System Description: Celf — A Logical Framework
for Deductive and Concurrent Systems

Anders Schack-Nielsen and Carsten Schirmann

IT University of Copenhagen
Denmark

Abstract. CLF (Concurrent LF) [CPWWO02a] is a logical framework
for specifying and implementing deductive and concurrent systems from
areas, such as programming language theory, security protocol analysis,
process algebras, and logics. Celf is an implementation of the CLF type
theory that extends the LF type theory by linear types to support repre-
sentation of state and a monad to support representation of concurrency.
It relies on the judgments-as-types methodology for specification and the
interpretation of CLF signatures as concurrent logic programs [LPPWO05]
for experimentation.

Celf is written in Standard ML and compiles with MLton and MLKit.
The source code and a collection of examples are available from
http://www.twelf.org/~celf.

1 Introduction

The Celf system is a tool for experimenting with deductive and concurrent sys-
tems prevalent in programming language theory, security protocol analysis, pro-
cess algebras, and logics. It supports the specification of object language syntax
and semantics through a combination of deductive methods and resource-aware
concurrent multiset transition systems. Furthermore it supports the experimen-
tation with those specifications through concurrent logic programming based on
multiset rewriting with constraints.

Many case studies have been conducted in Celf including all of the motivating
examples that were described in the original CLF technical report [CPWWO02b].
In particular, Celf has been successfully employed as a tool for experimenting
with concurrent ML, in particular its type system and a destination passing
style operational semantics. Our Celf encoding provides Haskell-style suspen-
sions with memoizations, futures, mutable references, and concurrency omitting
negative acknowledgments. Furthermore, we used Celf to experiment with the
design of security protocols, especially the widely studied and well-understood
Needham-Schroeder authentication protocol, which will be our running example
(see Sec. 2). The ease with which we applied Celf to this example sheds some
light on the range of other protocols that could be studied using Celf. Other
examples include various encodings of the w-calculus, petri-nets, etc.

CLF is a conservative extension over LF [HHP93], which implies that Celf’s
functionality is compatible with that of Twelf [PS99]. With a few syntactic mod-
ifications Twelf signatures can be read and type checked, and queries can be

executed. Celf does not yet provide any of the meta-theoretic capabilities that
sets Twelf apart from its predecessor Elf, such as mode checking, termination
checking, coverage checking, and the like, which we leave to future work. In this
presentation we concentrate on the two main features of Celf.

Specification. CLF was designed with the objective in mind to simplify the
specification of object languages by internalizing common concepts used for spe-
cification and make them available to the user. Celf supports dependent types for
the encoding of judgments as types, e.g. operational relations between terms and
values, open and closed terms, derivability, and logical truth. It also supports
the method of higher-order abstract syntaz, which relieves the user of having to
specify substitutions and substitution application. In CLF, every term is equiv-
alent to a unique inductively defined S-normal n-long form modulo a-renaming
and let-floating providing an induction principle to reason about the adequacy
of the encoding. In addition, CLF provides linear types and concurrency en-
capsulating monadic types in support of the specification of resource aware and
concurrent systems. Examples include operational semantics for languages with
effects, transition systems, and protocol stacks.

Ezperimentation. Celf provides a logic programming interpreter that im-
plements a proof search algorithm for derivations in the CLF type theory in
analogy to how Elf implements a logical programming interpreter based on uni-
form proof search. Celf’s interpreter is inspired (with few modifications) by Lol-
limon [LPPWO5], an extension of Lolli, the linear sibling of A-Prolog. The inter-
preter implements backward-chaining search within the intuitionistic and linear
fragment of CLF and switches to forward-chaining multiset rewriting search
upon entering the monad. Celf programs may jump in and out of the concur-
rency monad and can therefore take advantage of both modes of operation. In
addition, the operational semantics of Celf is conservative over the operational
semantics of Elf, which means that any Twelf query can also be executed in Celf
leading to the same result.

In the remainder of the paper, we illustrate the features of Celf. In Section 2,
we describe the Needham-Schroeder protocol followed by a brief overview in Sec-
tion 3 of the CLF type theory and the protocol specification in Celf [CPWWO02b].
Finally, we comment on the implementation and conclude in Section 4.

2 Example

As a small running example, we consider the Needham-Schroeder protocol [NS78].
The protocol serves the authentication of two principals, A and B, and is char-
acterized by the following simplified message exchange

A— B:{N,, A}k, (1)
B— A: {Ny.Ny}x. 2)
A — B . {Nb}Kb (3)

where K, and K are the public keys of A and B, respectively. We write {-} x for
the encryption of a message by key K. Two messages may be concatenated using

Kinds
K :=type |Piz: A K Kinds
Types

ABu:=A-0oB|Piz: A B|A& B|T|{S}|P Asynchronous types
P:=a|PN Atomic type constructors
Su=5@8|1|Existsz: A S| A Synchronous types

Objects

N:=\"z.N|\z. N | (N1,N2) | () | {E} |

clz| NN |NN|N# | N # Objects
E:=let{p}=NinE | M Expressions
Ma=M @My |1]|[N,M]|N Monadic objects
pu=p1Q@pa|1]|[z,p]|x Patterns
Signatures
Yu=-]a: K. Y|c:A X Signatures

Fig. 1. Celf syntax

“”. N, and N, are nonces, randomly generated messages, which are created in

line (1) and (2) and compared for identity in line (2) and (3), respectively. We
think of A as the initiator of the message exchange and B as the responder.
From the point of view of the initiator, two actions are necessary to participate
in the protocol.

1. Create a new nonce N,. Send message {N,, A}k, (1). Remember B, kjp, and
N,.

2. Recall B, kp, and N,. Receive message {N., Ny} i, (2). Check that N, is
identical to N/. Send message {Ny}k, (3).

Correspondingly, the responder needs to execute two actions.

1. Receive message {N,, A}k, (1). Create a new nonce N,. Send message
{Na, Np} i, (2). Remember A and Ny.
2. Recall A and Ny. Receive {N]}k, (3). Check that N, is identical to N}.

A successful run of the protocol initializes initiator and responder and causes
then the initiator to send the first message, the responder to reply, and so forth.

3 Celf

The basis of the Celf system is the CLF type theory [CPWW02a]. The CLF type
theory is a dependently typed A-calculus extended by linear functions, additive

and multiplicative pairs, additive and multiplicative units, dependent pairs, and
concurrent objects. The syntax of Celf is shown in Fig. 1 and explained below:

Lolli, A -o B, is linear implication with linear lambda, \~, as introduction
form and linear application, ~, as elimination form.

Pi, Pi z : A. B, is dependent intuitionistic implication, which can also be
written A -> B in the non-dependent case. It has lambda, \, and application
(juxtaposition) as introduction and elimination forms.

And, A & B, is additive conjunction with (-,-) as introduction form, the
projections #; as elimination forms, and Top, T, as unit.

Tensor or multiplicative conjunction, A @ B, and FEuxistential, Exists x :
A. S, are only available inside the monad and can only be deconstructed by the
pattern in a let-construct. Their introduction forms are tensor, @, and dependent
pair, [-,].

Monad, {S}, is the concurrency monad and represents concurrent computa-
tion traces (sequences of let-bindings) with a result described by S.

One, 1, is unit for the multiplicative conjunction, and Top, T, is unit for the
additive conjunction. Their introduction forms are 1 and () respectively. Com-
bining one with existential quantification allows us to encode the intuitionistic
embedding known from linear logic as: !A = Exists = : A. 1. Another common
use of one is in the type {1} which is the type of concurrent traces in which
all linear resources have been consumed. In contrast, {T} is the type of any
concurrent trace.

CLF has important meta-theoretical properties including decidability of type-
checking and the existence of canonical forms. The notion of definitional equality
on CLF terms, types, and kinds is induced by the usual - and n-rules modulo
a-renaming along with one additional rule: Inside the concurrency monad, a
sequence of let-bindings is allowed to permute as long as the permutation re-
spects the dependencies among bound variables (i.e. permutation is disallowed
if it causes a bound variable to escape its scope). This equivalence is the founda-
tion for specifying concurrency in object languages: If a sequence of let-bindings
represents a concurrent trace of an operational semantics or a protocol commu-
nication exchange then CLF will only distinguish between those traces that can
lead to observably different results. In other words if two independent events
occur within one trace then CLF is completely unaware about the order of their
occurrence.

We return to our running example the Needham-Schroeder protocol described
in the previous section and illustrate how to specify it in Celf. We follow hereby
closely Section 6 of Cervesato et al. [CPWWO02b] and refer the interested reader
to this technical report for an in depth discussion on how one can derive this
encoding and how to reason about its adequacy.

Figure 2 depicts the Celf code specifying the syntactic categories of principals,
nonces, public, and private keys in the left column. The right column gives the
Celf encoding of messages, where the first two constructors embed principals
and nonces into messages, + concatenates two messages, and pEnc encrypts a
message with the public key of principal A. Celf’s type reconstruction algorithm

principal : type. msg : type.

nonce : type. p2m : principal -> msg.
pubK : principal -> type. n2m : nonce -> msg.
privK : pubK A -> type. + : msg -> msg -> msg.

pEnc : pubK A -> msg -> msg.

Fig. 2. Specification of syntactic categories in Celf.

net : msg —> type. init : principal -> type.
rspArg : type. resp : principal -> type.
rsp : rspArg -> type.

Fig. 3. Specification of the network, memory, identity in Celf

infers the types of all undeclared uppercase arguments (here A), and builds an
implicit Pi-closure.

The left column of Fig. 3 defines net which represents messages being sent
on the network. Recall from Section 2 that a principal may need to remember
the name of the principal it is trying to authenticate with or specific nonces.
In the encoding, the type rspArg is used for expressing what the principals can
remember, and the type rsp for what the principals currently are remembering.
In a slight deviation from [CPWWO02b] we use two type families init and resp
to assign roles to principals. The corresponding Celf declarations are depicted
in the right column of Fig. 3.

What follows below are the two Celf declarations that define initiator and
responder of a Needham-Schroeder protocol interaction. The initiator is guarded
by init A and the responder by resp B.

nspkInit : init A -o { Exists L : Pi B : principal.
pubK B -> nonce -> rspArg.
Pi B : principal. Pi kB : pubK B.
{ Exists nA : nonce. net (pEnc kB (+ (n2m nA) (p2m A)))
@ rsp (L B kB nA) }
@ Pi B : principal. Pi kB : pubK B. Pi kA : pubK A.
Pi kA’ : privK kA. Pi nA : nonce. Pi nB : nonce.
net (pEnc kA (+ (n2m nA) (n2m nB)))
-o rsp (L B kB nA)
-0 { net (pEnc kB (n2m nB)) }}.

nspkResp : resp B -o { Exists L : principal -> nonce -> rspArg.
Pi kB : pubK B. Pi kB’ : privK kB.
Pi A : principal. Pi kA : pubK A. Pi nA : nonce.
net (pEnc kB (+ (n2m nA) (p2m A)))
-o { Exists nB : nonce. net (pEnc kA (+ (n2m nA) (n2m nB)))
@ rsp (L A nB) }
@ Pi A : principal. Pi kB : pubK B. Pi kB’ : privK kB.
Pi nB : nonce.
net (pEnc kB (n2m nB)) -o rsp (L A nB) -o { 1 }}.

Note that both principals introduce a new parameter L to remember the
other’s identity and their nonce. In addition, the initiator stores the responder’s
public key to be able to encrypt the second message. The respective nonces are
modeled via higher-order abstract syntax, and dynamically created as new and
fresh parameters using the Exists. Both, messages and memory, are modeled
using linear assumptions. Each principal introduces two rules, separated by the
top level tensors @, which correspond literally to the ones outlined in Section 2.
Protocol traces are represented as monadic objects as evidenced by the fact that
the declarations end in monadic type { - }.

To experiment with the design in Celf, we use its logic programming engine.
For example, in order to find a valid trace of a communication between principal
a, with public key ka and private key ka’, and principal b with public key kb
and private key kb’ we query if it is possible to derive the empty linear context
{1} from assumptions init a and init b. We obtain as answer to the query
#query init a -o resp b -o {1} the term below, which includes six lets. The
first two initiate initiator and responder, and the remaining four correspond to
the message exchange of the authentication protocol.

Solution: \~ X1. \~ X2. {
let {[L: Pi B: principal. pubK B -> nonce -> rspArg,
X3: Pi B: principal. Pi kB: pubK B.
{Exists nA: nonce. net (pEnc kB (+ (n2m nA) (p2m a))) @ rsp (L B kB nA)}
@ X4: Pi B: principal. Pi kB: pubK B. Pi kA: pubK a. privK kA -> Pi nA: nonce.
Pi nB: nonce. net (pEnc kA (+ (n2m nA) (n2m nB)))
-o rsp (L B kB nA) -o {net (pEnc kB (n2m nB))}]} = nspkInit ~ X1 in
let {[L’: principal -> nonce -> rspArg,
X5: Pi kB: pubK b. privK kB -> Pi A: principal. Pi kA: pubK A. Pi nA: nonce.
net (pEnc kB (+ (n2m nA) (p2m A)))
-o {Exists nB: nonce. net (pEnc kA (+ (n2m nA) (n2m nB))) @ rsp (L’ A nB)}
@ X6: Pi A: principal. Pi kB: pubK b. privK kB -> Pi nB: nonce.
net (pEnc kB (n2m nB)) -o rsp (L’ A nB) -o {1}]} = nspkResp ~ X2 in
let {[nA: nonce, X7: net (pEnc kb (+ (n2m nA) (p2m a))) @ X8: rsp (L b kb nA)]}
= X3 b kb in
let {[nB: nonce,
X9: net (pEnc ka (+ (n2m nA) (n2m nB)))
@ X10: rsp (L’ a nB)]} = X5 kb kb’ a ka nA ~ X7 in
let {X11: net (pEnc kb (n2m nB))} = X4 b kb ka ka’ nA nB ~ X9 ~ X8 in
let {1} = X6 a kb kb’ nB ~ X11 ~ X10 in 1}

4 Conclusion

Celf is a system that implements the concurrent logical framework CLF. The
implementation includes a type checking, type reconstruction, and proof search
algorithm. The implementation employs explicit substitutions, logic variables,
and spines and maintains canonical forms through hereditary substitutions.

Celf’s type reconstruction algorithm permits programmers to omit inferable
top-level Pi-quantifiers in declarations of constants. The implicitly bound vari-
ables are identified by uppercase names that occur free in declarations. Any use
of constants with implicit Pis are then implicitly applied to the correct number
of arguments, which are subsequently inferred by Celf via unification.

Free variables in queries play a slightly different role. Uppercase variables
occurring free in a query will not be Pi-quantified but will instead be considered
logic variables and their instantiations are printed for each solution.

The operational semantics of Celf (i.e. the proof search algorithm) works
in two modes: when searching for an object of an asynchronous type the algo-
rithm proceeds by a backwards, goal-directed search (resembling pure Prolog),
but when searching for an object of a synchronous type the algorithm shifts to
an undirected, non-deterministic, forward-chaining, and concurrent execution,
using committed choice instead of backtracking. This forward-chaining search is
essentially a concurrent multiset rewriting engine.

Both the type reconstruction algorithm and the proof search algorithm rely
on logic variables and unification. The implemented unification algorithm works
on general CLF terms and handles all relevant aspects: general higher-order
terms, linearity, and automatic reordering of bindings inside the monad. For
unification problems inside the pattern fragment, which do not have multiple
logic variables of monadic type bound by the same sequence of lets, the algo-
rithm will always be able to find a most general unifier in case a unifier exists.
Any unification problems that fall outside this fragment will be postponed as
constraint, and if they are not resolved by later unifications, they are reported
as leftover constraints. Our empirical experience has shown that this condition
characterizes a sufficiently large decidable fragment of higher-order concurrent
unification for the application of Celf as a specification and experimentation
environment.

References

[CPWWO02a] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins.
A concurrent logical framework I: Judgments and properties. Techni-
cal Report CMU-CS-02-101, Carnegie Mellon University. Department of
Computer Science, 2002.

[CPWWO02b] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins.
A concurrent logical framework II: Examples and applications. Techni-
cal Report CMU-CS-02-102, Carnegie Mellon University. Department of
Computer Science, 2002.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143-184, January 1993.

[LPPWO05] Pablo Lépez, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic
concurrent linear logic programming. In Pedro Barahona and Amy P.
Felty, editors, Proceedings of the 7th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, pages
35-46, Lisbon, Portugal, 2005.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for
authentication in large networks of computers. Communications of the
ACM, 21(12):993-999, 1978.

[PS99] Frank Pfenning and Carsten Schiirmann. System description: Twelf — a
meta-logical framework for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated Deduc-
tion (CADE-16), pages 202—206, Trento, Italy, July 1999. Springer-Verlag
LNAT 1632.

