
Delphin: Functional Programming with Deductive
Systems

Carsten Schürmann
Department of Computer

Science
Yale University

New Haven, CT 06520

carsten@cs.yale.edu

Richard Fontana
Department of Computer

Science
Yale University

New Haven, CT 06520

richard.fontana@yale.edu

Yu Liao
∗

Department of Computer
Science

Yale University
New Haven, CT 06520

yu.liao@yale.edu

ABSTRACT
We present the design and implementation of the strict
and pure functional programming language Delphin. Its
novel and distinctive features include a two-level design
that distinguishes cleanly between the tasks of repre-
senting data and programming with data. One level is
the logical framework LF [5], serving as Delphin’s data
representation language. The other level is T +

ω [15],
a type theory designed to support programming using
pattern matching and recursion. The main contribution
of this work is therefore Delphin, in which one can pro-
gram with higher-order, dependently-typed data struc-
tures such as proofs and typing derivations in a natural
and intuitive way.

1. INTRODUCTION
Data structures are among the most well-studied con-
cepts in computer science. Structures such as lists,
trees, graphs, and arrays, and many complex variations
on them, along with the operations to manipulate these
structures, have been designed and implemented, and
researchers have analyzed the trade-offs between the
compactness of representation and the speed at which
operations can be performed.

But this foundational work on data structures has led
to new questions related to the representation of other
kinds of data. How might one represent a theorem,
a specification, or a proof? How should one repre-
sent the fundamental concept of abstraction over values,
which occurs when encoding functions and relations?

∗This research is funded in part by NFS under grant
CCR-0133502.

What is the best abstract representation of an algo-
rithm? More generally, how can one represent knowl-
edge, or facts about the structure of knowledge (i.e.,
meta-knowledge)? Perhaps most importantly, how does
one manipulate theorems, proofs, algorithms, knowl-
edge, and meta-knowledge?

The naive approach to addressing these problems of rep-
resentation is an encoding in which critical concepts like
variables, substitutions, and environments are explicitly
represented. Such efforts are in our opinion unaccept-
ably low-level, however, and lead to complex, convo-
luted, and ultimately unreliable software systems. Since
many modern applications, such as agents, avatars, se-
curity mechanisms, and theorem provers, depend criti-
cally on these concepts, we need better solutions to this
important epistemological challenge.

A different approach to the problem of representation
is an encoding in a logical framework, in which higher-
order functions correspond to object-level variables, sub-
stitutions, and environments. A logical framework may
be thought of as a formal meta-language allowing one
to represent and reason about complex concepts, such
as proofs, algorithms, abstract machines, operational
semantics, execution traces, typing derivations, and in
general all kinds of knowledge and meta-knowledge. The
great benefit of logical frameworks is that they make
such complicated representations as easy for program-
mers to work with as conventional data objects such as
integers, rationals, lists, arrays, or trees. Many impor-
tant concepts that are difficult and tedious to program
explicitly, such as substitutions, environments, and con-
texts, are implicitly provided by the logical framework
and remain hidden inside the representation.

Delphin, the functional programming language described
in this paper, engages logical framework technology to
model closely the true meaning of concepts. The wide
variety of built-in features provided by the LF logical
framework, which serves as Delphin’s data representa-
tion level, leads to elegant encodings despite the intrin-
sic conceptual complexity of the underlying knowledge

and meta-knowledge being represented. Delphin pro-
grammers can take advantage of LF’s simple and di-
rect encodings of, for example, proofs, typing deriva-
tions, and execution traces, and thereby concentrate
their programming efforts on the functionality that can
be achieved with these representations, such as type in-
ference algorithms, compilers and theorem provers.

This paper is organized as follows. In Section 2, we
discuss logical frameworks in general, and we describe
LF as the logical framework used by Delphin. The Del-
phin language itself is described in Section 3. The type-
theoretic underpinnings of Delphin are sketched in Sec-
tion 4. Section 5 comments briefly on the implemen-
tation, following which we give an overview of related
work in Section 6. We conclude the paper in Section 7.

2. LOGICAL FRAMEWORKS
Most functional programming languages offer program-
mers a means of introducing user-defined datatypes. In
ML and Haskell, for example, we can write:

SML Haskell

datatype ’a list data List a

= nil = Nil

| cons of ’a * ’a list | Cons a (List a)

Both datatypes represent lists: finite lists in the ML
case, and potentially infinite lists in the Haskell case.
But both datatypes have something else in common. In
each case, the language used for representing data is
the same type-theoretic language that is used for pro-
gramming with data objects. For example, in ML there
is only one product space ’a * ’a list, and there is
only one function space, and each of these spaces can
be used either for representation or for programming.

This feature of conventional functional programming
languages gives rise to certain problems. Consider the
issue of how to decide whether two functions are equiv-
alent. Since it is so difficult to devise, for example, a
syntactic criterion that determines observational equiv-
alence, neither ML nor Haskell attempts to decide equal-
ity on functions at all. For datatypes that do not include
functions, the equality relation implemented in these
languages is based on extensional equality. ML uses
equality types to signify datatypes that come with im-
plicit extensional equality relations, while Haskell uses
type classes.

On the other hand, it is also widely recognized that
a single type system for both representation and pro-
gramming tasks brings many advantages. For example,
infinite lists, or streams, are naturally encoded in ML as
datatypes; a function is used to delay the evaluation of
the tail of a stream. Functions, such as continuations,
can also be conveniently contained within datatypes in
SML and in Haskell.

The principal design goal of the programming language

Delphin is to carefully divide responsibility between two
type systems, even though this means losing some of
the aforementioned advantages present in conventional
functional languages. One type system is the logical
framework LF [5], whose sole purpose is to represent,
and not to compute. The other type system is T +

ω whose
objects are programs that compute but which do not
represent.

We thus distinguish between functionality and data,
just as one naturally distinguishes between reasoning
and the objects that are being reasoned about. The
interface between the two type systems is kept simple,
with a few key characteristics. Delphin programs oper-
ate on and manipulate objects of the logical framework.
Delphin therefore provides mechanisms for analyzing,
destructing, reconstructing, storing, and printing ob-
jects. Programs are written in an ML-like style and
are defined by pattern matching.

A logical framework must guarantee that the underlying
concepts being represented in the framework are repre-
sented adequately. For example, the correctness of a
Delphin program that infers types and typing deriva-
tions of expressions of some calculus rests in the first
place on an adequate encoding of expressions and typ-
ing derivations.

Of the many available logical frameworks, we have cho-
sen LF to serve as Delphin’s data representation lan-
guage. LF is expressive enough to represent many con-
cepts in computer science, logic, and formal methods
elegantly, and the conciseness, adequacy, and efficiency
of LF representations make them superior to standard
datatypes. The following example shows how a frag-
ment of Mini-ML can be expressed in LF. To conserve
space we only discuss the fragment containing natu-
ral numbers, functions, and recursion, but the example
scales to other constructs as well.

Types τ ::= bool | τ1 ⇒ τ2
Expressions e ::= x | e1@e2 | fn x : τ.e | z | s e

| (case e of z⇒ e1 | s x⇒ e2)
| rec x.e

Contexts ∆ ::= · | ∆, x : τ

The typing rules for Mini-ML are depicted in Figure 1.
Expressions and inference rules have very natural en-
codings in the LF logical framework. LF extends the
simply-typed λ-calculus with dependent types. We write
Γ `Σ M : A for the LF typing judgment, where Γ is the
LF context, M is an object and A is the object’s type.
In Section 4 we give a brief overview of the type theory
behind LF.

For Delphin, the critical feature provided by LF is that
every LF object has a canonical (β-normal η-long) form,
for which we write Γ Σ̀ M ⇑ A. The existence of canon-
ical forms for LF data objects provides Delphin with
a notion of structural equality, which permits Delphin
functions to be defined by pattern matching. We take

∆(x) = τ
of var

∆ ` x : τ

∆, x : τ1 ` e : τ2
of fn

∆ ` fn x : τ1.e : τ1 ⇒ τ2

∆ ` e1 : τ2 ⇒ τ1 ∆ ` e2 : τ2
of app

∆ ` e1@e2 : τ1

of z
∆ ` z : nat

∆ ` e : nat
of s

∆ ` s e : nat

∆ ` e : nat ∆ ` e1 : τ ∆, x : nat ` e2 : τ
of case

∆ ` case e of z⇒ e1 | s x⇒ e2 : τ

∆, x : τ ` e : τ
of fix

∆ ` fix x : τ.e : τ

Figure 1: Inference rules for Mini-ML

βη-conversion as the notion of definitional equality [5,
3]. Dependent functions that map objects of type A1 to
A2 are written as Πx : A1. A2. Following standard ter-
minology, types that are indexed by other LF objects
are referred to as type families.

In the LF logical framework we represent judgments as
types and derivations as objects. For example, the en-
coding of a derivation of D of typing judgment ∆ ` e : τ
is captured by the definition of the type family “of”:

pD :: ∆ ` e : τq = p∆q Σ̀ pDq ⇑ of peq pτq (1)

where we write p·q for the representation function, and
Σ for the LF signature that captures the representation
of each Mini-ML type, each language construct and each
individual typing rule. The particular signature for our
version of Mini-ML [7] is standard and is depicted in
Figure 2.

Following standard practice [9], in this presentation we
omit all implicit Π-abstractions from the types of “of fn”,
“of app”, and “of fix”. The absence of a representation
of the inference rule “of var” should be noted. It is
not necessary to represent it explicitly, because ∆ is
represented by Γ, and therefore the variable lookup rule
for Mini-ML corresponds directly to the variable lookup
rule for LF.

From a functional programming perspective the three
LF type families “tp”, “exp”, and “of” can be regarded
as datatype declarations. Each constant can be seen as
a constructor of the type family that is named in the
head of the constant’s type. For better readability, the
constants in the Mini-ML encoding above are grouped
in a way that clarifies this view.

2.1 Regular Worlds
When working with complex encodings, such as the en-
codings of Mini-ML expressions and typing derivations
given above, we need a guarantee that the encoding

tp : type.

arr : tp → tp → tp.
nat : tp.

exp : type.

z : exp.
s : exp → exp.
case : exp → exp → (exp → exp) → exp.
app : exp → exp → exp.
fn : tp → (exp → exp) → exp.
fix : (exp → exp) → exp.

of : exp → tp → type.

of z : of z nat.
of s : of E nat → of (s E) nat.
of case : of E nat → of E1 T

→ (Πx:exp. of x T → of (E2 x) T)

→ of (case E E1 E2) T.

of fn : (Πx:exp. of x T1 → of (E x) T2)

→ of (fn T1 E) (arr T1 T2).

of app : of E1 (arr T2 T1) → of E2 T2

→ of (app E1 E2) T1.

of fix : (Πx:exp. of x T → of (E x) T)

→ of (fix E) T.

Figure 2: Mini-ML

is adequate. For example, Mini-ML expressions must
be guaranteed to be in one-to-one correspondence with
canonical LF objects of type “exp”, and Mini-ML typing
derivations must be guaranteed to be in one-to-one cor-
respondence with canonical LF objects of type “of peq
ptq”. Adequacy is proved by induction. Proof of ad-
equacy in the Mini-ML example is important because
it ensures that LF objects of type “exp” that are re-
turned by a program actually make sense and can be
interpreted as Mini-ML expressions. If this were not
the case, the outcome of our programs could not be
trusted. Consider the following straightforward encod-
ing of “exp” as a Haskell datatype:

data Exp

= Z

| S Exp

| Case Exp Exp (Exp -> Exp)

| Fn (Exp -> Exp)

| App Exp Exp

| Fix (Exp -> Exp)

This encoding is not adequate; for example,

Fn (\x -> case x of App -> Fn (\x -> x)

-> Fix (\x -> x))

has type “exp”, but it does not correspond to any Mini-
ML expression. In a higher-order encoding, in which LF
functions occur as arguments to constants, special care
must be taken in formulating the induction hypothesis

of the adequacy theorem. Hypothetical judgments, such
as the typing judgment given in the previous section, are
encoded as higher-order functions. Consequently, the
formulation of the adequacy theorem must establish a
connection between free variables (or parameters) in an
LF encoding and hypotheses of the form x : τ in a Mini-
ML context ∆. Adequacy is thus a property of open LF
objects, i.e., objects that contain free variables, and not
merely a property of closed objects.

The following observation regarding the LF encoding of
Mini-ML provides further illustration of the open na-
ture of LF objects. Any Delphin program that recurses
on subexpressions of Mini-ML expressions fn x.e and
fix x.e, for example, must traverse a λ-binder, which in-
troduces new parameters into the context. If a Delphin
program recurses on subderivations of typing deriva-
tions ending in of fn or of fix it must traverse two λ-
binders. The type inference problem for Mini-ML pro-
vides an example. For each Mini-ML expression e with
free variables among ∆, we would like to write a func-
tion that computes the type τ and a derivation D :: ∆ `
e : τ , if they exist. In Delphin this can be expressed di-
rectly, without the need to define auxiliary datatypes,
such as lists, and auxiliary functions that access such
datatypes. It is necessary, however, to allow the Del-
phin function to operate on open terms.

Consider the case e = fn x.e′, which is represented in
LF as “fn pτ1q (λx : exp. pe′q)”, where pxq = x. A pro-
gram that computes the type of e and the corresponding
typing derivation must be applied to e′ to determine its
type and derivation first. In order to do this it must
recurse on e′. However, this would seem to be impos-
sible in a programming language which represents e′ as
an LF function.

The solution to this basic problem lies in freeing the
concept of datatypes from the misconception that they
must be static in nature with only a finite number of
fixed constructors. On the contrary, with some pre-
cautions which we will explain below, datatypes can be
considered free, open-ended, and extendible by dynam-
ically adding new data constructors at runtime. We
should be able to extend the datatype “exp” by a new
constructor “x:exp” on the fly. This would enable us
to write a Delphin program that can recurse on e′, by
recursing on e′ x rather than e′ alone.

This idea requires us to take some precautions. Delphin
functions are defined by pattern matching, and pattern
matching is not possible if the set of object construc-
tors is too flexible and not fixed. Patterns define the
shape of objects, using constructors of the types of these
objects. There is, however, a way out of this seeming
dilemma [15]. As long as the overall structure of the
dynamic extensions of a datatype is known a priori, one
can use a special block variable x to range over those
extensions. For example, in the Mini-ML type inference
problem, the Delphin program might have to traverse
several binders of the form λx : exp. e′x, and with every

traversal it introduces a new parameter. After n itera-
tions, objects of type “exp” may consist of n+6 different
constants, i.e., “z”, “s”, “case”, “fn”, “app”, “fix” ,“x1

: exp”, ..., “xn:exp”. A block variable x may be used
to capture all n parameter cases at once. Dependencies
that are introduced by dependent types complicate this
scenario slightly, as we discuss below.

One might expect that these dynamic extensions are lo-
cal to the datatype, which can be viewed as consisting
of the traditional static part and the dynamic part. But
this is not the case. Interestingly [14, 15], one can use
these extensions to express such properties as: “Every
newly-introduced parameter “x:exp” is well typed, ex-
pressed by the related assumption “u:of x t” for some
type “t : tp”. We will see this in the next section when
we show how to program in Delphin (see also Exam-
ple 1 below). How, what, and when new parameters are
introduced depends on the functionality that is imple-
mented in the Delphin program and not merely on the
datatypes manipulated by the program.

The foregoing observation leads to the concept of worlds
which capture these dynamic extensions. Clearly, every
ML and Haskell program is defined in the empty world,
because neither ML nor Haskell datatypes can be ex-
tended dynamically. Delphin functions can be defined
in arbitrary worlds defined beforehand by the program-
mer, and the implementation can then take advantage
of them.

Definition 1 (Blocks).

B ::= L : some (y1 : A′1...yn : A′n)
block (x1 : A1...xm : Am)

A block B describes m constructors xi : Ai that may
be introduced during evaluation of a Delphin program
for some instantiation of all n implicitly existentially
quantified assumptions yj : A′j . L is the name or label
of a block.

In other examples, such as the polymorphic version of
Mini-ML in which type variables are represented by
means of the LF context, a variety of different parame-
ter blocks may arise during evaluation. What all these
contexts have in common, however, is that they are
regularly formed. During evaluation Delphin programs
introduce additional blocks of parameters into the LF
context, which grows to the right. Upon return those
parameters will be discarded, so that any Delphin pro-
gram halts in the same context in which it has been
started. Regular worlds are used to describe any possi-
ble context that may arise.

Definition 2 (Worlds). Φ ::= B | Φ + Φ | Φ∗

One can intuitively think of worlds as regular expres-
sions with blocks B as terminal symbols, where + de-
scribes alternatives and ∗ describes repetition.

Γ0 ` σ : Γ1 Γ0 ` Γ ≡α [σ]Γ2

block
Γ0 ` Γ ∈ L(L : some Γ1 block Γ2)

empty
Γ0 ` · ∈ L(Φ∗)

Γ0 ` Γ1 ∈ L(Φ) Γ0,Γ1 ` Γ2 ∈ L(Φ∗)
unfold

Γ0 ` Γ1,Γ2 ∈ L(Φ∗)

Γ0 ` Γ ∈ L(Φ1)
left

Γ0 ` Γ ∈ L(Φ1 + Φ2)

Γ0 ` Γ ∈ L(Φ2)
right

Γ0 ` Γ ∈ L(Φ1 + Φ2)

Figure 3: Regular contexts generated by Φ.

Example 1. The Delphin function that implements
a type inference algorithm for Mini-ML is defined in a
world Φ = B∗ where

B = L : some (t : tp) block (x : exp, u : of x t).

2.2 Adequacy
Adequacy, which refers to the existence of a bijection be-
tween informal deductions and objects in the type the-
ory, is a property that must be established individually
for every datatype in LF and for every world in which
instances will be used. Adequacy theorems always lie
outside of the type theory and are proved by induction
on the structure of the informal deductions for one di-
rection and on the canonical form deductions for the
other. Therefore, the adequacy theorem quantifies over
all possible contexts Γ that may be encountered during
evaluation, written as Γ ∈ L(Φ). The rules defining the
set of contexts L(Φ) are given in Figure 3.

The block “L : some Γ1 block Γ2” satisfies the invari-
ant that Γ1,Γ2 form a valid context. In context Γ0, the
set of regular contexts L(L : some Γ1 block Γ2) consists
of all α-variants of the block Γ2, where free variables
declared in Γ1 have been instantiated by objects (sum-
marized as substitution σ) valid in Γ0. We write [σ]Γ2

for a context under a substitution. That σ is valid is
enforced by the first premiss Γ0 ` σ : Γ1 of the “block”
rule, whose definition we omit. The second premiss of
the same rule is the standard α-conversion congruence
Γ0 ` Γ1 ≡α Γ2, which permits tacit variable renam-
ing on regular contexts. Consequently, without loss of
generality all contexts in L(Φ) are valid.

In this section we show that Mini-ML’s encoding is ad-
equate with respect to the world Φ from Example 1.
Informally, the adequacy theorem states that the repre-
sentation function p·q used in Equation (1) is a bijection.
Contexts, terms, types, and typing derivations must be
embedded adequately, and Γ ∈ L(Φ) must stand in one-
to-one correspondence to them.

Theorem 1 (Adequacy). Let Φ be defined as in
Example 1. For all contexts Γ, s.t. · ` Γ ∈ L(Φ), there

exists a ∆, s.t. Γ = p∆q, and vice versa.

Proof. By induction on the derivation of · ` Γ ∈ L(Φ)
in one direction and ∆ in the other direction.

Theorem 2 (Adequacy). Let Φ be defined as in
Example 1, Mini-ML typing context ∆, and · ` Γ ∈ L(Φ),
s.t. pΓq = ∆ .

1. For all objects Γ `M ⇑ tp there exists a Mini-ML
type τ , s.t. pτq = M , and vice versa.

2. For all objects Γ ` M ⇑ exp there exists a Mini-
ML expression e, s.t. peq = M with free variables
among ∆, and vice versa.

3. For all objects Γ ` M ⇑ of peq pτq there exists
a Mini-ML typing derivation D :: ∆ ` e : τ , s.t.
pDq = M , and vice versa.

Proof. By structural induction on the canonicity
derivations in one direction, τ , e, and D :: of peq pτq in
the other direction, using Theorem 1.

3. DELPHIN
Delphin is a strict functional programming language
which is designed to allow programming with datatypes
that consist of a fixed set of constructors along with dy-
namic extensions of these datatypes valid in some world.
The core language that is presented in this paper has
been implemented and can be accessed through [17].
Delphin’s syntax is inspired by that of Standard ML
of New Jersey. Delphin permits function definition by
pattern matching and recursion. Its datatypes are es-
sentially LF types, and the objects manipulated by Del-
phin programs are LF objects. Delphin’s implementa-
tion also includes a type checker and an interpreter.
Delphin’s type system is deceptively simple, since it
only provides type constructors for function and prod-
uct spaces. Although these constructors provide depen-
dent types, there is no mechanism that would allow pro-
grammers to define their own Delphin types. The cur-
rent design does not allow programs to be polymorphic,
but we plan to investigate the issue of polymorphism in
future work.

3.1 Datatypes
Delphin’s datatype declarations are LF signatures, which
include declarations of constructors for type families and
worlds. The Twelf system [10] is an implementation of
the logical framework LF which is designed to facilitate
developing, implementing, experimenting with, and ver-
ifying properties about deductive systems, such as the
Mini-ML type system in the example given above. In
fact, Twelf is an extraordinarily useful and effective tool
for engineering, developing, and debugging representa-
tions of data, and we have accordingly chosen to use and

eval :: all {e:exp} exists {v:exp} true

fun eval z = <z, <>>

| eval (s E) =

let

val <V, <>> = eval E

in

(s V)

end

| eval (case E E1 E2) =

(case (eval E)

of <z, <>> => eval E1

| <s V, <>> => eval (E2 V))

| eval (fn T E) = <fn T E, <>>

| eval (app E1 E2) =

let

val <fn T E′1, <>> = eval E1

val <V2, <>> = eval E2

in

eval (E′1 V2)

end

| eval (fix E) =

eval (E (fix E))

val <D, <>> = eval (app (fn nat [x] x) z)

Figure 4: A Mini-ML evaluator.

parse Twelf signatures as Delphin datatypes. Our im-
plementation therefore takes direct advantage of Twelf
technology, and does not provide a separate mechanism
for defining datatypes. Figure 2, for example, contains
the content of a file that is already in Twelf format.

Programmers are free to extend datatypes dynamically
during evaluation as long as these extensions conform to
the rules stipulated by the world in which a function is
defined. We say that a function cannot leave the world
in which it lives during evaluation. The idea of worlds
is not new; it was introduced in [14], studied as a means
of defining recursive functions in [15], and applied to
reasoning by induction in [16]. Worlds have also been
implemented in the Twelf system [10]. The block from
Example 1 is declared in Twelf as follows:

%block L : some {T:tp}
block {x:exp} {u:of x T}.

3.2 Language Features
Delphin programs consist of variable declarations, value
definitions, and function definitions. Local function def-
initions are also possible. Consider for example an eval-
uator for Mini-ML programs, which is presented in Fig-
ure 4.

The first instruction declares the variable eval to be
of type ∀e : exp.∃v : exp.>. In the text we write types
in mathematical notation; in Delphin source code types
are given in corresponding ASCII notation. ∀ stands
for the Delphin-level dependent function space, and ∃

stands for the Delphin-level dependent product space;
these should not be confused with the LF-level Π. >
corresponds to the unit type of ML.

The next instruction defines the program eval by pat-
tern matching; it closely resembles an ML function dec-
laration. <z, <>> in the first case of eval illustrates
the syntax for pairs. <> is () in ML, and has type >.
When programming an evaluator for Mini-ML programs
there is no need to define a notation for substitution or
environments. These concepts are provided by LF im-
plicitly; the programmer can take advantage of them by
simply applying E2 to V in the second case of case, E′1
to V2 in the app case, and E to (fix E) in the fix case.
Therefore, juxtaposition can have one of two meanings.
Depending on where it occurs, it is either an LF-level
application or a Delphin-level application.

The last instruction in Figure 4 is a value definition
that employs pattern matching. It demonstrates how to
call the evaluator, here using the simple ML expression
(fn x : nat.x) z.

As second example, we consider the type inference prob-
lem used to motivate this work, whose implementation
in Delphin is depicted in the two programs in Figures 5
and 6. The first program checks whether two Mini-ML
types are equivalent. The second program infers the
type of a Mini-ML expression together with the typing
derivation.

Clearly, in order to infer the type of a Mini-ML ex-
pression, infer must recurse under a λ-binder to infer
the type of the body of the function. This means that
infer cannot live in the empty world, and neither can
check, because it may be called from infer after new
parameters have been introduced. This observation is
reflected in the types of the two functions: both are
declared to live in the world generated by the block
labeled L. This signifies that both check and infer

may be executed in any context Γ ∈ L(B∗), where
B = L : some (t : tp) block (x : exp, u : of x t).

Therefore, infer may be called with one of these dy-
namically introduced parameters. This possibility is
covered by the first case:

infer #L X = <#L T, <#L U, <>>>

#L stands for a variable that ranges over blocks of vari-
ables, or instances of blocks. In mathematical notation
we would write x for #L. T is a projection of the exis-
tentially quantified variable T from block L, and X and
U project the two parameters, respectively. This case

can be read as follows: “If parameter x is encountered,
return its type and the appropriate typing derivation.”

Parameters are correspondingly introduced through the
new command provided by Delphin. Its usage is demon-
strated by the fn case of the infer function (and simi-

larly in the case and fix cases).

val <T, <P, <>>> =

new

{x:exp}{u:of x T1}
in

infer (E x)

end

Here E is an LF function of type exp → exp and T1 is
a Mini-ML type. Without worlds, infer could not be
defined, because its argument has type exp and there-
fore it could not recurse on E. But with new the LF
context can be extended, provided that the extension
does not violate the world in which infer lives. Indeed
it does not, because t is simply being instantiated to T1

in Example 1. This solves the problem because in the
extended context E x has type exp, and the evaluation
may proceed.

Type-theoretically speaking, new is executed in a situa-
tion in which Γ ` E : exp→ exp and Γ ` T1 : tp, where
Γ ∈ L(B∗). Then two new parameters are introduced,
and infer is called recursively, with the argument

Γ, x : exp, u : of T1 ` E x : exp

returning a value of type ∃T : tp.∃P : of (E x) T .>.

Γ, x : exp, u : of x T1 ` T : tp
Γ, x : exp, u : of x T1 ` P : of (E x) T

The binding, however, must take place in the unex-
tended context, Γ, and not in Γ, x : exp, u : of x T1.
This problem is easily solved by an operation called ab-
straction and is implemented using reasoning within LF
while taking advantage of the following strengthening
properties:

Lemma 1 (Strengthening).

If Γ, x : exp, u : of x t `M : tp then Γ `M : tp.

The result of abstraction is therefore

Γ ` T : tp
Γ ` P : Πx : exp. of x T1 → of (E x) T

and these are the declarations used in the bodies of the
case, fn, and fix cases. P has a functional type, which,
by the adequacy theorem (Theorem 2), corresponds to
a hypothetical derivation. Thus, it may be passed as
an argument to “of fn”. The arguments for the other
two cases that use new are, respectively, “of fix” and
“of case”. Note, that in the case-case T must be nat,
which is directly incorporated into the pattern match-
ing.

A necessary and sufficient criterion that implies strength-
ening theorems for all type families has been developed
elsewhere [18]. It is effectively computable, and it fol-
lows from a static analysis of the dependency relation

check :: world (L) all {t1:tp} all {t2:tp} true

fun check nat nat = <>

| check (arr T1 T2) (arr T′1 T′2) =

let

val = check T1 T′1
val = check T2 T′2

in

<>

end

Figure 5: Equivalence of types

among objects of different types. From this criterion, it
is a simple exercise to construct the abstraction oper-
ation used above [15]. We give a formal description of
abstraction in Definition 3 in Section 4.

The ability to use new to introduce new parameters in
accordance with the current world is a novel concept in
functional programming languages. In this respect, Del-
phin differs significantly from standard functional pro-
gramming languages like ML and Haskell.

3.3 World Checking
Delphin enforces the consistency of worlds. A Delphin
program f must not call g unless the world in which g
lives is at least as large as that in which f lives. Which
world a function lives in is part of its type, and the
relation “as least as large as” means that all blocks in
the world of the caller must occur in the world of the
callee.

Lemma 2 (Block consistency).

If Γ ∈ L(Φ∗) then Γ ∈ L((Φ +B)∗) for any block B.

Just as importantly, the parameters that are introduced
by a new statement must be checked for consistency with
one of the blocks defined by the world. In Delphin, pa-
rameters of several blocks can be introduced using one
new statement. Unless the parameters are shuffled, Del-
phin can decide the validity of such a parameter block.

When a program is loaded into Delphin, world infor-
mation is inferred for every function call and is then
checked for consistency. World-checking is an operation
orthogonal to type checking. If world-check errors are
detected Delphin will abort the loading process and re-
port the error to the programmer.

3.4 Type Checking
Delphin programmers are allowed to omit a significant
portion of reconstructible information from LF objects.
LF objects carry so much redundancy that is possible to
infer types even when arguments are omitted, provided
that those arguments occur elsewhere in the type of an
object or type constant [9]. See also the presentation
of Delphin datatypes in Figure 2, in which all implicit

infer :: world (L) all {e:exp}
exists {t:tp} exists {D:of e t} true

fun infer #L X = <#L T, <#L U, <>>>

| infer z = <nat, <of z, <>>>

| infer (s E) =

let

val <nat, <P, <>>> = infer E

in

<nat, <of s P, <>>>

end

| infer (case E E1 E2) =

let

val <nat, <D, <>>> = infer E

val <T1, <D1, <>>> = infer E1

val <T2, <D2, <>>> =

new

{x:exp}{u:of x nat}
in

infer (E2 x)

end

val = check T1 T2

in

<T1, <of case D D1 D2, <>>>

end

| infer (fn T1 E) =

let

val <T, <P, <>>> =

new

{x:exp}{u:of x T1}
in

infer (E x)

end

in

<T, <of fn P, <>>>

end

| infer (app E1 E2) =

let

val <arr T2 T1, <D1, <>>> = infer E1

val <T2’, <D2, <>>> = infer E2

val = check T2 T2’

in

<T1, <of app D1 D2, <>>>

end

| infer (fix T1 E) =

let

val <T, <P, <>>> =

new

{x:exp}{u:of x T1}
in

infer (E x)

end

val = check T1 T

in

<T, <of fn P, <>>>

end

Figure 6: A Mini-ML type inference algorithm.

count :: world (L) all {e:exp} all {t:tp}
all {P : of e t} exists {N : exp} true

fun count #L X #L T #L U = <s z, <>>

| count z nat of z = <z, <>>

| count (s E) nat (of s P) = count E nat P

| count (case E E1 E2) T (of case P P1 P2) =

let

val <N, <>> = count E nat P

val <N1,<>> = count E1 T P1

val <N2,<>> =

new

{X:exp} {U:of X nat}
in

count (E2 X) T (P2 X U)

end

val <N3, <>> = add N N1

in

add N3 N2

end

| count (fn T1 E) (arr T1 T2) (of fn P)=

new

{X:exp} {U:of x T1}
in

count (E x) T2 (P X U)

end

| count (app E1 E2) T2 (of app D1 D2) =

let

val <N1, <>> = count E1 D1

val <N2, <>> = count E2 D2

in

add N1 N2

end

| count (fix T E) =

new

{X:exp} {U:of x T}
in

count (E x) T (P X U)

end

Figure 7: Counting Typing Hypotheses.

Π abstractions have been omitted. Delphin in essence
inherits Twelf’s type inference algorithm, which enables
one to write the compact programs in Figures 4-6.

It follows, however, that in general any function that is
defined by cases over objects with implicit arguments
may contain many more variables than the ones explic-
itly provided by the programmer. Examples in which
such issues arise include Delphin programs that analyze
cases over typing derivations, such as the program given
in Figure 7, which computes the number of hypotheses
over the derivation D :: ∆ ` e : τ . We assume that
there is a function that adds two numbers of type add

∈ ∀n1 : exp.∀n2 : exp.∃n3 : exp.>.

Type checking with dependent Σ types can be quite
challenging, because principal types do not always exist.
Consider for example the possible types of

Formulas F ::= ∀x : A.F | ∀x : (L;σ). F | F1 ⊃ F2

| ∃x : A.F | ∃x : (L;σ). F | F1 ∧ F2 | >
Programs P ::= Λx : A.P | Λx : (L;σ).P | Λx ∈ F.P

| x | 〈M ;P 〉 | 〈x;P 〉 | 〈P1;P2〉 | 〈〉 | P M
| νP | Px | P1 P2 | case Ω | µx ∈ F.P

Cases Ω ::= . | Ω, (Ψ � σ 7→ P)

Contexts Ψ ::= · | Ψ, x : A | Ψ, x : (L;σ) | Ψ,x ∈ F

Figure 8: Delphin type and program syntax

<z, <of z, <of z, <>>>>:

∃x : exp.∃u : of x nat.∃v : of x nat.>
∃x : exp.∃u : of x nat.∃v : of z nat.>
∃x : exp.∃u : of z nat.∃v : of x nat.>
∃x : exp.∃u : of z nat.∃v : of z nat.>

Which one of those types to pick is a complicated type
inference problem that one might be able to solve using
bidirectional type inference techniques. When Delphin
cannot determine the principal type of a program, it
reports an error and requests that the user provide the
correct type explicitly.

The type inference and type checking algorithms in Del-
phin are decidable, and their formal foundation is given
in Section 4. In future work we plan to implement a
coverage checker and a termination checker [13, 11].

4. TYPE-THEORETIC FOUNDATION
The LF and T +

ω type theories are well-understood [5,
14]. In this section we aim to provide a glimpse of the
underlying theory of Delphin, its type system, its op-
erational semantics, and its meta properties. For an
in-depth discussion the reader is invited to consult the
literature.

4.1 Type TheoryT +
ω

The implementation of Delphin is based on T +
ω . The

syntactic categories are presented in Figure 8. The class
of formulas represents the class of types of Delphin pro-
grams, which we have already discussed in Section 3.
T +
ω provides three distinct concepts of variables. First,

there are LF variables x : A that range over LF ob-
jects of LF type A. Second, there are block variables
x : (L;σ), used to extend Delphin datatypes dynami-
cally. Third, there are program variables x ∈ F that
bind Delphin programs, such as check and infer. All
three kinds of variables can be declared in a T +

ω context
Ψ for which we write Γ if it is free of program variables.

In a slight departure from the standard formulation of
LF, we allow block variables to occur in LF contexts
and enrich the otherwise standard set of inference rules
by obj proj. The resulting calculus for LF is depicted in
Figure 9. The object πy(x) describes the projection of
component y from block x.

To conserve space, this paper does not give the syntac-
tic desugaring function that maps the external (ASCII)
representation of Delphin programs into T +

ω . One ver-
sion of this function is explained in detail in [15]. We use
Λx : A.P , Λx : (L;σ). P and Λx ∈ F . P for functional
abstraction, and 〈−;−〉 as programs of the existential
and conjunction formulas.

For purposes of functional programming, the main novel
features of T +

ω include its support for recursive program-
ming, pattern matching, and the dynamic extension of
datatypes. Recursion is expressed in terms of “µ”, pat-
tern matching by case analysis “case”, and the exten-
sion of datatypes by “ν”. In general, patterns in Del-
phin are non-linear, functional, and dependently typed.
Therefore, traditional pattern matching techniques are
inapplicable. Ω represents the list of cases. One might
wonder why there is no case subject defined for “case”.
Each substitution in every case of Ω matches against
the entire environment, as we will explain below.

4.2 Type System
Figure 10 gives the set of typing rules which define the
following two T +

ω typing judgments:

Valid programs Ψ `Σ,Φ P ∈ F
Valid cases Ψ `Σ,Φ Ω ∈ F

Many of the typing rules are standard. There are a few
nonstandard rules, however, which deserve explanation.
∀I block, ∀E block are the introduction and elimination
rules for ∀x : (L;σ). F , providing the type of programs
that introduce or rename dynamic datatype extensions.
Even more nonstandard is the new rule, which internal-
izes dynamically introduced extensions of datatypes by
means of abstraction, as explained in the discussion of
the infer program. The notation (block L)[σ] refers to
a context of xi’s one obtains by substitution σ for the
yi’s in the block labeled L (see Definition 1).

The formal definition of abstraction takes advantage
of the subordination relation A1 ≺ A2 capturing the
essence of strengthening lemmas, which means that no
object of type A1 can occur in an object of type A2.

Definition 3 (Abstraction). 1. Type-level ab-
straction: abs Γ. A2 =

A2 if Γ = ·
abs Γ′. A2 if Γ = x : A1,Γ

′ and A1 6≺ A2

Πx : A1. (abs Γ′. A2) if Γ = x : A1,Γ
′ and A1 ≺ A2

2. Object-level abstraction: Let M be well-typed of
type A2. abs Γ.M =

M if Γ = ·
abs Γ′.M if Γ = x : A1,Γ

′ and A1 6≺ A2

λx : A1. (abs Γ′.M) if Γ = x : A1,Γ
′ and A1 ≺ A2

3. Object-level application: Let M be well-typed of

Ψ Σ̀;Φ A : type Ψ, x : A Σ̀;Φ P ∈ F
∀I LF

Ψ Σ̀;Φ Λx : A.P ∈ ∀x : A.F

Ψ Σ̀;Φ P ∈ ∀x : A.F Ψ Σ̀ M : A
∀E LF

Ψ Σ̀;Φ P M ∈ F [M/x]

Ψ, x : (L;σ) Σ̀;Φ P ∈ F
∀I block

Ψ Σ̀;Φ Λx : (L;σ). P ∈ ∀x : (L;σ). F

Ψ Σ̀;Φ P ∈ ∀x : (L;σ). F Ψ(y) = (L;σ)
∀E block

Ψ Σ̀;Φ P y ∈ F [y/x]

Ψ,x ∈ F1 Σ̀;Φ P ∈ F2

∀I delphin
Ψ Σ̀;Φ Λx ∈ F1. P ∈ F1 ⊃ F2

Ψ Σ̀;Φ P1 ∈ F2 ⊃ F1 Ψ Σ̀;Φ P2 ∈ F2

∀E delphin
Ψ Σ̀;Φ P1 P2 ∈ F1

Ψ Σ̀ M : A Ψ Σ̀;Φ P ∈ F [M/x]
∃I LF

Ψ Σ̀;Φ 〈M ;P 〉 ∈ ∃x : A.F

Ψ(y) = (L;σ) Ψ Σ̀;Φ P ∈ F [y/x]
∃I block

Ψ Σ̀;Φ 〈y;P 〉 ∈ ∃x : (L;σ).F

Ψ Σ̀;Φ P1 ∈ F1 Ψ Σ̀;Φ P2 ∈ F2

∧I
Ψ Σ̀;Φ 〈P1;P2〉 ∈ F1 ∧ F2

Ψ(x) = F
var

Ψ Σ̀;Φ x ∈ F
true

Ψ Σ̀;Φ 〈〉 ∈ >

Ψ, x ∈ F Σ̀;Φ P ∈ F
rec

Ψ Σ̀;Φ µx ∈ F . P ∈ F

Ψ Σ̀;Φ Ω ∈ F
case

Ψ Σ̀;Φ case Ω ∈ F

Ψ Σ̀;Φ P1 ∈ F1 Ψ,x ∈ F1 Σ̀;Φ P2 ∈ F2

let
Ψ Σ̀;Φ let x = P1 in P2 ∈ F2

Ψ Σ̀;Φ P ∈ ∀x : (L;σ). F abs ((block L)[σ]). F = F ′

new
Ψ σ̀;Φ νP ∈ F ′

empty
Ψ Σ̀;Φ · ∈ F

Ψ1 Σ̀;Φ Ω ∈ F Ψ2 Σ̀;Φ σ ∈ Ψ1 Ψ2 Σ̀;Φ P ∈ F [σ]
cons

Ψ1 Σ̀;Φ Ω, (Ψ2 . σ 7→ P) ∈ F

Figure 9: Delphin Typing Rules.

type abs Γ. A2. M Γ =

M if Γ = ·
M Γ′ if Γ = x : A1,Γ

′ and A1 6≺ A2

(M x) Γ′ if Γ = x : A1,Γ
′ and A1 ≺ A2

4. Meta-level abstraction: Let F be a well-formed for-
mula. abs Γ. F =

> if F = >
∀x : (abs Γ. A).abs Γ. F ′[x Γ/x] if F = ∀x : A.F ′

∃x : (abs Γ. A).abs Γ. F ′[x Γ/x] if F = ∃x : A.F ′

(abs Γ. F1) ⊃ (abs Γ. F2) if F = F1 ⊃ F2

(abs Γ. F1) ∧ (abs Γ. F2) if F = F1 ∧ F2

The cons rule is also noteworthy; it expresses the re-
quirement that in every case the substitution must match
the environment.

4.3 Operational Semantics
Delphin has a call-by-value operational semantics whose
rules are given in Figure 11. The evaluation judgment
Γ; η ` P ↪→ V relates the program P to be evaluated
with the outcome of the evaluation V . Γ is a pure LF
context that represents the context of all dynamic ex-
tensions of datatypes. Thus it contains block variables
exclusively. η is an environment. Values include clo-
sures.

V ::= {η; Λx : A.P} | {η; Λx : (L;σ).P}
| {η; Λx ∈ F.P} | 〈M ;V 〉 | 〈x;V 〉 | 〈V1;V2〉 | 〈〉

As with the typing rules, the rules for the operational
semantics are for the most part standard, but a few of
the rules are unusual. ev Λ delphin, ev app delphin, and
ev new introduce, retract, and abstract the dynamic ex-
tension of datatypes and ev case, ev yes, and ev no gov-
ern case analysis. The second premiss of ev yes stipu-
lates the existence of a refined environment η′ which can
only be determined during runtime using higher-order
matching.

4.4 Meta-theory
Delphin’s operational semantics ensures that the result
of a computation that is begun in a regularly formed
world is well-defined in the same world when the com-
putation halts. During evaluation new block variables
may be dynamically introduced, but they will be dis-
charged by the time the computation terminates. Del-
phin’s operational semantics is type preserving.

Theorem 3 (Type-preservation). If Ψ ` P ∈ F
and Γ; η ` P ↪→ V and η is an environment that assigns
objects in Γto Ψ, then Γ ` V ∈ F [η].

Proof. By induction on the structure of the evalua-
tion derivation.

5. IMPLEMENTATION

Delphin is implemented in Standard ML of New Jersey.
The implementation consists of four modules: a parser,
an elaborator, a type checker, and an interpreter. Del-
phin employs the Twelf internal representation for ob-
jects manipulated by Delphin programs. Twelf itself
provides many of the tools needed for parsing Twelf ob-
jects, such as objects representing typing derivations,
type reconstruction, type checking, and subordination.
Delphin’s top-level loop executes the following tasks in
turn: parsing, elaboration, world checking, type check-
ing, and evaluation. The implementation is currently in
prototype stage. We plan to release the first version of
Delphin in the upcoming weeks.

6. RELATED WORK
Our work involves the design of a novel functional pro-
gramming language which can be used to compute with
data structures of significant complexity, especially those
employing binding operators, such as proofs, typing deriva-
tions, and computation traces. Such structures are com-
monly used in applications like proof-carrying code [8,
1] and typed compilation [6].

The languages DML [19] and Cayenne [2] differ from
Delphin in that they extend existing functional pro-
gramming languages, SML and Haskell respectively, by
introducing dependent types; moreover, they are moti-
vated by goals that are quite different from those which
have inspired the Delphin project. DML’s enrichment
of ML with dependent types makes it possible to cap-
ture more program invariants, which may in turn facil-
itate program error detection or compiler optimization.
Cayenne combines dependent types and first class types,
thus making more programs typeable. These languages
differ radically from Delphin in their structural design.
Delphin is a two-tiered language. Its upper layer, a re-
cursive function space used for computation, is entirely
separate from its lower LF layer, which is used for data
representation. By contrast, DML and Cayenne intro-
duce dependent types directly into the type system of
the host language. DML only uses restricted dependent
types; type index objects are drawn from a constraint
domain which is much less powerful than LF’s λΠ type
system. DML and Cayenne also differ from Delphin
with respect to the data structures that can be easily
supported by the language. Because dependent types in
DML and Cayenne are introduced for typing purposes
only, their data structures are the same as those pro-
vided by the respective host languages. Thus it is still
very cumbersome to program with complex data struc-
tures such as those which represent proofs or typing
derivations. Delphin is specifically designed to support
programs that can easily represent and operate upon
such complex data structures.

FreshML [12, 4] is an ML-like metalanguage for pro-
gramming with data structures that may involve vari-
able binding. Like Delphin, FreshML supports recursive
function definitions and pattern matching over its data
structures. However, FreshML merely promotes object-
level renaming to the meta-level, through a set-theoretic

interpretation of name abstraction. Object-level sub-
stitution must therefore be implemented for each ob-
ject language separately. This contrasts sharply with
approach adopted by Delphin, in which renaming and
substitution are provided entirely “for free” at the meta-
level. The principal criticism of higher-order encodings
made by the FreshML authors is that it is difficult to in-
tegrate it with the ability to define recursive functions,
but this is precisely the problem that Delphin has been
designed to address. Delphin’s two-level design allows
programming with recursion and pattern matching to
coexist with elegant higher-order encodings in LF.

7. CONCLUSION
We have presented Delphin, a functional programming
language that builds upon logical framework technology.
The principal novel feature of Delphin is its strict sepa-
ration between the representation of data and the pro-
grams that manipulate such data. The underlying data
representation employs the LF logical framework, in
which every encoded object has a canonical form. Del-
phin’s use of LF permits programmers to use dependent
types and higher-order functions to express complex
data structures such as typing derivations, proofs, pro-
gram transformations, and computation traces. In tra-
ditional functional programming languages, program-
mers can express such concepts only by implementing
auxiliary data structures to represent contexts and sub-
stitutions, which are provided implicitly and “for free”
by LF. By using LF as the data representation language,
Delphin enables programmers to compute with these
complex data structures as easily as programmers can
manipulate conventional data structures in mainstream
functional programming languages.

Delphin programming is designed to resemble ML pro-
gramming. However, many features available in ML and
other conventional functional programming languages,
such as exceptions and state, are not yet available in
Delphin. Also the standard constraint domains, such as
integers, reals, doubles, strings, and Booleans, are not
yet implemented. Constraint domains of this sort, how-
ever, are part of the Twelf system, and we therefore do
not foresee any fundamental difficulties in adding them
to Delphin. In future research we intend to extend Del-
phin to provide such features.

8. ACKNOWLEDGMENTS
We would like to thank Henrik Nilsson for many helpful
discussions which proved to be directly relevant to the
implementation of Delphin.

9. REFERENCES
[1] A. W. Appel. Foundational proof-carrying code.

In 16th Annual IEEE Symposium on Logic in
Computer Science (LICS ’01), pages 247–258,
Boston, USA, June 2001.

[2] L. Augustsson. Cayenne - a language with
dependent types. In International Conference on
Functional Programming, pages 239–250, 1998.

[3] T. Coquand. An algorithm for testing conversion
in type theory. In G. Huet and G. Plotkin,
editors, Logical Frameworks, pages 255–279.
Cambridge University Press, 1991.

[4] M. Gabbay and A. Pitts. A new approach to
abstract syntax involving binders. In G. Longo,
editor, Proceedings of the 14th Annual Symposium
on Logic in Computer Science (LICS’99), pages
214–224, Trento, Italy, July 1999. IEEE Computer
Society Press.

[5] R. Harper, F. Honsell, and G. Plotkin. A
framework for defining logics. Journal of the
Association for Computing Machinery,
40(1):143–184, Jan. 1993.

[6] R. Harper and G. Morrisett. Compiling
polymorphism using intensional type analysis. In
Conference Record of POPL ’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 130–141, San
Francisco, California, 1995.

[7] S. Michaylov and F. Pfenning. Natural semantics
and some of its meta-theory in Elf. In L.-H.
Eriksson, L. Hallnäs, and P. Schroeder-Heister,
editors, Proceedings of the Second International
Workshop on Extensions of Logic Programming,
pages 299–344, Stockholm, Sweden, Jan. 1991.
Springer-Verlag LNAI 596.

[8] G. C. Necula. Proof-carrying code. In N. D.
Jones, editor, Conference Record of the 24th
Symposium on Principles of Programming
Languages (POPL’97), pages 106–119, Paris,
France, Jan. 1997. ACM Press.

[9] F. Pfenning. Logic programming in the LF logical
framework. In G. Huet and G. Plotkin, editors,
Logical Frameworks, pages 149–181. Cambridge
University Press, 1991.

[10] F. Pfenning and C. Schürmann. System
description: Twelf — a meta-logical framework
for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), pages
202–206, Trento, Italy, July 1999. Springer-Verlag
LNAI 1632.

[11] B. Pientka. Termination and reduction checking
for higher-order logic programs. In IJCAR, pages
401–415, 2001.

[12] A. M. Pitts and M. J. Gabbay. A metalanguage
for programming with bound names modulo
renaming. In R. Backhouse and J. N. Oliveira,
editors, Mathematics of Program Construction,
MPC2000, Proceedings, Ponte de Lima, Portugal,
July 2000, volume 1837 of Lecture Notes in
Computer Science, pages 230–255.
Springer-Verlag, Heidelberg, 2000.

[13] E. Rohwedder and F. Pfenning. Mode and
termination checking for higher-order logic
programs. In H. R. Nielson, editor, Proceedings of
the European Symposium on Programming, pages
296–310, Linköping, Sweden, Apr. 1996.
Springer-Verlag LNCS 1058.

[14] C. Schürmann. Automating the Meta-Theory of
Deductive Systems. PhD thesis, Carnegie Mellon
University, 2000. CMU-CS-00-146.

[15] C. Schürmann. Recursion for higher-order
encodings. In L. Fribourg, editor, Proceedings of
the Conference on Computer Science Logic (CSL
2001), pages 585–599, Paris, France, August 2001.
Springer Verlag LNCS 2142.

[16] C. Schürmann. A type-theoretic approach to
induction with higher-order encodings. In
Proceedings of the Conference on Logic for
Programming, Artificial Intelligence and
Reasoning(LPAR 2001), pages 266–281, Havana,
Cuba, 2001. Springer Verlag LNAI 2250.

[17] C. Schürmann, R. Fontana, and Y. Liao. The
Delphin website:
http://www.cs.yale.edu/∼carsten/delphin,
2002.

[18] R. Virga. Higher-Order Rewriting with Dependent
Types. PhD thesis, Department of Mathematical
Sciences, Carnegie Mellon University, 1999.
Forthcoming.

[19] H. Xi and F. Pfenning. Dependent types in
practical programming. In Conference Record of
POPL 99: The 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages, San Antonio, Texas, pages 214–227,
New York, NY, 1999.

Σ(c) = A
obj con

Γ Σ̀;Φ c : A

Γ(x) = A
obj var

Γ Σ̀;Φ x : A

Γ(y) = (L;σ) (block L)[σ](x) = A
obj proj

Γ Σ̀;Φ πx(y) : A

Γ Σ̀;Φ A1 : type Γ, x : A1 Σ̀;Φ M : A2

obj lam
Γ Σ̀;Φ λx : A1.M : Πx : A1. A2

Γ Σ̀;Φ M1 : Πx : A2. A1 Γ Σ̀;Φ M2 : A2

obj app
Γ Σ̀;Φ M1 M2 : A1[M2/x]

Σ(a) = K
tp const

Γ Σ̀;Φ a : K

Γ Σ̀;Φ A1 : type Γ, x : A1 Σ̀;Φ A2 : type
tp pi

Γ Σ̀;Φ Πx : A1. A2 : type

Γ Σ̀;Φ A1 : Πx : A2.K Γ Σ̀;Φ M : A2

tp app
Γ Σ̀;Φ A1 M : K[M/x]

kd type
Γ Σ̀;Φ type : kind

Γ Σ̀;Φ A : type Γ, x : A Σ̀;Φ K : kind
kd pi

Γ Σ̀;Φ Πx : A.K kind

Figure 10: LF Typing Rules.

ev var
Γ; η ` x ↪→ η(x)

ev unit
Γ; η ` 〈〉 ↪→ 〈〉

Γ; η ` P1 ↪→ V1 Γ; η, V1/x ` P2 ↪→ V
ev let

Γ; η ` let x = P1 in P2 ↪→ V

ev Λ LF
Γ; η ` Λx : A.P ↪→ {η; Λx : A.P}

Γ; η ` P ↪→ {η′; Λx : A.P ′} Γ; η′,M [η]/x ` P ′ ↪→ V
ev app LF

Γ; η ` P M ↪→ V

ev Λ delphin
Γ; η ` Λx ∈ F . P ↪→ {η; Λx ∈ F . P}

Γ; η ` P1 ↪→ {η′; Λx ∈ F . P ′1} Γ; η ` P2 ↪→ V2 Γ; η′, V2/x ` P ′1 ↪→ V
ev app delphin

Γ; η ` P1 P2 ↪→ V

ev Λ block
Γ; η ` Λx ∈ (L;σ). P ↪→ {η; Λx ∈ (L;σ). P}

Γ, x : (L;σ); η ` P ↪→ Λx ∈ (L;σ). P ′ Γ; η ` [y/x]P ′ ↪→ V
ev app block

Γ; η ` P y ↪→ V

Γ; η ` P ↪→ Λx ∈ (L;σ). P ′ Γ, x : (L;σ); η, x/x ` P ′ ↪→ V ′ abs (block L)[σ]. V ′ = V
ev new

Γ; η ` νP ↪→ V

Γ; η ` P1 ↪→ V1 Γ; η ` P2 ↪→ V2
ev pair

Γ; η ` 〈P1;P2〉 ↪→ 〈V1;V2〉

Γ; η ` P ↪→ V
ev inx

Γ; η ` 〈M ;P 〉 ↪→ 〈M [η];V 〉

Γ; η, µx ∈ F . P/x ` P ↪→ V
ev rec

Γ; η ` µx ∈ F . P ↪→ V

Γ ` η ∼ Ω ↪→ V
ev case

Γ; η ` case Ω ↪→ V

Γ; η ` P [η′] ↪→ V ψ ◦ η′ = η
ev yes

Γ; η ` η ∼ (Ω, (Ψ . ψ 7→ P)) ↪→ V

Γ; η ` η ∼ Ω ↪→ V
ev no

Γ; η ` η ∼ (Ω, (Ψ . ψ 7→ P)) ↪→ V

Figure 11: Delphin Operational Semantics.

