
Linear Contextual Modal Type Theory

Anders Schack-Nielsen
IT University of Copenhagen

Copenhagen, Denmark
anderssn@itu.dk

Carsten Schürmann
IT University of Copenhagen

Copenhagen, Denmark
carsten@itu.dk

Abstract

When one develops, implements, and studies type theo-
ries based on linear logic, for example, in the context of the-
orem proving, logic programming, and formal reasoning,
one is immediately confronted with questions about their
equational theory and how to deal with logic variables. In
this paper, we propose linear contextual modal type theory
that gives a mathematical account of the nature of logic
variables. Our type theory is conservative over intuition-
istic contextual modal type theory proposed by Nanevski,
Pfenning, and Pientka. As a technical contribution we pro-
vide a proof of soundness, and, as a justification for its use-
fulness, we shed some light on the difficulties working with
logic variables in linear logics that contain >.

1 Introduction

Over recent years, linear logic has become increasingly
popular as a logic for concurrency, stateful computation,
and even security. So far, the idea of resource awareness
has had far reaching consequences for the design and imple-
mentation of logics and logical frameworks; LLF [CP96],
CLF [CPWW02] and even separation logic [Rey02] use
ideas borrowed from linear logic at their cores. There are
implementations of theorem provers, logic programming
languages, and proof assistants that do implement linear
logic, as for example, Lolli [HM94], and Celf [SNS08].

All of these implementations depend crucially on the
choice of fragment of linear logic and the choice of logic
variable. Logic variables stand for still to be proven leaves
in a derivation tree or simply holes in a term that is to be
instantiated via unification. It is a widely accepted fact that
multiplicative connectives are better behaved than, for ex-
ample, their additive siblings. It is also widely accepted
that logic variables are useful.

As a motivating example consider the unification prob-
lem

ĉ (F ̂x̂y) = ĉ (F ̂y ̂x)

where we write F for the logic variable, x, y for the two
resources that need to be consumed exactly once, c for con-
stant symbols, and ̂ for linear application. If ̂ were
intuitionistic application then any instantiation of F with a
constant function is a solution. In the multiplicative frag-
ment of linear logic, the problem is not solvable because
any instantiation of F will need to mention x and y exactly
once on two different rigid paths. Thus the left hand side
and the right hand side of the equation above will differ in
these two places. If we were to work in linear logic with
>, the problem is also solvable by choosing the constant
function F = λ̂x . λ̂y . F ′ ̂ 〈〉 where we write λ̂ for linear
functional abstraction and 〈〉 for the proof term of >.

This little example illustrates the complex nature of logic
variables in linear logic and their role in higher-order linear
unification. In the >-free case, every linear resource needs
to be consumed by the same term on either side of the equa-
tion. If this is impossible, unification fails. In the presence
of > this is no longer the case. Therefore, without a clear
understanding of the nature of logic variables from a mathe-
matical point of view, it seems hopeless to try to devise and
design algorithms for equality in linear logic.

In this paper we provide such an understanding by the
means of linear contextual modal type theory that gives a
precise mathematical meaning to logic variables for linear
logic, building on ideas from contextual modal type theory
by Nanevski, Pfenning, and Pientka [NPP08]. In their paper
they work out a modal explanation of contextual validity,
which accounts for the contexts that are usually associated
with logic variables in the intuitionistic setting [DHKP96].
In this paper we define a contextual modal type theory for
linear logic, which accounts for (in part at least) the defini-
tion of logic variables used for Cervesato’s and Pfenning’s
linear preunification algorithm [CP97].

The underlying philosophical basis for this work is pro-
vided by Martin-Löf’s view of logical truth in form of judg-
ments and evidence in form of axioms and inference rules.
Using his technique we construct the meaning of availabil-
ity, which corresponds to the multiplicative fragment of lin-
ear logic with(as the main connective, truth, which cor-

1

responds to truth in intuitionistic logic with→ as the main
connective, and contextual validity, which corresponds to
the logic of logic variables with [Γ; ∆]→ as the main con-
nective (pronounced box arrow Γ, ∆). If we know that
A [Γ; ∆]→ B is true, then a proof ofB may mention a logic
variable of type [Γ; ∆]A, which may refer arbitrarily many
times to assumptions in Γ and exactly once to assumptions
in ∆. The justification of this construction can be found in
Section 2.

Next we show the soundness of linear contextual modal
logic in Section 3. To this end we give a sound and complete
proof theoretical account of availability, truth, and contex-
tual validity in form of a sequent calculus. Next we prove
the admissibility of cut, which guarantees the existence of
canonical proofs in linear contextual modal logic. The cut-
elimination result of this section is formalized and machine-
checked in Twelf [PS99].

Our logic is a bit non-standard because we do not explic-
itly internalize the judgments for truth and linear contextual
validity. That this is not a loss is argued in Section 4, where
we define an equivalent logic in terms of a ! modality that re-
stores the intuitionistic implication A→ B = !A(B and
a linear contextual modality [Γ; ∆] that restores the modal
box implication A [Γ; ∆]→ B = [Γ; ∆]A (B. In ad-
dition, this discussion justifies why linear contextual modal
logic is in fact a modal logic.

In Section 5 we introduce a Curry-Howard correspon-
dence. Every proof rule is endowed with a proof term in the
spirit of Bierman [Bie94]. In this section we define all basic
operations on logic variables including abstraction, instanti-
ation, and substitution application. The choice of canonical
proofs induces the equational theory based on β reduction
and η expansion. We show that every term is equivalent to
a β-normal η-long form.

Finally, in Section 6 we describe how we use linear con-
textual modal type theory to help us understand the role of
the additive unit 〈〉 : >. Consider the following unification
equation, where F and G are logic variables:

ĉ 〈〉̂ (F ̂x) = ĉ 〈〉̂ (d̂G)

This time, there is only one resource x. On the left the re-
source x needs to be consumed by the F , but on the right the
second argument of c cannot consume x, and it must there-
fore be consumed by the first argument, the 〈〉. But now, af-
ter decomposition the two resulting unification problems are
no longer well-typed! The resource x must to be consumed
on the right but not on the left in the first and vice versa in
the second. Thus we would expect that there is no solution
and wrong again. The solution is F = λ̂x . d ̂ (G′ ̂ 〈〉)
and G = G′ ̂ 〈〉.

Linear contextual modal type theory presents the theo-
retical foundation of our implementation of the Celf proof
assistant [SNS08].

2 Linear Contextual Modal Logic

The central idea in linear logic [Gir87] is that of a re-
source. Linear assumptions play the role of a fixed set of
available resources that must be consumed (exactly once) in
a derivation. Therefore, available resources form the philo-
sophical foundation of linear contextual modal logic. The
idea of linear logic as a resource oriented logic has rendered
it attractive to many application areas. In Petri nets, tokens
can be modeled as resources, in programming language the-
ory it is state, and in security simply messages that are being
created and consumed.

Traditionally one recovers intuitionistic logic from linear
logic by singling out those resources that can be constructed
from no other resources. They can be used as often as de-
sired, and thus, constructively speaking, they are true.

Finally, we introduce the judgment of contextual valid-
ity, which will ultimately serve as the logical justification
of the existence of logic variables. Usually we say a propo-
sition is valid if it is true in all contexts. But here we re-
fine this idea one step further and refer to the validity of a
proposition in a context Γ; ∆, where Γ is a collection of true
propositions, and ∆ is a collection of available resources.

These three judgments can be defined by a set of infer-
ence rules and axioms following the ideas of the judgmental
reconstruction of modal logic that goes back to Davies and
Pfenning [DP01].

Linear Judgments In linear logic, resources are con-
structed from other resources, all of which are necessarily
consumed during the process. We call judgments of this
form linear judgments. If A is constructed using each lin-
ear resource among A1 . . . An exactly once, we write

x1 : A1 avail, . . . , xn : An avail ` A avail

The list of linear resources to the left of the ` symbol enjoys
among the three structural properties only exchange (and
neither weakening nor contraction) and will be abbreviated
in the remainder of this paper by the aforementioned ∆. In
the remainder of the paper we refer to xi : Ai avail as a
linear assumption and to Ai as a resource.

In our formulation of the rules that define introduction
and elimination forms for the linear implication connective
(, we use the ` symbol as a notational convenience for ac-
counting all resources consumed by the derivation A avail.

lhypx
x :A avail ` A avail

(∆, x :A avail) ` B avail
(Ix

∆ ` A(B avail

∆1 ` A(B avail ∆2 ` A avail
(E

(∆1,∆2) ` B avail

2

Theorem 2.1 (Principle of substitution) If ∆1 ` A avail
and (∆2, x :A avail) ` B avail then (∆1,∆2) ` B avail.

Proof: by induction on the second assumption. �

Hypothetical Judgments We define the judgmentA true
to mean that A is always available. This is only possible in
the case that the derivation of A avail does not consume
any resources. In compliance with the literature, we call the
truth judgment a hypothetical judgment because it may rely
on the assumptions that x1 : A1 true, . . . , xn : An true.

x1 : A1 true, . . . , xn : An true ` A true

In contrast to above, this list enjoys all structural properties,
i.e. weakening, exchange, and contraction. In the following
we will abbreviate the list of assumptions by Γ and refer to
xi : Ai as an intuitionistic assumption and to any Ai in Γ as
a hypothesis.

Using Γ; ∆ ` A avail as an appropriate notational de-
vice for linear judgments, we introduce truth in the follow-
ing way.

Γ; · ` A avail

Γ ` A true

Furthermore, we define the rules regarding the introduction
and elimination of the intuitionistic implication connective
→ as follows.

hypx
(Γ, x :A true); · ` A avail

(Γ, x :A true); ∆ ` B avail
→ Ix

Γ; ∆ ` A→ B avail

Γ; ∆ ` A→ B avail Γ ` A true
→ E

Γ; ∆ ` B avail

Theorem 2.2 (Principle of substitution) If Γ; · ` A avail
and (Γ, x :A true); ∆ ` B avail then Γ; ∆ ` B avail.

Proof: by induction on the second assumption. �

Categorical Judgments We write A valid[Γ; ∆] if A is
valid relative to a list of hypothetical judgments Γ and linear
judgments ∆. This means that A is available whenever all
hypotheses in Γ are true and all resources in ∆ are available.
Furthermore, we write

u1 ::A1 valid[Γ1; ∆1] . . . un ::An valid[Γn; ∆n]
` A valid[Γ; ∆]

for the judgments of relative validity. As above, the list
of assumptions to the left of the ` symbol enjoys the full
set of structural properties, including exchange, weakening,
and contraction. In the interest of clarity, we abbreviate this

list by Ψ, and refer to a declaration Ai valid[Γi; ∆i] as a
contextual modal hypothesis.

Ψ; Γ; ∆ ` A avail

Ψ ` A valid[Γ; ∆]

When using a contextual modal hypothesis in Ψ; Γ; ∆ of
typeA valid[Γ′; ∆′], we need to make sure that all hypothe-
ses Γ′ are true and all resources in ∆′ can be provided. More
formally, we express this fact by Ψ; Γ; ∆ ` Γ′; ∆′, which
is defined as follows: all hypotheses A in Γ′ must satisfy
Ψ; Γ ` A true, and for some partition of ∆ = ∆1, . . . ,∆n

the following holds: Ψ; Γ; ∆i ` Bi avail for all resources
Bi in ∆′. The presence of this new kind of contextual as-
sumption gives rise to a new arrow, which is defined by the
following introduction and elimination rule.

(Ψ, u ::A valid[Γ′; ∆′]); Γ; ∆ ` Γ′; ∆′

mhypu

(Ψ, u ::A valid[Γ′; ∆′]); Γ; ∆ ` A avail

(Ψ, u ::A valid[Γ′; ∆′]); Γ; ∆ ` B avail
�→ Iu

Ψ; Γ; ∆ ` A [Γ′; ∆′]→ B avail

Ψ; Γ; ∆ ` A [Γ′; ∆′]→ B avail Ψ ` A valid[Γ′; ∆′]
�→ E

Ψ; Γ; ∆ ` B avail

Theorem 2.3 (Principle of substitution) If Ψ; Γ′; ∆′ `
A avail and (Ψ, u ::A valid[Γ′; ∆′]); Γ; ∆ ` B avail then
Ψ; Γ; ∆ ` B avail.

Proof: by induction on the second assumption. �

Figure 1 summarizes the rules that define the meaning
of the connectives purely in terms of availability. This can
always be achieved because truth and contextual validity
is defined by one single rule, which is always invertible.
We call the resulting logic linear contextual modal logic
(LCML).

Returning to our motivating example, contextual modal
assumptions are logic variables.

Example 2.4 (Logic Variables) u :: A valid[·; ·] is a log-
ical variable that can only be instantiated by closed terms
(that may neither refer to intuitionistic or linear assump-
tions.) v ::A valid[·; (u :B; v :C)] is a logical variable that
must consume the two respective resources u and v exactly
once. w ::A valid[u :B; v :C] is a logical variable that must
consume the resource v, but may mention u arbitrary many
times.

3 Proof Theory

The rules defining the meaning of the connectives of lin-
ear contextual modal logic are sound in the sense that we
understand the meaning of a proposition by examining only

3

hypx
Ψ; (Γ, x :A true); · ` A avail

lhypx
Ψ; Γ;x :A avail ` A avail

(Ψ, u ::A valid[Γ′; ∆′]); Γ; ∆ ` Γ′; ∆′

mhypu

(Ψ, u ::A valid[Γ′; ∆′]); Γ; ∆ ` A avail

Ψ; (Γ, x :A true); ∆ ` B avail
→ Ix

Ψ; Γ; ∆ ` A→ B avail

Ψ; Γ; ∆ ` A→ B avail Ψ; Γ; · ` A avail
→ E

Ψ; Γ; ∆ ` B avail

Ψ; Γ; (∆, x :A avail) ` B avail
(Ix

Ψ; Γ; ∆ ` A(B avail

Ψ; Γ; ∆1 ` A(B avail Ψ; Γ; ∆2 ` A avail
(E

Ψ; Γ; (∆1,∆2) ` B avail

(Ψ, u ::A valid[Γ′; ∆′]); Γ; ∆ ` B avail
�→ Iu

Ψ; Γ; ∆ ` A [Γ′; ∆′]→ B avail

Ψ; Γ; ∆ ` A [Γ′; ∆′]→ B avail Ψ; Γ′; ∆′ ` A avail
�→ E

Ψ; Γ; ∆ ` B avail

. .

Ψ; Γ; · ` ·; ·

Ψ; Γ; ∆ ` Γ′; · Ψ; Γ; · ` A avail

Ψ; Γ; ∆ ` (Γ′, x :A); ·

Ψ; Γ; ∆1 ` Γ′; ∆′ Ψ; Γ; ∆2 ` A avail

Ψ; Γ; (∆1,∆2) ` Γ′; (∆′, x :A)

Figure 1. Natural Deduction Calculus for LCML

its constituents, in analogy to how global soundness is de-
fined for contextual modal type theory [NPP08].

In pursuit of establishing soundness, we proceed by
defining a sequent calculus for our logic for which we then
show cut-elimination. Furthermore, we can argue that the
sequent calculus is a sound and complete characterization
of the rules introduced above.

The defining judgment of the sequent calculus for linear
contextual modal logic is written as

Ψ; Γ; ∆ =⇒ A.

The judgment holds if A can be proved from contextual
modal hypotheses Ψ, true hypotheses Γ, and available hy-
potheses ∆.

In analogy to the previous section, we generalize this
judgment to lists of true and available hypotheses Γ; ∆, for
which we write formally

Ψ; Γ; ∆ =⇒ Γ′; ∆′.

The rules defining the sequent calculus are summarized
in Figure 2. The initial rule is defined for atomic proposi-
tions P only

init.
Ψ; Γ;P =⇒ P

The identity principle holds for the sequent calculus. Ev-
ery proposition A follows from itself as linear hypothesis.

Theorem 3.1 (Identity principle) For all propositions A,
and contexts, Ψ, Γ, Γ′, and ∆:

1. Ψ; Γ;A =⇒ A

2. Ψ; Γ; ∆ =⇒ Γ; ∆

3. Ψ; (Γ,Γ′); · =⇒ Γ; ·

Proof: By an easy mutual induction over the structure ofA
for 1., ∆ for 2., and Γ for 3. �

Lemma 3.2 (Weakening)

1. If Ψ; Γ; ∆ =⇒ C then Ψ; Γ, A; ∆ =⇒ C.

2. If Ψ; Γ; ∆ =⇒ C then Ψ, A[Γ′′,∆′′]; Γ; ∆ =⇒ C.

3. If Ψ; Γ; ∆ =⇒ Γ′; ∆′ then Ψ; Γ, A; ∆ =⇒ Γ′; ∆′.

4. If Ψ; Γ; ∆ =⇒ Γ′; ∆′ then Ψ, A[Γ′′,∆′′]; Γ; ∆ =⇒
Γ′; ∆′.

Proof: by a mutual structural induction on the given se-
quent derivations. �

The cut principle also holds.

Theorem 3.3 (Cut Principle) We must consider three dif-
ferent cuts, one for each of the three fragments.

Linear cut: If Ψ; Γ; ∆1 =⇒ A and Ψ; Γ; (∆2, A) =⇒ C
then Ψ; Γ; (∆1,∆2) =⇒ C.

Hypothetical cut: If Ψ; Γ; · =⇒ A and Ψ; (Γ, A); ∆ =⇒
C then Ψ; Γ; ∆ =⇒ C.

Categorical cut: If Ψ; Γ′; ∆′ =⇒ A and
(Ψ, A[Γ′; ∆′]); Γ; ∆ =⇒ C then Ψ; Γ; ∆ =⇒ C.

Proof: By structural induction lexicographically on the
cut-formula A, the left, and the right derivation. The proof
has been formalized in Twelf, and is accessible on the web
at http://www.itu.dk/˜anderssn/lcml.tgz.
�

4

init
Ψ; Γ;P =⇒ P

Ψ; (Γ, A); (∆, A) =⇒ C
copy

Ψ; (Γ, A); ∆ =⇒ C

(Ψ, A[Γ′; ∆′]); Γ; ∆1 =⇒ Γ′; ∆′ (Ψ, A[Γ′; ∆′]); Γ; (∆2, A) =⇒ C
reflect

(Ψ, A[Γ′; ∆′]); Γ; (∆1,∆2) =⇒ C

Ψ; (Γ, A); ∆ =⇒ B
→ R

Ψ; Γ; ∆ =⇒ A→ B

Ψ; Γ; · =⇒ A Ψ; Γ; (∆, B) =⇒ C
→ L

Ψ; Γ; (∆, A→ B) =⇒ C

Ψ; Γ; (∆, A) =⇒ B
(R

Ψ; Γ; ∆ =⇒ A(B

Ψ; Γ; ∆1 =⇒ A Ψ; Γ; (∆2, B) =⇒ C
(L

Ψ; Γ; (∆1,∆2, A(B) =⇒ C

(Ψ, A[Γ′; ∆′]); Γ; ∆ =⇒ B
�→ R

Ψ; Γ; ∆ =⇒ A [Γ′; ∆′]→ B

Ψ; Γ′; ∆′ =⇒ A Ψ; Γ; (∆, B) =⇒ C
�→ L

Ψ; Γ; (∆, A [Γ′; ∆′]→ B) =⇒ C

. .

id
Ψ; Γ; · =⇒ ·; ·

Ψ; Γ; ∆ =⇒ Γ′; · Ψ; Γ; · =⇒ A
dot

Ψ; Γ; ∆ =⇒ (Γ′, A); ·

Ψ; Γ; ∆1 =⇒ Γ′; ∆′ Ψ; Γ; ∆2 =⇒ A
ldot

Ψ; Γ; (∆1,∆2) =⇒ Γ′; (∆′, A)

Figure 2. Sequent Calculus of LCML

Theorem 3.4 (Soundness and Completeness)

1. Ψ; Γ; ∆ ` A avail if and only if Ψ; Γ; ∆ =⇒ A.

2. Ψ; Γ; ∆ ` Γ′; ∆′ if and only if Ψ; Γ; ∆ =⇒ Γ′; ∆′.

Proof: The proofs are by mutual structural induction
on the respective derivations. They have been for-
malized in Twelf, and are accessible on the web at
http://www.itu.dk/˜anderssn/lcml.tgz. �

Example 3.5 (Reflexivity) ·; ·; · =⇒ A [·; ·]→ A is deriv-
able in the sequent calculus.

A[·; ·]; ·; · =⇒ ·; · by id
A[·; ·]; ·;A =⇒ A by identity
A[·; ·]; ·; · =⇒ A by reflect
·; ·; · =⇒ A [·; ·]→ A by �→ R

4 Modalities for Truth and Validity

Our version of linear contextual modal logic is equiv-
alent to one that internalizes the judgments for truth and
validity by introducing two modal operators, ! and [Γ; ∆],
ultimately justifying the modal nature of the logic. The ! is
the standard modality that enables intuitionistic reasoning
in linear logic, and [Γ; ∆] is the contextual modal opera-
tor that internalizes validity with respect to the intuitionistic
context Γ and the linear context ∆.

We obtain the internalized version of linear contextual
modal logic by replacing the intuitionistic implication con-

nective and its defining rules by !, !I, and !Ex

Ψ; Γ; · ` A avail
!I

Ψ; Γ; · ` !A avail

Ψ; Γ; ∆1 ` !A avail Ψ; (Γ, x :A true); ∆2 ` C avail
!Ex

Ψ; Γ; (∆1,∆2) ` C avail

and the connective for contextual validity and its defining
rules by [Γ; ∆],�I, and�Eu. We refer to the resulting logic
as LCMLi.

Ψ; Γ′; ∆′ ` A avail
�I

Ψ; Γ; · ` [Γ′; ∆′]A avail

Ψ; Γ; ∆1 ` [Γ′; ∆′]A avail

(Ψ, u ::A valid[Γ′; ∆′]); Γ; ∆2 ` C avail
�Eu

Ψ; Γ; (∆1,∆2) ` C avail

Inspired by the double negation translation and [MS07],
we make the relation between ! and →, and [Γ; ∆] and
[Γ; ∆]→ precise. We show that both formulations of the
rules prove the same theorems via the following translation
and its inverse. The injection ·i translates propositions that
use modalities into a version with only implications and ·e
is an embedding in the reverse direction. The former trans-
lation is the more interesting of the two.

P i = P

(A(B)i = Ai (Bi

(!A)i = (Ai → p)(p

([Γ; ∆]A)i = (Ai [Γi; ∆i]→ p)(p

·i = ·
(∆, x :A avail)i = ∆i, x : Ai avail

5

(Γ, x :A true)i = Γi, x : Ai true

(Ψ, u ::A valid[Γ; ∆])i = Ψi, u ::Ai valid[Γi; ∆i]

The definition of the translation is parametric in p, which
means that for any given translation p can be instantiated by
any formula as desired.

Theorem 4.1 (Soundness) If Ψ; Γ; ∆ ` A avail in LCMLi

then Ψi; Γi; ∆i ` Ai avail in LCML.

Proof: by induction on the derivation of A. �

The inverse of this translation is a straightforward em-
bedding ·e. We only mention the two interesting cases;
A → B is translated into !Ae (Be and A [Γ; ∆]→ B
into [Γe; ∆e]Ae (Be. The completeness result follows
by a simple inductive argument.

Theorem 4.2 (Completeness) If Ψ; Γ; ∆ ` A avail in
LCML then Ψe; Γe; ∆e ` Ae in LCMLi.

Therefore, it is just a question of convenience if one
prefers to work with explicit modalities or not. In addition,
one can in LCMLi for example show that the introduction
and elimination rules of the defined connectives are admis-
sible. We give one example.

Example 4.3 (Admissibility of→ I) We can show that if
Ψ; Γ, A true; · ` B avail then Ψ; Γ; · ` !A (B avail.
The proof is direct:

Ψ; Γ;x : !A avail ` !A avail by lhypx

Ψ; Γ, A true; · ` B avail given
Ψ; Γ;x : !A avail ` B avail by !E
Ψ; Γ; · ` !A(B avail by(I

The next example solidifies the relation between logic
variables and contextual modal hypotheses. It is taken from
a paper by Dowek et al. [DHKP96] describing higher-order
pattern unification. Although higher-order unification is un-
decidable, the higher-order pattern fragment characterizes
a fragment that can be reduced to a first-order unification
problem. One of the crucial steps is to lower logic variables
of higher type to atomic type. For example, a logic variable
of type A → B → C declared in the empty context should
be instantiated by a logic variable of type C in the context
containing A and B.

Example 4.4 (Lowering and Raising) We show that low-
ering and raising for one (linear or intuitionistic) hypothesis
is justified. By induction, it also works for many.

1. Ψ; Γ; ∆ ` [Γ′; (∆′, x : A avail)]C avail if and only if
Ψ; Γ; ∆ ` [Γ′; ∆′](A(C) avail.

2. Ψ; Γ; ∆ ` [(Γ′, x : A true); ·]C avail if and only if
Ψ; Γ; ∆ ` [Γ′; ·](!A(C) avail.

The proofs are by a straightforward application of the
rules. We only show the left to right direction of 1., the
remaining three derivations follow the same schema and
are omitted in the interest of space. Let Ψ′ = Ψ, u ::
C valid[Γ′; (∆′, x :A avail)]

Ψ′; Γ′; (∆′, x : A avail) ` Γ′; (∆′, x : A avail)
by Theorems 3.1 2. and 3.4 2.

Ψ′; Γ′; (∆′, x : A avail) ` C avail by mhypu

Ψ′; Γ′; ∆′ ` A(C avail by(Ix

Ψ′; Γ; ∆ ` [Γ′; ∆′](A(C) avail by �I
Ψ; Γ; ∆ ` [Γ′; (∆′, x :A)]C avail given
Ψ; Γ; ∆ ` [Γ′; ∆′](A(C) avail by �Eu

We remark that the left to right direction of 2. relies on the
admissibilty of→ I from Example 4.3.

Example 4.5 (Modal laws) The following propositions
are tautologies in LCMLi:

1. !A(A

2. !(A(B)(!A(!B

3. !A(!!A

4. [·; ·]A(A

5. [Γ; ∆1](A(B)([Γ; ∆2]A([Γ; (∆1,∆2)]B

6. [Γ; ∆]A([Γ′; ·][Γ; ∆]A

The first three facts are well known from linear logic.
The fourth follows from Example 3.5 and Theorems 3.4 1.
and 4.2. We omit the proofs in the interest of space.

The following propositions are not provable in LCMLi:
1. [Γ; ∆]A(A

2. [Γ; ∆](A(B)([Γ; ∆]A([Γ; ∆]B

3. [Γ; ∆]A([Γ; ∆][Γ; ∆]A

We therefore conclude that ! satisfies the laws of S5, and
so does the box modality [Γ; ∆] but only if the choice of
operator respects the laws of linear logic. A further analysis
of the modal properties of linear contextual modal logic is
beyond the scope of this paper.

In summary, the internalized version presented here is
equivalent to the non-internalized version of linear contex-
tual modal logic discussed in the previous two sections.
Moreover, it is also a conservative extension of intuitionistic
contextual modal logic [NPP08] (ICML) where we need to
embed the non-linear part into LCML by introducing spu-
rious empty linear contexts into the modal operators: We
define An as follows.

An =

8<:
P if A = P
Bn → Cn if A = B → C
[Γn; ·]Bn if A = [Γ]B

Γn =


· if Γ = ·
Γ′n, x :An true if Γ = Γ′, x :A true

Ψn =


· if Ψ = ·
Ψ′n, u ::An valid[Γn; ·] if Ψ = Ψ′, u ::A valid[Γ]

6

Finally, we prove for all A (in ICML) and all Γ′ (in ICML)
the following by the way of canonical derivations and an
easy mutual structural induction.

Theorem 4.6 (Conservative Extension)

1. If Ψn; Γn; · ` An avail in LCMLi then Ψ; Γ ` A true
in ICML.

2. If Ψn; Γn; · ` Γ′n; · in LCMLi then Ψ; Γ ` Γ′ in ICML.

In the remainder of the paper, we will only work with
the non-internalized version since proof terms for LCMLi

do not have canonical forms [NPP08].

5 Linear Contextual Modal Type Theory

Constructive logics can be seen as type theories via the
well-known Curry-Howard correspondence. Perhaps not
very surprisingly, linear contextual modal logic gives rise
to linear contextual modal type theory once augmented by
proof terms. Traditionally, proof terms are in one-to-one
correspondence with the derivations. It is easy to see that
the proof terms that we introduce here satisfy this property
as well. The situation is less clear for extensions involving,
for example, > as we will discuss in Section 6.

Our version of linear contextual modal type theory
(based on the rules introduced in Section 2) is perhaps less
interesting for programming but it is the foundation for log-
ical frameworks concerned with the representation of re-
source based deductive systems, such as LLF [CP96] and
CLF [CPWW02], and permits us to study the very nature of
logic variables.

The proof term assignment for linear contextual modal
logic is based on the rules from Figure 1. For convenience,
we drop the judgments of avail, true, and valid, and ex-
press the rules in a more traditional form as specified in
Figure 3.

Proof Terms t ::= x | u[σ] | λx :A. t | t1 t2
| λ̂x :A . t | t1 ̂ t2
| λ[Γ;∆]u : A . t | t1

Γ;∆

� t2

Substitutions σ ::= · | σ, t/x
Contexts Γ,∆ ::= · | Γ, x : A

Modal Contexts Ψ ::= · | Ψ, u ::A[Γ; ∆]

We distinguish between variables x (intuitionistic or lin-
ear) and u[σ] (contextual modal), where the contextual
modal variables should be thought of as logic variables and
σ as a delayed substitution. Every implication (linear, in-
tuitionistic, and contextual modal) provides an abstraction
and application term. Intuitionistic and linear application
are standard. Therefore we comment only on the two con-

texts above the contextual modal application t1
Γ;∆

� t2: all

declarations in Γ and ∆ are binding occurrences of those in-
tuitionistic and linear declarations that define the world the
argument term t2 lives in. The Γ and ∆ should be viewed
as iterated abstractions of t2 subject to α-conversion. Their
order is therefore important — writing them as contexts is
merely a convenient shorthand.

5.1 Substitutions

Linear contextual type theory provides two notions of
substitution application. One is for the simultaneous substi-
tutions that witness derivations of the judgment : Ψ; Γ; ∆ `
σ : Γ′; ∆′, and the other is for single point substitutions that
instantiate contextual modal variables. Recall that contex-
tual modal variables model logic variables.

Definition 5.1 (Simultaneous Substitutions)

[σ1,M/x, σ2](x) = x

[σ](u[τ]) = u([σ]τ)
[σ](λx :A. t) = λx :A. [σ, x/x](t)
[σ](t1 t2) = [σ](t1) [σ](t2)

[σ](λ̂x :A . t) = λ̂x :A . [σ, x/x](t)
[σ](t1 ̂ t2) = [σ](t1)̂ [σ](t2)

[σ](λ[Γ;∆]u :A . t) = λ[Γ;∆]u :A . [σ](t) (∗)

[σ](t1
Γ;∆

� t2) = [σ](t1)
Γ;∆

� t2 (∗∗)
[σ](·) = ·
[σ](σ′, t/x) = [σ](σ′), [σ](t)/x

The definition of substitution application is largely stan-
dard, we comment only on the two equations marked by
stars. In (∗) modal contextual variables never occur in the
domain of σ. Therefore σ does not need to be extended by
x/x as in the other two abstraction cases. In (**), the argu-
ment to a contextual modal term will always live in a world
different from the domain of σ, and thus must not be applied
to t2.

Theorem 5.2 (Substitution)

1. If Ψ; Γ; ∆ ` σ : Γ′; ∆′ and Ψ; Γ′; ∆′ ` t : A then
Ψ; Γ; ∆ ` [σ](t) : A.

2. If Ψ; Γ; ∆ ` σ : Γ′; ∆′ and Ψ; Γ′; ∆′ ` σ′ : Γ′′; ∆′′

then Ψ; Γ; ∆ ` [σ](σ′) : Γ′′; ∆′′.

Proof: by a mutual structural induction on the derivation of
t in 1. and σ′ in 2. �

More interesting is the definition of substitution for con-
textual modal variables (or logic variables). Here, it is suf-
ficient to define only a single point substitution, which cor-
responds to the instantiation of several instances of one par-
ticular logic variable. The presence of linearity does not

7

hypx
Ψ; (Γ, x :A); · ` x : A

lhypx
Ψ; Γ;x :A ` x : A

(Ψ, u ::A[Γ′; ∆′]); Γ; ∆ ` σ : Γ′; ∆′

mhypu

(Ψ, u ::A[Γ′; ∆′]); Γ; ∆ ` u[σ] : A

Ψ; (Γ, x :A); ∆ ` t : B
→ Ix

Ψ; Γ; ∆ ` λx :A. t : A→ B

Ψ; Γ; ∆ ` t1 : A→ B Ψ; Γ; · ` t2 : A
→ E

Ψ; Γ; ∆ ` t1 t2 : B

Ψ; Γ; (∆, x :A) ` t : B
(Ix

Ψ; Γ; ∆ ` bλx : A . t : A(B

Ψ; Γ; ∆1 ` t1 : A(B Ψ; Γ; ∆2 ` t2 : A
(E

Ψ; Γ; (∆1,∆2) ` t1 b t2 : B

(Ψ, u ::A[Γ′; ∆′]); Γ; ∆ ` t : B
�→ Iu

Ψ; Γ; ∆ ` λ[Γ′;∆′]u : A . t : A [Γ′; ∆′]→ B

Ψ; Γ; ∆ ` t1 : A [Γ′; ∆′]→ B Ψ; Γ′; ∆′ ` t2 : A
�→ E

Ψ; Γ; ∆ ` t1
Γ′;∆′

� t2 : B

. .

Ψ; Γ; · ` · : ·; ·

Ψ; Γ; ∆ ` σ : Γ′; · Ψ; Γ; · ` t : A

Ψ; Γ; ∆ ` σ, t/x : (Γ′, x :A); ·

Ψ; Γ; ∆1 ` σ : Γ′; ∆′ Ψ; Γ; ∆2 ` t : A

Ψ; Γ; (∆1,∆2) ` σ, t/x : Γ′; (∆′, x :A)

Figure 3. Type Theory LCMTT

lead to any surprises, and the definition of substitution is
reminiscent to that described in [NPP08].

Definition 5.3 (Substitution for Contextual Modal Variables)
A substitution for a contextual modal variable is a single
point substitution that substitutes a term t′, declared in
world Γ; ∆ for the contextual modal variable u in t.
Application written in short as [[(Γ; ∆).t′/u]](t). The rules
defining this judgment are depicted in Figure 4.

Contextual modal substitution application traverses the
entire structure of the term and substitutes t′ into each oc-
currence of u. The only two interesting cases are Equa-
tions (1) and (2). The former describes the actual substi-
tution step: If we substitute t′ for u in u[σ], we follow the
following steps. First, we replace all occurrences of the con-
textual modal variable u in the delayed simultaneous sub-
stitution σ, written as σ′ = [[(Γ′; ∆′).t′/u]](σ). However,
before σ can be carried out, its domain must be renamed to
match the variables in Γ′; ∆′ for which we write σ/(Γ′; ∆′).

Theorem 5.4 (Contextual Modal Substitution)

1. If Ψ; Γ′; ∆′ ` t′ : C and (Ψ, u ::C[Γ′; ∆′]); Γ; ∆ ` t :
A then Ψ; Γ; ∆ ` [[(Γ′; ∆′).t′/u]](t) : A.

2. If Ψ; Γ′; ∆′ ` t′ : C and (Ψ, u ::C[Γ′; ∆′]); Γ; ∆ ` σ :
Γ′′; ∆′′ then Ψ; Γ; ∆ ` [[(Γ′; ∆′).t′/u]](σ) : Γ′′; ∆′′.

Proof: by mutual structural induction on t in 1. and σ in 2.
�

5.2 Equational Theory

Based on the definition of these two notions of sub-
stitution application, every connective in linear contextual
modal type theory gives rise to a β- and an η-rule, justify-
ing our choice of definitional equality denoted by ≡.

As a preliminary definition, we define the identity sub-
stitution on arbitrary contexts.

id(·;·) = ·
id((Γ,x:A);·) = id(Γ;·), x/x
id(Γ;(∆,x:A)) = id(Γ;∆), x/x

Theorem 5.5 (Identity) For all contexts Ψ, Γ, and ∆,

Ψ; Γ; ∆ ` id(Γ;∆) : Γ; ∆

Our choice of definitional equality ≡ is defined as the
symmetric, reflexive, and transitive closure of the following
β-reduction and η-expansion rules defining =⇒. For the
fragment motivated by linear and hypothetical judgments,
the rules are standard.

(λ̂x :A . t1)̂ t2 : B =⇒ [t2/x]t1
t : A(B =⇒ λ̂x : A . t̂x

(λx :A. t1) t2 : B =⇒ [t2/x]t1
t : A→ B =⇒ λx : A. t x

The fragment that corresponds to the contextual judg-
ment is less standard but nevertheless intuitive.

(λ[Γ;∆]u :A . t1)
Γ;∆

� t2 : B =⇒ [[(Γ; ∆).t2/u]]t1

t : A [Γ; ∆]→ B =⇒ λ[Γ;∆]u : A . t
Γ;∆

� u[id(Γ;∆)]

8

[[(Γ′; ∆′).t′/u]](x) = x

[[(Γ′; ∆′).t′/u]](u[σ]) = t′[([[(Γ′; ∆′).t′/u]](σ))/(Γ′; ∆′)] (1)

[[(Γ′; ∆′).t′/u]](v[σ]) = v[[[(Γ′; ∆′).t′/u]](σ)] where u 6= v (2)

[[(Γ′; ∆′).t′/u]](λx :A. t) = λx :A. [[(Γ′; ∆′).t′/u]](t)

[[(Γ′; ∆′).t′/u]](t1 t2) = [[(Γ′; ∆′).t′/u]](t1) [[(Γ′; ∆′).t′/u]](t2)

[[(Γ′; ∆′).t′/u]](bλx :A . t) = bλx :A . [[(Γ′; ∆′).t′/u]](t)

[[(Γ′; ∆′).t′/u]](t1 b t2) = [[(Γ′; ∆′).t′/u]](t1)b [[(Γ′; ∆′).t′/u]](t2)

[[(Γ′; ∆′).t′/u]](λ[Γ;∆]x :A . t) = λ[Γ;∆]x :A . [[(Γ′; ∆′).t′/u]](t)

[[(Γ′; ∆′).t′/u]](t1
Γ;∆

� t2) = [[(Γ′; ∆′).t′/u]](t1)
Γ;∆

� [[(Γ′; ∆′).t′/u]](t2))

[[(Γ′; ∆′).t′/u]](·) = ·
[[(Γ′; ∆′).t′/u]](σ, t/x) = [[(Γ′; ∆′).t′/u]](σ), [[(Γ′; ∆′).t′/u]](t)/x

Figure 4. Substitution for Contextual Modal Variables

We omit the straightforward definition of the congruence
rules, which also extends to substitutions. Every equiva-
lence class is represented by a β-normal η-long form, which
we also call canonical forms. The idea of equivalence and
canonical form generalizes directly to simultaneous substi-
tutions.

5.3 Meta Theory

We can reassure the reader that linear contextual modal
type theory behaves as expected. First we show that reduc-
tion preserves types.

Theorem 5.6 (Subject Reduction and Expansion) If
Ψ; Γ; ∆ ` t : A and t : A ≡ t′ then Ψ; Γ; ∆ ` t′ : A.

Proof: To see that β and η rules preserve types, one re-
turns to the interpretation of the typing derivation as a logic
derivation. Each β rule is justified by the the argument of
local soundness: Introducing a connective followed imme-
diately by elimination is justified by the respective substi-
tution principle. Each η rule is justified by the argument
of local completeness. Any derivation of a non-atomic for-
mula followed by an elimination, and reintroduction of the
main connective ends in exactly the same derivation of the
non-atomic formula we started with. All rules defining ≡
preserve types as well. �

Theorem 5.7 (Canonical forms)

1. If Ψ; Γ; ∆ ` t : A then there exists a unique term t′ in
canonical form, such that Ψ; Γ; ∆ ` t′ : A and t ≡ t′.

2. If Ψ; Γ; ∆ ` σ : Γ′; ∆′ then there exists a unique sub-
stitution σ′ in canonical form, such that Ψ; Γ; ∆ ` σ′ :
Γ′; ∆′ and σ ≡ σ′.

Proof: This theorem follows from the fact that canonical
form are in one-to-one correspondence with cut-free deriva-
tions in the sequent calculus. �

6 Applications

We believe that linear contextual modal type theory has
applications that go beyond the study of the nature of logic
variables that we used to motivate this work. For exam-
ple, we speculate that this logic will be instrumental to help
scale the idea of staged computation [DP01] to program-
ming languages with linear types, such as Clean. Further-
more linear contextual modal logic is the logical foundation
of the meta linear logical framework MLLF developed by
McCreight et al. [MS04]. Both applications, however, lie
outside the scope of this paper. We report therefore on our
experiences when we tried to add the linear additive connec-
tive > to the logic. This connective is present in Lolli, the
linear logical framework LLF, the concurrent logical frame-
work CLF, and virtually every theorem prover built for lin-
ear logic [Tam94].

The > connective in linear logic is the proposition that
is available in any context. It can thus consume an arbitrary
number of linear resources. It is defined by the following
rule.

>I
Ψ; Γ; ∆ ` > avail

Extending the linear contextual modal logic with > is with-
out surprises. All proofs above trivially extend for both the
natural deduction calculus from Section 2 and the sequent
calculus from Section 3.

Interesting insights however can be gained if one tries to
add > to the type theory described in Section 5. Previous
presentations of linear type theory have given two possible

9

proof terms for >, one that is labeled by the names of the
resources from ∆ it consumes [Bie94] and another that is
unlabeled [CP96].

Labeled Unit. Bierman introduces 〈〉∆ as the proof term
for > with the following typing rule.

>I
Ψ; Γ; ∆ ` 〈〉∆ :>

This version of the proof term is not problematic at
all. However, substitution application must be generalized
to accommodate substitutions on context ∆. Assuming
Ψ; Γ′; ∆′ ` σ : Γ; ∆ we define [σ]〈〉∆ = 〈〉∆′ . The equa-
tional theory is subsequently extended with the following
η-rule: If Ψ; Γ; ∆ ` t : > then t : > =⇒ 〈〉∆. There is no
β-rule since > has no elimination/left rule.

The choice of the labeled unit 〈〉∆ comes also with a few
perks: we maintain the one-to-one correspondence between
proofs and proof terms. Theorems 5.6 and 5.7 extend seam-
lessly.

Unlabeled unit. The unlabeled unit 〈〉 is the proof term of
choice for most logical frameworks such as LLF and CLF.

>I
Ψ; Γ; ∆ ` 〈〉 :>

The advantage of using 〈〉 as opposed to 〈〉∆ is that in any
linear logic proof with one or more applications to >I we
usually do not care which > consumes what resources. In
the case of ambiguity, we happily identify those proofs,
which leads to better proof search behavior and also to more
succinct encodings of formal systems. For example, there is
only one proof term λ̂x :A . λ̂y :>(>(B . y ̂ 〈〉 ̂ 〈〉
that witnesses the derivation of the propositionA((>(
>(B)(B instead of two, if we were to use the labeled
unit.

In the context of linear contextual modal type theory,
however, the unlabeled unit 〈〉 causes trouble; consider e.g.
the unification problem discussed in Section 1

ĉ 〈〉̂ (F ̂x) = ĉ 〈〉̂ (d̂G)

where simple decomposition fails, i.e. even though the
equation has a solution we cannot recurse on subproblems
in a type-correct manner.

An alternative way to add > to linear contextual modal
logic is to require that the linear context in >I is always
empty and to encode the fact > may consume arbitrary
resources by flagging the judgment of derivability to tell
whether a derivation may be weakened. This idea is rem-
iniscent of the resource management logics used to express
algorithmic type checking in LLF [CHP96]. In this view
the >I rules above simply enforces that all weakening steps
happen implicitly in the leaves of the derivation in one-to-
one correspondence with the labeled unit 〈〉∆. If we in-
stead move the weakening as far towards the corresponding

binders as possible, we regain the one-to-one correspon-
dence between proof terms with the unlabeled unit 〈〉 and
derivations. Returning to the example, we can no longer
distinguish derivations based on which > consumes which
resource. We call this bit the>-flag, and our judgments thus
looks like Ψ; Γ; ∆ `f t : A where f is the >-flag.

Now the cause of the problem is apparent: subject re-
duction no longer holds in the sense that the >-flag might
change. Similarly, the hypothetical and categorical cuts are
not admissible in the sequent calculus when we expect the
>-flag of the conclusion to be determined immediately by
the premises. And since logic variable instantiation during
unification corresponds to the admissibility of the categori-
cal cut for hereditary instantiation, it explains the problems
with the unification equation above.

This observation seems to suggest that the labeled 〈〉∆
should be preferred over the unlabeled 〈〉.

7 Conclusion

In this paper we present linear contextual modal type the-
ory as a mathematical explanation for logic variables in the
presence of linear types. We prove the existence of canon-
ical forms by means of cut-elimination, whose proof has
been formalized and verified in the proof assistant Twelf.

Linear contextual modal type theory provides us with a
deep understanding of the interaction between linear type
theory and logic variables that are prevalent in many sys-
tems based on linear logic, for example, theorem provers
and logic programming languages. In particular, it forms
the theoretical foundation for our implementation of the
concurrent logical framework CLF [CPWW02] in the Celf
system [SNS08]. Hereby it explains the problems that
arise when one tries to extend it by the additive connective
>, how it affects the underlying notion of equality among
terms, and furthermore it is an excellent guide for the design
of a unification algorithm.

References

[Bie94] G. Bierman. On Intuitionistic Linear Logic. PhD
thesis, University of Cambridge, 1994.

[CHP96] Iliano Cervesato, Joshua S. Hodas, and Frank Pfen-
ning. Efficient resource management for linear
logic proof search. In R. Dyckhoff, H. Herre, and
P. Schroeder-Heister, editors, Proceedings of the 5th
International Workshop on Extensions of Logic Pro-
gramming, pages 67–81, Leipzig, Germany, March
1996. Springer-Verlag LNAI 1050.

[CP96] Iliano Cervesato and Frank Pfenning. A linear log-
ical framework. In E. Clarke, editor, Proceedings
of the Eleventh Annual Symposium on Logic in Com-
puter Science, pages 264–275, New Brunswick, New
Jersey, July 1996. IEEE Computer Society Press.

10

[CP97] Iliano Cervesato and Frank Pfenning. Linear higher-
order pre-unification. In Glynn Winskel, editor,
Proceedings of the Twelfth Annual Sumposium on
Logic in Computer Science (LICS’97), pages 422–
433, Warsaw, Poland, June 1997. IEEE Computer
Society Press.

[CPWW02] Iliano Cervesato, Frank Pfenning, David Walker, and
Kevin Watkins. A concurrent logical framework I:
Judgments and properties. Technical Report CMU-
CS-02-101, Carnegie Mellon University. Department
of Computer Science, 2002.

[DHKP96] Gilles Dowek, Thérèse Hardin, Claude Kirchner, and
Frank Pfenning. Unification via explicit substitu-
tions: The case of higher-order patterns. In M. Ma-
her, editor, Proceedings of the Joint International
Conference and Symposium on Logic Programming,
pages 259–273, Bonn, Germany, September 1996.
MIT Press.

[DP01] Rowan Davies and Frank Pfenning. A modal anal-
ysis of staged computation. Journal of the ACM,
48(3):555–604, 2001.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Sci-
ence, 50:1–102, 1987.

[HM94] Joshua Hodas and Dale Miller. Logic program-
ming in a fragment of intuitionistic linear logic. In-
formation and Computation, 110(2):327–365, 1994.
A preliminary version appeared in the Proceedings
of the Sixth Annual IEEE Symposium on Logic in
Computer Science, pages 32–42, Amsterdam, The
Netherlands, July 1991.

[MS04] Andrew McCreight and Carsten Schürmann. A meta
linear logical framework. In Carsten Schürmann, ed-
itor, Proceedings of Logical Frameworks and Meta
Languages, volume 199, pages 129–147, Cork, Ire-
land, July 2004.

[MS07] Rasmus Møgelberg and Alex Simpson. Relational
parametricity for computational effects. In Proceed-
ings of the IEEE Symposium on Logic in Computer
Science. IEEE Computer Society, 2007.

[NPP08] Aleksandar Nanevski, Frank Pfenning, and Brigitte
Pientka. Contextual modal type theory. Transactions
on Computational Logic, 9(3):Article 23, 1–49, June
2008.

[PS99] Frank Pfenning and Carsten Schürmann. System de-
scription: Twelf — a meta-logical framework for
deductive systems. In H. Ganzinger, editor, Pro-
ceedings of the 16th International Conference on
Automated Deduction (CADE-16), pages 202–206,
Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

[Rey02] John C. Reynolds. Separation logic: A logic for
shared mutable data structures. In Proceedings of
the IEEE Symposium on Logic in Computer Science,
pages 55–74. IEEE Computer Society, 2002.

[SNS08] Anders Schack-Nielsen and Carsten Schürmann.
System description: Celf – a logical framework for

deductive and concurrent systems. In Alessandro Ar-
mando, Peter Baumgartner, and Gilles Dowek, ed-
itors, International Joint Conference on Automated
Reasoning (IJCAR), pages 320–331, Sydney, Aus-
tralia, 2008.

[Tam94] Tanel Tammet. Proof strategies in linear logic. Jour-
nal of Automated Reasoning, 12:273–304, 1994.

11

