Short Talk: Celf — A Logical Framework for
Deductive and Concurrent Systems

Anders Schack-Nielsen and Carsten Schiirmann

IT University of Copenhagen
Denmark

Abstract. CLF (Concurrent LF) [?] is a logical framework for specify-
ing and implementing deductive and concurrent systems from areas, such
as programming language theory, security protocol analysis, process al-
gebras, and logics. Celf is an implementation of the CLF type theory that
extends the LF type theory by linear types to support representation of
state and a monad to support representation of concurrency.

The Celf system is a tool for experimenting with deductive and concurrent
systems prevalent in programming language theory, security protocol analysis,
process algebras, and logics. It supports the specification of object language syn-
tax and semantics through a combination of deductive methods and resource-
aware concurrent multiset transition systems. Furthermore it supports the ex-
perimentation with those specifications through concurrent logic programming
based on multiset rewriting with constraints.

Many case studies have been conducted in Celf including all of the motivating
examples that were described in the original CLF technical report [?]. In par-
ticular, Celf has been successfully employed for experimenting with concurrent
ML, its type system, and a destination passing style operational semantics that
includes besides the pure core a clean encoding of Haskell-style suspensions with
memoizations, futures, mutable references, and concurrency omitting negative
acknowledgments. Other examples include various encodings of the m-calculus,
security protocols, petri-nets, etc.

CLF is a conservative extension over LF, which implies that Celf’s function-
ality is compatible with that of Twelf [?]. With a few syntactic modifications
Twelf signatures can be read, type checked, and queries can be executed. Celf
does not yet provide any of the meta-theoretic capabilities that sets Twelf apart
from its predecessor Elf, such as mode checking, termination checking, coverage
checking, and the like, which we leave to future work. In this presentation we
concentrate on the two main features of Celf.

Specification. CLF was designed with the objective in mind to simplify the
specification of object languages by internalizing common concepts used for spe-
cification and avail them to the user. Celf supports dependent types for the
encoding of judgments as types, e.g. typing relations between terms and types,
operational relations between terms and values, open and closed terms, deriva-
bility, and logical truth. It also supports the method of higher-order abstract



syntazx, which relieves the user of having to specify substitutions and substitu-
tion application. In CLF, every term is equivalent to a unique inductively defined
F-normal n-long form modulo a-renaming and let-floating providing an induc-
tion principle to reason about the adequacy of the encoding. In addition, CLF
provides linear types and concurrency encapsulating monadic types in support
of the specification of resource aware and concurrent systems. Examples include
operational semantics for languages with effects, transition systems, and protocol
stacks.

Experimentation. Celf provides a logic programming interpreter that imple-
ments a proof search algorithm for derivations in CLF type theory in analogy to
how Elf implements a logical programming interpreter based on uniform proof
search. Celf’s interpreter is inspired (with few modifications) by Lollimon [?],
an extension of Lolli, the linear sibling of A-Prolog. The interpreter implements
backward-chaining search within the intuitionistic and linear fragment of CLF
and switches to forward-chaining multiset rewriting search upon entering the
monad. Celf programs may jump in and out of the concurrency monad and can
therefore take advantage of both modes of operation. In addition, the opera-
tional semantics of Celf is conservative over the operational semantics of Elf,
which means that any Twelf query can also be executed in Celf leading to the
same result.

Celf is written in Standard ML and compiles with SML/NJ, MLton and
MLKit. The source code and a collection of examples are freely available from
http://www.twelf.org/~celf.

References

[CPWWO02a] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins.
A concurrent logical framework I: Judgments and properties. Techni-
cal Report CMU-CS-02-101, Carnegie Mellon University. Department of
Computer Science, 2002.

[CPWWO02b] Iiano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins.
A concurrent logical framework II: Examples and applications. Techni-
cal Report CMU-CS-02-102, Carnegie Mellon University. Department of
Computer Science, 2002.

[LPPWO05] Pablo Lépez, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic
concurrent linear logic programming. In Pedro Barahona and Amy P.
Felty, editors, Proceedings of the 7th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, pages
35—46, Lisbon, Portugal, 2005.

[PS99] Frank Pfenning and Carsten Schiirmann. System description: Twelf — a
meta-logical framework for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated Deduc-
tion (CADE-16), pages 202—-206, Trento, Italy, July 1999. Springer-Verlag
LNAI 1632.



