfenning, Pientka]

• In general undecidable.

• Well-founded subterm ordering.

• Lexicographic and simultaneous extensions.

%terminates H (ded +H −H ′).
%terminates D (ndhil +D −H).

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.47/60

Meta Theory (Termination criterion)

caselam: ndhil (lam (λu:nd A. D1 u)) H

← (Πu:nd A. Πh:hil A.
ndhil u h →
(ΠB:o. ded (λz:hil B. h)

(MP K h))
→ ndhil (D1 u) (H1 h))

← ded (λh:hil A. H1 h) H.
caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.48/60

Meta Theory

Definition: [Coverage criterion] The execution
will always make progress.

[Schürmann, Pfenning]

• In general undecidable. [Coquand]

• Very difficult but extremely important.
- Non-local assumptions.
- Input coverage.
- Output coverage.

• Open for 10 years.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.49/60

Meta Theory (Coverage Criterion)

caselam: ndhil (lam (λu:nd A. D1 u)) H

← (Πu:nd A. Πh:hil A.
ndhil u h →
(ΠB:o. ded (λz:hil B. h)

(MP K h))
→ ndhil (D1 u) (H1 h))

← ded (λh:hil A. H1 h) H.
caseapp: ndhil (app D1 D2) (MP H1 H2)

← ndhil D1 H1

← ndhil D2 H2 .

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.50/60

Functional Programming

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.51/60

Functional programming in LF

Delphin

• �A embeds LF types in Delphin.

• box M embeds LF objects in Delphin.

• λ-calculus with recursion and case.

• Strict separation of LF and meta level.

• Parametric function space.

• Primitive recursive function space.

• Automated theorem prover.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.52/60

Functional programming in LF

Advantages.
• No existential variables.
• Back-tracking.
• Higher-order encodings.
• Computation under λ-binders.
• Local let statements.

Applications.
• Coverage checking (order ≥ 3).
• Compilation of mode-correct programs.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.53/60

Functional programming in LF

The two function spaces.

c : A→ B is for representation.

c(x) = M (Reduction to βη-canonical form)

f : �A⇒ �B is for programming.

f(x) = M (Function definition by cases).

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.54/60

Functional programming in LF

Basic idea: Use worlds to describe datatypes.

%world static
{imp : o → o → o,

K : hil (imp A (imp B A)),
S : hil (imp (imp A (imp B C)) (imp (imp A B) (imp A C))),
MP : hil (imp A B) → hil A → hil B}

%world dynamic [A:o]
{y : hil A }

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.55/60

Functional programming in LF

µf. (∇s :static.∇d :dynamic.∃A : o.box (λu : hil A.d.y)

7→ box (s.MP s.K d.y))

| (∇s :static.∃A :o.box (λu : hil A.u)

7→ box (s.MP (s.MP s.S s.K) s.K))

| (∇s :static.∃A :o.∃B :o.∃C :o.∃H2 :hil A→ hil B.

∃H1 :hil A→ hil (B → C).

box (λu : hil A.s.MP (H1 u) (H2 u))

7→ (box (s.MP))[·](box (s.MP)

[·](box (s.S))[·](f (box (λu : hil A.H1 u))))

[·](f (box (λu : hil A.H2 u))))
... Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.56/60

Functional programming in LF

Meta(-meta) Theory.

Type soundness. Operational semantics is type
preserving.

Conversion lemma. Let a : A→ B → type,
mode correct. Then there exists a Delphin
function fa : �A⇒ �B, such that

If ∃D : a M N then fa(box M) = box N.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.57/60

Implementation

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.58/60

Implementation

Twelf. www.twelf.org
• Type reconstruction.
• Logic programming.
• Mode, world, termination, coverage.

Delphin.
www.cs.yale.edu/~carsten/delphin

• Prototype exists.
• Functional programming.
• Converter from Elf logic programs.
• Factoring. [Poswolsky]

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.59/60

Conclusion

Meta-logical framework Twelf and Delphin.

• Lots of applications.

• Automated deduction.

• Great rapid prototyping tool.

• Programming with variable binders.

• Supports representational strength.

• Provides computational power.

Twelf and Delphin Logic and Functional Programming in a Meta-Logical Framework – p.60/60

	Advertisement!
	What are Logical Frameworks?
	What are Logical Frameworks?
	Programming Languages
	Running Example
	Other examples
	Sample Logical Frameworks
	What can go wrong?
	Meta-logical frameworks
	Meta-logical frameworks
	Sample Meta-Logical Frameworks
	Outline of this talk
	
	The Logical Framework LF
	The Logical Framework LF
	Deduction theorem
	The Logical Framework LF (cont'd)
	The Logical Framework LF (cont'd)
	The Logical Framework LF (cont'd)
	The Logical Framework LF (cont'd)
	The Logical Framework LF (cont'd)
	
	Elf: Logic programming in LF
	Elf: Logic programming in LF
	Elf: Logic programming in LF
	Elf: Logic programming in LF
	Elf: Logic programming in LF
	Elf: Logic programming in LF
	Elf: Logic programming in LF
	Elf: Logic programming in LF
	Elf: Logic programming in LF
	Elf: Logic programming in LF
	
	Meta Theory
	Meta Theory
	Meta Theory
	Meta Theory
	Meta Theory
	What makes a proof a proof?
	What makes a proof a proof?
	Meta Theory
	Meta Theory
	Meta Theory (Mode Criterion)
	Meta Theory
	Meta Theory (World criterion)
	Meta Theory
	Meta Theory (Termination criterion)
	Meta Theory
	Meta Theory (Coverage Criterion)
	
	Functional programming in LF
	Functional programming in LF
	Functional programming in LF
	Functional programming in LF
	Functional programming in LF
	Functional programming in LF
	
	Implementation
	Conclusion

