
Twelf

Carsten Schürmann ∗

Department of Computer Science
Yale University

carsten@cs.yale.edu

June 26, 2002

The Twelf system [PS99] is a tool that is designed for experimenting with deductive systems
as they occur in the theory of programming languages and logics. It supports a variety of tasks
which we explain in these notes in more detail:

• Specification of object languages and their semantics.

• Implementation of algorithms manipulating object-language expressions and deductions

• Formal development of the meta-theory of an object language.

Several extensive experiments have been conducted with Twelf, such as the formal development of
the theory of logic and functional programming languages and various logics, especially in proof
carrying code architectures [Nec97, App01], and typed assembly language [MWCG99]. In these
notes, we take the simply typed λ-calculus and parallel reductions as an example. One can continue
the experiments sketched out below, and prove the Church-Rosser theorem for this object language
— automatically.

1 Specification

Twelf employs the representation methodology and underlying type theory of the LF logical frame-
work [HHP93]. Expressions are represented as LF objects using the technique of higher-order
abstract syntax whereby variables of the object language are mapped to variables in the meta-
language. This means that common operations, such as renaming of bound variables or capture-
avoiding substitution are directly supported by the framework and do not need to be programmed
anew for each object language.

For semantic specification LF uses the judgments-as-types representation technique. This means
that a derivation is coded as an object whose type represents the judgment it establishes. Checking
the correctness of a derivation is thereby reduced to type-checking its representation in the logical
framework (which is efficiently decidable).

Example 1.1 (Parallel reduction) Our running example is the simply typed λ-calculus defined
together with a suitable reduction semantics. The underlying notion of reduction is parallel reduc-
tion for which we can show the Church-Rosser property quite naturally.

Types: τ ::= a | τ1 −→ τ2
Terms: e ::= x | lam x : τ.e | e1 @ e2

We write a for base types, which we will not consider further since they can be added quite
easily retroactively. Function types are written as τ1 −→ τ2. Terms are structures that consist
∗This research is funded in part by NFS under grant CCR-0133502.

1

of variables, λ-abstractions, and applications. In Twelf, types and terms are being represented
as (LF-)types, and −→, lam, and @ as constants. Variables on the other hand are represented
using LF variables, which renders an additional constant unnecessary. This technique is called
higher-order abstract syntax. Analogously, binders of the object languages are modeled by the
binding constructs of LF.

tp : type
arrow : tp→ tp→ tp

term : tp→ type
lam : (term T1 → term T2)→ term (T1 arrow T2)
app : term (T2 arrow T1)→ term T2 → term T1

In this example, we use the standard trick of interpreting each uppercase variable T1 and T2 as
universally quantified. The reason why we can leave the recovery of this kind of type information
to the type inference algorithm is because their position as arguments to “term” already deter-
mines uniquely their types. Therefore, the universal closure can be automatically and quickly
computed [Pfe91], relieving the user from strenuous and boring repetition of the same arguments.
Subsequently, it also simplifies the use of those constants, because again, the Twelf type recon-
struction algorithm will reconstruct omitted arguments. Note the difference between the function
arrow −→ which is part of the object language and the LF function arrow →. “type” stands for
the standard LF type.

The connection between the two formal languages can be easily defined by a representation
function p·q for which we only give one case here.

plam x : τ.eq = lam (λx : term pτq.peq)

This particular way of encoding terms is adequate, which means that there exists a bijection
between well-typed expression and their representations in LF. Incidentally it also defines a natural
way of encoding and applying substitutions.

Semantically we would like to consider two terms equivalent, if they reduce to the same value
via the reduction relation. We write e1 =⇒ e2 to express that term e1 parallel reduces to term
e2.

u
x =⇒ x

...
e1 =⇒ e′1 e2 =⇒ e′2

pbetax,u

(λx : τ.e1) e2 =⇒ e′1[e′2/x]

u
x =⇒ x

...
e =⇒ e′

plamx,u

λx : τ.e =⇒ λx : τ.e′

e1 =⇒ e′1 e2 =⇒ e′2
papp

e1 e2 =⇒ e′1 e
′
2

e1 =⇒ e2 is a hypothetical judgment that is represented in LF as a type family with two
index objects pe1q, and pe2q following the judgments as types paradigm. The representation is
straightforward. The reader is asked to pay special attention to the way how the hypothetical
premisses of pbeta and plam are mapped into LF. Both rules discharge the assumptions x and u,
which allows us to use higher level functions to represent these premisses.

2

=⇒ : term T → term T → type.

pbeta : (Πx : term T . x =⇒ x→ E1 x =⇒ E′1 x)
→ E2 =⇒ E′2
→ (app (lam E1) E2) =⇒ E′1 E

′
2

papp : E1 =⇒ E′1
→ E2 =⇒ E′2
→ (app E1 E2) =⇒ (app E′1 E

′
2)

plam : (Πx : term T . x =⇒ x→ E x =⇒ E′ x)
→ lam E =⇒ lam E′

To improve readability, we use =⇒ always in infix notation. Observe how the use of higher-order
functions that make the representation of the three rules above elegant, direct, and correct. The
Π that is used in the signature denotes the dependent function type constructor of LF.

2 Algorithms

Generally, specification is followed by implementation of algorithms manipulating expressions or
derivations. Twelf supports the implementation of such algorithms in two ways.

First, by a constraint logic programming interpretation of LF signatures, a slight variant of the
one originally proposed in [Pfe91] and implemented in Elf [Pfe94]. The operational semantics is
based on goal-directed, backtracking search for an object of a given type.

Example 2.1 (Logic programming) Consider the following logic programming that is written
in Twelf, and uses Twelf’s features, such as the dynamic introduction of parameters during runtime.

id : ΠE : term T .E =⇒ E → type.

id lam : id (lam E) (plam D)
← (Πx : term T .Πu : x =⇒ x. id x u→ id (E x) (D x u)

id app : id (app E1 E2) (papp D1 D2)
← id E1 D1

← id E2 D2

There are two natural ways of reading this signature. One is purely type theoretic: The type
family id is defined together with two constants. For this interpretation, simply read the types in
backward fashion following the directions of the arrow. The other way is as a logic program. In
this fashion each← introduces a new subgoal and each Π introduces dynamically new parameters.
In that, Twelf logic programs are very similar to λProlog logic programs. The forward pointing→
extends the set of clauses dynamically during runtime, that may be applied later on.

The second way of specifying algorithms in Twelf is in form of functional programs written in
the programming language Delphin [SFL02]. Programming in Delphin is like programming in ML
except that the objects manipulated are instances of LF type theory, and not instances of standard
datatypes.

Example 2.2 (Identity function in Delphin) The same example from above depicted in Del-
phin would have the following form

3

%block L : SOME {T : tp} BLOCK {x:term T} {u : x =⇒ x}.
id :: worlds (L)

all* {T : tp} all {E : term T}
exists {D : E =⇒ E} true.

fun id (x(x)) = u(x)
| id (lam E) =
let
val <D, <>> = new x:L. id (E (x(x)))

in
<plam D, <>>

end
| id (app E1 E2) =

let
val <D1, <>> = id E1

val <D2, <>> = id E2

in
<papp D1 D2, <>>

end

Note, that instances of type T : tp, the first argument to id, can be inferred from other arguments
and may therefore be omitted. The user may communicate this to Twelf by appending a * to the
all quantifier.

Delphin programmers can program with LF objects as first-class objects. This means that functions
may be defined by pattern-matching and recursion, just as id above. What is different from
standard functional programming languages is that Delphin programs can dynamically introduce
new parameters for types which are organized in blocks. Blocks are defined by the %block directive,
a description that ties together which parameters may be introduced dynamically and what is to be
done once they are encountered during execution. The SOME part of such a description quantifies all
existential variables that may occur free in the block. Delphin programs may be parametrized by
several different kinds of blocks, a collection which we call world. Each individual Delphin program
must be declared in a specific world. Naturally, if one program is allowed to call another depends
on if their worlds are compatible. In the example above, “all” stands for Delphin’s dependent
function type, “ex” for its dependent product type, and “true” is simply “unit” in ML.

The function id is defined by cases over instances of a variable E : term T for some T . Three
cases are possible. First E may be one of the parameters “x(x)”. Here, x is a variable that ranges
over instances of the block [Sch01]. Second, E may be a λ-term “lam E”, and third, it may be
an application “app E1 E2”. The “new” command used in the second case allows programmers
to introduce new parameters during runtime, all of which are appropriately abstracted eventually.
This means that all additional parameters contained in (x) are reflected down onto the LF level,
which turns D into a possibly higher-level function type. The angle brackets <> read as unit
program of type true. Along the same lines, <D1, <>> is a value of a dependent product type.

The implementation of Delphin is still in an experimental stage. Nevertheless, we hope that it
is ready at the time of the summer school.

3 Meta-Theory

Twelf provides two related means to express the meta-theory of deductive systems: higher-level
judgments and the meta-logic M+

2 .
A higher-level judgment describes a relation between derivations inherent in a (constructive)

meta-theoretic proof. Using the operational semantics for LF signatures sketched above, we can

4

then execute a meta-theoretic proof. While this method is very general and has been used in
many of the experiments, type-checking a higher-level judgment does not by itself guarantee that
it correctly implements a proof. On the contrary, the operational semantics might not terminate,
or might get stuck, in either case, it will return without a value.

Twelf provides therefore a set tools that helps users to analyze the hypothetical behavior of
the operational semantics. The termination checker, for example, guarantees that executing logic
programs will always terminate. The mode checker ensures the correct input/output behavior of
logic programs, which is non-trivial in a logic programming setting because of the global properties
of logic variables. Another tool is the coverage checker which checks that the logic program contains
at least one applicable case that matches every possible ground input. And finally, the totality
checker certifies that the logic programming interpreter that runs this program never gets stuck.
Thus if the operational semantics has not computed a value yet, it will be possible for it to make
progress.

Example 3.1 (Tools) We show how to verify those four properties using the logic program for
id from Example 2.1.

Termination Checker %terminates E (id E)
Mode Checker %mode (id +E -D)
Coverage Checker %covers (id E D)
Totality Checker %total E (id E D)

The first argument in the termination declaration E defines the termination order as the well-
founded subterm ordering on terms. The mode declaration reads as follows: for all (+) ground
terms E, there exists (-) a ground parallel reduction D. Well-modedness is a precondition for
coverage which guarantees that calling id will make progress. It does however not verify that the
logic program may not get stuck upon return a property which is called “output coverage”. This
is left to the %total declaration. Therefore, if %total suceeds, the logical program implements
a total function. The final touches on the implementation of %total are still underway, we hope
however to have a a version ready by the time of the summer school.

Alternatively, one can use an experimental but automatic meta-theorem proving component
based on the meta-logicM+

2 for LF [Sch00]. It expects as input a statement about LF objects over
a fixed signature possibly open in regularly formed contexts whose structure is defined a priori. In
the current version proofs are by induction which require the user to specify over which variable
induction is to be performed. Induction orders are lexicographic and simultaneous extensions of
the subterm ordering. Once a proof is found it can be produced either as a Delphin function, or
as a representation as a higher-level judgment, which can then be executed.

Example 3.2 (Theorem Proving) The following two declarations

%theorem identity: worlds (L)
all* {T : tp} all {E : term T} exists {D : E =⇒ E} true.

%prover 5 E (identity E).

ask Twelf to prove the theorem identity. Internally, the resulting proof is a total Delphin function.
The 5 signals Twelf to search only for objects that are less than 5 levels deep counting constructors.
The E simply states that induction goes on E.

4 Environment

While Twelf is implemented in ML it is executed as a stand-alone program rather than within the
ML top-level loop. The most effective way to interact with Twelf is as an inferior process to Emacs.

5

There are two Emacs interfaces, one is house made, the other is Proof General. The house made
Emacs interface provides an editing mode for Twelf source files and commands for incremental
type checking, logic program execution, termination, mode, coverage, and totality checking, and
theorem proving. Moreover it provides utilities for jumping to error locations and tagging and
maintaining configurations of source files.

References

[App01] Andrew W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS ’01), pages 247–258, Boston, USA, June
2001.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed
assembly language. ACM Transactions on Programming Languages and Systems,
21(3):528–569, May 1999.

[Nec97] George C. Necula. Proof-carrying code. In Neil D. Jones, editor, Conference Record
of the 24th Symposium on Principles of Programming Languages (POPL’97), pages
106–119, Paris, France, January 1997. ACM Press.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet and
Gordon Plotkin, editors, Logical Frameworks, pages 149–181. Cambridge University
Press, 1991.

[Pfe94] Frank Pfenning. Elf: A meta-language for deductive systems. In A. Bundy, editor,
Proceedings of the 12th International Conference on Automated Deduction, pages 811–
815, Nancy, France, June 1994. Springer-Verlag LNAI 814. System abstract.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th In-
ternational Conference on Automated Deduction (CADE-16), pages 202–206, Trento,
Italy, July 1999. Springer-Verlag LNAI 1632.

[Sch00] Carsten Schürmann. Automating the Meta-Theory of Deductive Systems. PhD thesis,
Carnegie Mellon University, 2000. CMU-CS-00-146.

[Sch01] Carsten Schürmann. Recursion for higher-order encodings. In Laurent Fribourg,
editor, Proceedings of the Conference on Computer Science Logic (CSL 2001), pages
585–599, Paris, France, August 2001. Springer Verlag LNCS 2142.

[SFL02] Carsten Schürmann, Richard Fontana, and Yu Liao. Delphin: Functional program-
ming with deductive systems. Submitted, 2002.

6

